All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance
- Jiaping Wang ,
- Minmin Gong ,
- John Snyder ,
- Baining Guo ,
- Peiran Ren
ACM Transactions on Graphics |
We describe a technique for real-time rendering of dynamic, spatially-varying BRDFs in static scenes with all-frequency shadows from environmental and point lights. The 6D SVBRDF is rep-
resented with a general microfacet model and spherical lobes fit to its 4D spatially-varying normal distribution function (SVNDF). A sum of spherical Gaussians (SGs) provides an accurate approximation with a small number of lobes. Parametric BRDFs are fit on-the-fly using simple analytic expressions; measured BRDFs are fit as a preprocess using nonlinear optimization. Our BRDF representation is compact, allows detailed textures, is closed under products and rotations, and supports reflectance of arbitrarily high specularity. At run-time, SGs representing the NDF are warped to align the half-angle vector to the lighting direction and multiplied by the microfacet shadowing and Fresnel factors. This yields the relevant 2D view slice on-the-fly at each pixel, still represented in the SG basis. We account for macro-scale shadowing using a new, nonlinear visibility representation based on spherical signed distance functions (SSDFs). SSDFs allow per-pixel interpolation of high-frequency visibility without ghosting and can be multiplied by the BRDF and lighting efficiently on the GPU.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.
All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance
We describe a technique for real-time rendering of dynamic, spatially-varying BRDFs in static scenes with all-frequency shad- ows from environmental and point lights. The 6D SVBRDF is rep- resented with a general microfacet model and spherical lobes fit to its 4D spatially-varying normal distribution function (SVNDF). A sum of spherical Gaussians (SGs) provides an accurate approxima- tion with a small number of lobes. Parametric BRDFs are fit on- the-fly using simple analytic expressions; measured BRDFs are fit as a preprocess using nonlinear optimization. Our BRDF represen- tation is compact, allows detailed textures, is closed under products and rotations, and supports reflectance of arbitrarily high specular- ity. At run-time, SGs representing the NDF are warped to align the half-angle vector to the lighting direction and multiplied…