Social Itinerary Recommendation from User-generated Digital Trails
- Hyoseok Yoon ,
- Yu Zheng ,
- Xing Xie ,
- Woontack Woo
Personal and Ubiquitous Computing |
Planning travel to unfamiliar regions is a difficult task for novice travelers. The burden can be eased if the resident of the area offers to help. In this paper, we propose a social itinerary recommendation by learning from multiple user-generated digital trails, such as GPS trajectories of residents and travel experts. In order to recommend satisfying itinerary to users, we present an itinerary model in terms of attributes extracted from user-generated
GPS trajectories. On top of this itinerary model, we present a social itinerary recommendation framework to find and rank itinerary candidates.We evaluated the efficiency of our recommendation method against baseline algorithms with large user-generated GPS trajectories collected from Beijing, China. First, systematically generated user queries are used to compare the recommendation performance in the algorithmic level. Second, a user study involving current residents of Beijing is conducted to compare user perception and satisfaction on the recommended itinerary. Third, we compare mobile only approach with mobile + cloud architecture for practical mobile recommender deployment.
Publication Downloads
GeoLife GPS Trajectories
August 9, 2012
This is a GPS trajectory dataset collected in (Microsoft Research Asia) GeoLife project by 182 users in a period of over three years (from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance of about 1.2 million kilometers and a total duration of 48,000+ hours. These trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are logged in a dense representation, e.g. every 1~5 seconds or every 5~10 meters per point. This dataset recoded a broad range of users' outdoor movements, including not only life routines like go home and go to work but also some entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and cycling. This trajectory dataset can be used in many research fields, such as mobility pattern mining, user activity recognition, location-based social networks, location privacy, and location recommendation.