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Abstract Planning travel to unfamiliar regions is a difficult
task for novice travelers. The burden can be eased if the
resident of the area offers to help. In this paper, we pro-
pose a social itinerary recommendation by learning from
multiple user-generated digital trails, such as GPS trajec-
tories of residents and travel experts. In order to recom-
mend satisfying itinerary to users, we present an itinerary
model in terms of attributes extracted from user-generated
GPS trajectories. On top of this itinerary model, we present
a social itinerary recommendation framework to find and
rank itinerary candidates. We evaluated the efficiency of our
recommendation method against baseline algorithms with a
large set of user-generated GPS trajectories collected from
Beijing, China. First, systematically generated user queries
are used to compare the recommendation performance in
the algorithmic level. Second, a user study involving current
residents of Beijing is conducted to compare user percep-
tion and satisfaction on the recommended itinerary. Third,
we compare mobile only approach with Mobile+Cloud ar-
chitecture for practical mobile recommender deployment.
Lastly, we discuss personalization and adaptation factors in
social itinerary recommendation throughout the paper.
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1 Introduction

Despite the increased number of travelers, international and
inexperienced travelers still face many difficulties in plan-
ning their trip. A dilemma travelers faces is related to the ef-
ficient use of the limited time. Since there are many possible
locations to visit, travelers want to maximize the travel ex-
perience, i.e., visit many interesting locations without wan-
dering around. In this regard, many recommendation tech-
niques are researched and being developed in the tourism
industry [SII8II171123].

Especially, inexperienced travelers can take a social ap-
proach to ask people who know about the area to be ex-
plored. Travelers can ask travel experts who have already
traveled through the area or local residents for recommenda-
tion. The advantage is that the recommendation is up-to-date
with accurate and timely information. However, the qual-
ity of recommendation varies depending on different people
and it takes time for users to digest and put collected infor-
mation together for use.

In our approach, we want to enhance itinerary recom-
mendation by incorporating knowledge of socially relevant
experts such as travel experts and active residents of the re-
gion. To extract meaningful knowledge, we data mine user-
generated digital trails such as GPS trajectories for finding
interest locations, inter-related locations in sequence, and
time to stay and travel. Such data mined knowledge enables
many interesting application scenarios. This work is an ex-
tension to [25], we made further contributions in personal-
ization factors of social itinerary recommendation and adap-
tation to practical mobile development and deployment.

Consider a researcher is attending a conference in Bei-
jing, China. At the end of the conference, he has 8 hours
to spend before catching up his flight. Being a newcomer
to this area, he uses Social Itinerary Recommendation Ser-
vice. He starts from his current location which is automat-



ically recognized with his GPS-enabled phone. He marks
the Beijing Capital International Airport in the map as the
destination, inputs 8 hours for travel duration and sends the
query. Then he receives an itinerary recommendation visu-
alized on the map which shows interesting locations to visit,
how long to stay in each location and estimation of traveling
time. With these information at hand, he gets a good picture
of where he will go and able to manage his time in advance.

As explained in this application scenario, we can rec-
ommend new travelers an itinerary that makes the efficient
use of the given duration by considering multiple users’ ac-
cumulated travel routes and experiences. If user-generated
GPS trajectories from travel experts and active residents in
the region are accumulated as good examples and processed
properly, we can extract many features to produce collective
social knowledge and aid new users in building an efficient
travel itinerary. Figure 1 illustrates the concept of our work.
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Fig. 1 Social itinerary recommendation service

Our contribution in this paper is as follows.

(1) Social Attributes. We data mine and extract social
attributes from multiple user-generated GPS trajectories to
incorporate social collective knowledge which is used in the
recommendation framework.

(2) Itinerary Modeling. We model and define what a
good itinerary is in terms of attributes detected in the dig-
ital trails and present a quality evaluation approach of an
itinerary.

(3) Recommendation Framework. We present a so-
cial itinerary recommendation framework consisted of of-
fline data mining and online recommendation with a simpli-
fied user query.

(4) Evaluation. We evaluate our method using a large

GPS dataset collected from 125 users, and compare against
baseline methods both in simulation level and through user
study. Also the performance of Mobile+Cloud architecture
is measured for practical mobile application adaptation and
deployment.

The rest of the paper is organized as follows. Section
2 reviews related works on itinerary recommendation and
GPS data mining. Section 3 describes the proposed itinerary
modeling. Section 4 presents detail description of social itin-
erary recommendation processes. In Section 5, we present
experiment results and provide discussions followed by con-
clusion in Section 6.

2 Related Work
2.1 Itinerary Recommendation

In itinerary recommendation, there are two branches of re-
lated work. One branch deals with high user intervention for
an interactive recommendation system and the other branch
aims for less user intervention for an automated recommen-
dation system.

Dunstall et al. [S]] presented an automated but more of
an interactive travel itinerary planning system where a user
defines which places to visit and avoid. Similarly, Ardissono
et al. [1] developed an interactive system where a user spec-
ifies general constraints such as time and attraction items to
be included in the itinerary. Kim et al. [[12]] also presented
an interactive system that starts by a user selecting the first
location to get recommendation on similar types of places.
The advantage of such interactive recommendation systems
is that more the user knows about the traveling area, the
more accurate and detailed itinerary is prepared by the user.
However, this assumption is not practical for novice travel-
ers without any prior knowledge.

In more automated approach, Huang and Bian [11] build
a travel recommendation system based on heterogeneous on-
line travel information such as tourism ontology and esti-
mated travel preferences by the Bayesian network. Kumar
et al. [14] presented GIS-based Advanced Traveler Infor-
mation System (ATIS) for Hyderabad City in India which
includes a site-tour module based on the shortest distance
calculation. Chodhury and colleagues [4] used Flickr photo
stream as digital trails where location and time information
are extracted from individual photo streams and turned into
a Place of Interest (POI) to generate itineraries.

Compared to the related works, our approach is more
of an automated approach which requires a simplified query
composed of two points and duration to recommend an au-
tomatically generated itinerary. Unlike other approaches, we
also focus on the realistic and social knowledge preparation
required for itinerary recommendation through the use of
user-generated GPS trajectories.



2.2 GPS Data Mining Applications

GPS data has been used to link geographical location with
time stamp and people involved. Through data mining or
post-processing multiple GPS data, many applications ex-
tract meaningful information for various uses. Simply, GPS
trajectory can be analyzed to find patterns within [[7][[16] and
predict the repeating pattern [13]]. Through post-processing,
the raw GPS can be turned into a more usable form such as
routable road map [3]]. Regarding travel and tourism appli-
cations, GPS data has been used to find locations of interest
[2], integrated into a mobile tour guide [19[][20][22]], and
combined with other resources such as geo-tagged photos
[21]. In GeoLife [29][32])[36], many GPS related applica-
tions and scenarios are introduced. Zheng and Xie used GPS
traces for travel recommendations [37] to recommend both
generalized and personalized interesting locations [33]]. GPS
data is also used to classify different categories of trans-
portation modes, such as driving, walking, bus, and bike
[300[31][35]]. Different approaches use location history to
recommend geographic locations such as shops or restau-
rants by mining correlated locations [34] and also reflect
user similarity considering the travel sequence and hierar-
chical structure of geographical spaces [15]. The user simi-
larity is also used in [38]] as a user-centric collaborative fil-
tering model for recommending friends and locations. Fur-
thermore, Zheng et al. recommended similar users [28] and
recommended activity related locations or location related
activities with user-generated comments [27].

Our work in this paper, extends location level recom-
mendation to an itinerary level recommendation and pro-
poses an efficient itinerary recommendation algorithm con-
sidering a multiple number of social attributes. We also eval-
uate and validate our method with a large set of real user-
generated GPS trajectories to confirm the efficiency found
in algorithmic level to the real use cases and adapt to mobile
settings.

3 Proposed Itinerary Model

An itinerary outlines which locations to visit and leave when
and in what order. Moreover, it shows an estimated traveling
time from one location to a subsequent location. Therefore,
well-constructed itineraries give users a good indication of
what to expect next and where they stand in their trip.
When building an itinerary, the duration is the most im-
portant constraint. The goal of providing a usable itinerary
is to provide a sequence of visiting locations accurately with
traveling time and staying time under the given duration. It is
easy to make an itinerary that maximizes the number of vis-
iting locations, yet the task becomes difficult when time con-
straint is introduced. On the other hand, time constraint is

applied as a stopping condition for simplifying recommen-
dation complexity. Additionally, we consider the following
four factors collectively to determine quality of an itinerary.

1) Elapsed Time Ratio (ETR): Simply, available time
should be used fully. If the total time needed for an itinerary
is much shorter than available time, then the remaining time
is wasted unless used for a part of travel. ETR measures
the overall use of the available time. Generally this factor
is also related to the number of locations visited, since vis-
iting more places requires more time. It is unlikely that an
itinerary with shorter duration yields more locations than an
itinerary with longer duration. Therefore we aim to maxi-
mize the elapsed time in an itinerary as close as the maxi-
mum duration specified in a query.

2) Stay Time Ratio (STR): We also consider how the
available time is spent. We model travel itinerary in a way
that travelers spend more time on the locations compared to
the traveling time. An itinerary with more staying time is
considered to be a better choice. STR depicts the balance
between visiting time on-site and transferring time. Higher
STR means that a user is spending more time on visiting
actual places than spending time on transferring between lo-
cations. This is also a desirable and typical factor that we
assume to be true. For example, given 10 hours duration, we
treat an itinerary with 8 hours of stay time and 2 hours of
traveling time better than another itinerary with 2 hours of
stay time and 8 hours of traveling time.

3) Interest Density Ratio (IDR): In an itinerary, it is
important what types of locations are included. General as-
sumption is that new visitors like to visit as many highly in-
teresting locations as possible, i.e., popular locations and lo-
cations with cultural importance. If an itinerary is composed
of many locations of high interests (greater interest density),
than it is considered to be a better itinerary than another
itinerary with locations of less interest. IDR shows the over-
all degree of popularity for the included locations. For the
simplicity of illustration, if ETR and STR are the same for
two different itinerary, then higher IDR is preferred, since
the only difference is that the visited locations differ in pop-
ularity or interest level.

4) Classical Travel Sequence Ratio (CTSR): In our
itinerary model, we incorporate social aspects as well. We
value travel sequences frequently used by people more im-
portant than other random sequences. An itinerary that con-
tains classical travel sequence of previous users is better,
more realistic and practical as well. Since we socially rec-
ommend itineraries based on previous users’ experiences,
we generate itineraries that revisit good patterns of previous
users. For example, if two itineraries have similar ETR, STR
and IDR, what we consider further is how practical each
itinerary is. If one itinerary revisits and includes patterns
found from other users, namely classical travel sequence or



visiting pattern between locations, we choose this itinerary
over another itinerary that does not have this pattern.
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Fig. 2 Trip candidates for a good itinerary

We use the first three characteristics to find potential
quality trips that surpass some thresholds shown as a cube
in Figure 2. In theory, the best itinerary would have values
equal to 1 in all three dimensions which is depicted as a
black dot in Figure 2. The trips falling into the cube are con-
sidered a high quality itinerary since it performs well in all
three factors. The selected trips in the cube are re-ranked
according to classical travel sequence to differentiate candi-
dates further.

For a generic recommender, all four factors are consid-
ered equal by assigning the same weight value, because we
have not found any evidence or support of the dominating
attribute yet. However, there is different personal preference
on these four factors, so as a personalization factor, we al-
low the weight to be changed if a user’s preference is known
or the user chooses to modify it in a personalized recom-
mender. The assignment of different weight for these four
attributes is empirically decided or varied with applications
by design choice.

4 Social Itinerary Recommendation
4.1 Architecture

For the itinerary recommendation, we configure our archi-
tecture into offline tasks for processing time-consuming and
static information and online tasks for processing variable
user queries as depicted in Figure 3.

In offline processing, the user-generated GPS trajecto-
ries are analyzed to build a Location-Interest Graph (G) with
location and interest information, this is quite time consum-
ing process which needs to be done initially. Then G is to be
built again only after a significant amount of user-generated
GPS trajectories are updated. In online processing, we use
the G built in offline to recommend an itinerary based on a
user-specified query.
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Fig. 3 Architecture of social itinerary recommender

Our recommendation method is consisted of the follow-
ing six modular tasks. First two operations are carried out in
offline and the latter four operations are performed online.
Here we briefly describe each task and details are presented
in following sections.

1) Stay Points Extraction and Clustering (4.2.1, 4.2.2)

2) Location Interest and Sequence Mining (4.2.3, 4.2.4)

3) Query Verification (4.3.1)

4) Trip Candidate Selection (4.3.2)

5) Trip Candidate Ranking (4.3.3)

6) Re-ranking by Travel Sequence (4.3.4)

Stay Points Extraction and Clustering: From multiple
user-generated GPS trajectories, we extract stay points using
certain distance and time thresholds. Then these stay points
are clustered into locations which become candidate loca-
tions to be included in an itinerary and connected locations
are checked to form an edge. This operation ensures that
only locations with significant activity (many people visiting
and staying at certain location) and relevance (connected lo-
cations) are chosen. For each location cluster of stay points,
we calculate arrival time, leaving time and typical stay time
which are used to estimate the duration of an itinerary. We
find the median for staying time by subtracting arrival time
from leaving time of each location to represent how long a
typical visitor spends in that location.

Location Interest and Sequence Mining: Locations can
be characterized by its popularity which we call location in-
terest, and some locations are typically visited in a certain
sequence, i.e., one location after another. These characteris-
tics are inferred in this operation and details are presented
in [33]]. These inferred information provides check points



and measurements toward how realistic and practical rec-
ommended itineraries are. After calculating these properties
for all locations, we build a G. G is composed of locations
as vertexes and traveling time between two connected loca-
tions as edges, also each location is assigned an interest and
classical sequence value.

Query Verification: When a user sends a query to re-
ceive an itinerary recommendation, we first check and verify
the query. For extreme cases, a user might have queried with
such a short duration that it is impossible to even go straight
from the start location to the end location. These impractical
queries can be filtered out by checking the distance between
start and end location with respect to the duration. Also start
and end points may not fall into one of locations in G. In this
case, we adjust the user query by finding the nearest location
and updating the query.

Trip Candidate Selection: Using G, traveling time be-
tween locations and a user query are used to generate and
select n candidate trips. As a personalization factor for a re-
visiting user, G can be further refined by excluding locations
of previous visit to generate itinerary composed of new loca-
tions. Then the only constraint we check for this step is that
the generated trips adhere to the given duration constraint
and to start and end as specified in the user query. Among
these n trips, some trips are not worth considering which are
eliminated in subsequent steps.

Trip Candidate Ranking: From the generated and se-
lected n trips, we rank trips according to elapsed time ra-
tio, stay time ratio and interest density ratio. We consider
trips with higher ratio of elapsed time a better itinerary, pre-
fer trips with higher stay time ratio meaning that the user
stays longer at locations rather than traveling, and look for
trips with higher interest density for visiting many locations
of greater interest. We rank each trip according to the Eu-
clidean distance of trip in three dimensions of elapsed time
ratio, stay time ratio and interest density ratio. The fop — k
trips ranked out of n candidates by the Euclidean distance
are selected as further itinerary candidates.

Re-ranking by Travel Sequence: Among top — k candi-
dates, we score and rank each trip again considering classi-
cal travel sequence. This strengthens the resulting itinerary
to be practical and realistic to revisit many previous users’
sequence of choice.

4.2 Offline Data Mining

In this section, we describe offline itinerary recommendation
processes. We describe how G is generated and describe the
involved data mining procedures. From multiple users’ GPS
trajectories, we detect stay points (Definition 3) and cluster
them into locations (Definition 5). Further, location interest
is calculated (Definition 7) and classical travel sequence is

mined by considering hub scores, authority scores and prob-
ability of taking this specific sequence (Definition 8). De-
tails of mining interesting locations and classical travel se-
quences are presented in [33]. With these information, we
build G offline (Definition 9). The definitions of terminolo-
gies are adopted from [25]].

4.2.1 Stay Point Detection

Definition 1: Trajectory. A user’s trajectory Traj is a se-
quence of time-stamped points, Traj = (p1, p2, ..., px). Each
point is represented by p; = (lat;,Ing;,t;),(i =1,2,....k); t;
is a time stamp, V1 <i < k,#; <ty and (lat;,Ing;) are GPS
coordinates of points.

Definition 2: Distance and Interval. Dist(p;,p;) is the
geospatial distance between two points p; and p; and the
time interval between two points is denoted Int(p;,p;) =
lti — 1.

Definition 3: Stay Point. A stay point s is a geographical
region where a user stayed over a time threshold 7, within a
distance threshold of D,. In a user’s trajectory, s is charac-
terized by a set of consecutive points P = (P, Piut1; -5 Pn)s
where Vim < i < n, Dist(pm, pi) < Dy, Dist(pm, pn+1) > Dy
and Int(pm, pn) > T;. Then, s = (slat,slng,at,lt,st) where
Yismlati Yiimingi
7|P\ ,slng = 1P Q8
respectively stands for the average /at and /ng coordinates
of the collection P; at = t,, is the user’s arriving time on s
and It = t, represents the user’s leaving time.

slat =

4.2.2 Location Clustering

Definition 4: Location History. An individual’s location hi-
story A is represented as a sequence of stay points they vis-
ited with corresponding arrival: at, leaving times: /¢ and time
interval from s; to 5;: At; j = at; —It; where V1 < i< j<n

Atp  Ana

Aty_y,
/’l=<S1 — §2 — 83, oy

ey Sp—1 — Sp) 2)

We put together the stay points detected from all users’
trajectories into a dataset S, and employ a clustering algo-
rithm to partition this dataset into some clusters. Thus, the
similar stay points from various users will be assigned into
the same cluster.

Definition 5: Locations. L= {l,l,,...,1,} is a collection
of Locations. Between any two locations, there is no over-
lapping stay points (s € S) detected from multiple users’ tra-
jectories: i # j, ;Nl; = 0.

After the clustering operation, we can substitute a stay
point in a user’s location history with the cluster ID the stay
point pertains to. Supposing s1 € [;,s2 € lj,53 € [y, 5,—1 €
l;,sn € Iy, Equation (2) can be replaced with

Al‘,‘)j A ik

A m
h= (1 i

e 28, 3)



Thus, different users’ location histories become comparable
and can be integrated to recommend a single location.

Definition 6: Typical Stay Time and Time Interval. For
each location /; € L with m stay points that pertain to this
location, typical stay time of location (/;), st; is defined as
median of stay time (st; = Ity — aty) of stay point (s;) where
VSkEZ,',Vl <k<m.

st; = Median(sty,) 4)

For n location histories (h',...,#") with a sequence ; Aﬁ}j lj
where /;,/; € L and [; # [, typical time interval AT; ; from /;
to [; is defined as in Equation (5) and all typical time inter-
vals are put into a dataset AT where V1 <k < n.

AT, ; = Median(Hy,, ) (5)
4.2.3 Location Interest

Definition 7: Location Interest. We utilize HITS (Hyper-
text Induced Topic Search) idea that a good hub points to
many good authorities, and a good authority is pointed to
by many good hubs to represent location interest. In HITS-
based inference model, a hub is a user who has accessed
many places, and an authority is a location which has been
visited by many users [33]. I; represents location interest at
[; which has a mutual reinforcement relationship with user
travel experience. Figure 4 depicts this relationship using
HITS-based inference model.
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Fig. 4 User experience and location interest relationship

For example, a user with greater travel expertise would
visit many interesting locations and interesting locations are
visited by many users with much travel experiences. More
specifically, a user’s travel experience can be represented by
the sum of the interests of the locations they accessed; in
turn, the interest of a location can be calculated by integrat-
ing the experiences of the users visiting it [33]. The mutual
relationship of location interest /; and travel experience e;
are represented as Equation 6 and 7. An item r;; stands for
the times that user u; has stayed in location /;.

Ij = ZuiEU Tji X e; (6)

ei:leeLriijj (7)
4.2.4 Classical Travel Sequence

Definition 8: Classical Travel Sequences. The classical tra-
vel sequence integrates three aspects, the authority score of
going in and out and the hub scores, to score realistic and
practical travel sequences [33].

Fig. 5 Demonstration of classical travel sequence

Figure 5 demonstrates the calculation of the classical
score for a 2-length sequence /; — I3. The connected edges
represent people’s transition sequence and the values on the
edges show the times users have taken the sequence. Equa-
tion 8 shows the calculation based on the following parts. 1)
The authority score of location /; (a;,) weighted by the prob-
ability of people moving out from this sequence (Outy, 1,).
In this demonstration, Out;, ;, = 5 /7. 2) The authority score
of location /3 (a;;) weighted by the probability of people’s
moving in by this sequence (Iny, ;;). 3) The hub scores h;
of the users (Uj, ;,) who have taken this sequence. Classical
travel sequence scores are stored in a k-by-k adjacent matrix
M between locations.

k
Cls = Z (all X 0ut11712 +ai XIny gy + hy, ) (8)
“kEUIIJZ

4.2.5 Location-Interest Graph

Definition 9: Location-Interest Graph (G). Formally, a G
is a graph G = (V, E). Vertex set V is Locations (Definition
5) L,V =L={li,l,....It}. Edge set E is replaced by AT
where AT; ; stands for a travel sequence from /; to /; where
1 <i < j <k with typical time interval as its value. So if
there exists an edge between /; and /;, then there is a non-
zero travel time in corresponding AT; ;.

In summary, G contains information on 1) Location it-
self (interest, typical staying time) and 2) relationship be-
tween locations (typical traveling time, classical travel se-
quence).

4.3 Online Recommendation

In this section, we describe online itinerary recommendation
processes. We describe how G is utilized and describe the
involved recommendation procedures. For a user-supplied



query, trip candidates are first selected considering the user
query constraints. Then trip candidates are ranked accord-
ing to three attributes defined in our itinerary modeling, and
further re-ranked with classical travel sequence.

4.3.1 Query Verification

Definition 10: User Query. A user-specified input with three
tuple attributes (start point, end point and duration) is de-
fined as a user query, QO = {¢s,494,4: }-

We first verify user query Q in the online process by cal-
culating the distance between the start point and end point.
Note that the query uses points as unit for specifying start
and end point which is different from unit of location which
is a cluster of stay points. There are two approaches we
can estimate the distance, Dist(qy,q,). First, we can use the
haversine formula [9]] or the spherical law of cosines [18]]
with the raw GPS coordinates of start point and end point.
Once we have an estimated distance, we estimate the trav-
eling time by dividing the estimated distance by an average
traveling speed of car in the region, i.e., 30km/h.

Alternatively, we can use Web service such as Microsoft
Bing Map to find traveling distance between two specified
locations and traveling time. Since we only have traveling
time between the two locations, we multiply the estimated
time by a factor of w, which is empirically determined for
different applications.

After confirming the duration, we attempt to locate the
start point and the end point in G. If we can successfully lo-
cate the specified point g, as in Figure 6(a), then the point
is adjusted to I,. However, if the specified point in the query
does not belong to any locations in G as in ¢g; in Figure 6(a),
then we find the nearest location /; among others by check-
ing the distance to the location’s mid-point. To speed up the
process of finding nearest location, we employ a grid based
indexing and searching. For grid-based indexing, we put all
locations according to its latitude and longitude ranges into
n grids, in Figure 6(b) n = 25. Then we find the grid cell
that contains the specified point. We start from that grid cell,
and if the grid cell do not contain any location, then we in-
crease one level to increase the searching window. The Fig-
ure 6(b) depicts searching windows for different levels when
the specified point belongs to the 7th grid. To support the
round trip cases where the start point and end point are the
same, we find nearest locations that do not overlap between
the start and end points. Then we connect the start point to
the start location and connect the end point to the end loca-
tion. As the final step, we find the traveling time from the
specified location to the nearest location found using Bing
Map, and subtract the traveling time to update Dur. The
original query O = {q,,qa.q:} becomes Q1 = {1y, 14, g},
then the query is sent.

Location /;

Mid Point |

‘ Location /,
Dist(qs,1;.mp) Mid Point
L@
- ()
Dist(qs,l>.mp) | g,

4qs

(a) Finding nearest location

(b) Grid index for search

Fig. 6 Adjusting locations in user query

4.3.2 Trip Candidate Selection

With the verified user query, we select trip candidates from
the starting location /s to the end location /;.

Definition 11: Trip. A trip Trip is a sequence of loca-
tions with corresponding typical time intervals,
Trip= (152, "5y, L, ATy )
where V1 <i< j<k,AT; ;€ AT and l;,I; € L are locations.
Trip has four attributes, 1) the total staying time for visiting
locations fgq4y, 2) the total traveling time #,4,, 3) the duration
of the trip ¢4, and 4) the interest density of the trip iz, de-
fined by the total sum of interest of locations divided by the
number of locations.

k
Istay = Zi:] St (10)
k—1
tray = i—1 ATi,i+1 (1 1)
Ldur = Lstay + ttrav (12)
. k
iden = ()i 1) [k (13)

The only restriction we impose in this stage is time con-
straint so that the candidate trips do not exceed the given
duration ¢;. The candidate selection process is shown in Al-
gorithm 1.

Algorithm 1 CandidateSelection(G,,l;,q;,L,)

Input: A Location-Interest Graph G, a start location /, a destination
14, duration ¢, and a visited location set L,
Output: A set of candidate trips Tr
1: for all i such that 1 <i < k do

2: if (IL,.Contains(I;)) then

3: if (q: > AT;; > 0) then

4: L,.Add(L,)

5 Ly.Add(L;)

6: Dur, <= q; —st; — ATy;

7: if L,[0] ==, then

8: Dur,, <= Dur,, — sty

9: if [; == end and Dur,, > 0 then
10: TrAdd(Ly,)

11: else if Dur,, >0 then

12: CandidateSelection(G,1;,1;,Dur,,Ly,)

13: return Tr




We first start from a path which includes the start loca-
tion /; as the sole location. Then we check other locations
not in this path but are feasible to visit with the remaining
duration recursively. The constraint of duration and visited
location information are used as heuristics to select the next
location (refer to Lines 2-3). As we add a new location for
the path, we also add them to L,, so that this location is
not checked in the next recursive call (refer to Line 5). For
a personalization factor for revisiting users, L, can be up-
dated with previous visiting history to exclude previously
visited locations, so it is not included again in the generated
itinerary. For each location added to the path, we subtract the
stay time of the location and traveling time to the location to
yield a new remaining time (refer to Line 6). Once the path
reaches at the end location, we add the generated path as a
candidate trip (refer to Line 10). When all the candidates are
added, it returns an array of » trip candidates T'r as results.

4.3.3 Trip Candidate Ranking

After selecting n trip candidates from previous step, we rank
each trip with factors from Section 3. The factors used to
rank each trip tr; € Tr, 1 <i <k are,

1) Elapsed Time Ratio (ETR) = t4,,/q;

2) Stay Time Ratio (STR) = tyqy/q;

3) Interest Density Ratio (IDR) = igen/imax
Here, we can use some thresholds value to quickly reject un-
desirable candidates, i.e., reject candidates with elapsed time
ratio less than 0.5. Then we find the Euclidean distance of
each trip using these 3 dimensions as in Equation 14. Here
imax refers to a maximum interest density value in all of can-
didate trips which we use for normalization. We can assign
different weight values for the factors by setting o1, @», and
o3. For our system we treat three factors equally important
by setting ¢t = o, = o3 = 1 for a generic recommender, but
with the user preference value, this setting can be changed
for personalization.

ED = \/ i (ETR)? + a2 (STR)? + a3 (IDR)? (14)

As described in Algorithm 2, for each trip, three factors
are calculated to yield the Euclidean distance value. The al-
gorithm returns an array of top — k trips in decreasing order
of the Euclidean distance value.

4.3.4 Re-ranking by Travel Sequence

We have cut down the number of candidate trips from z to k.
These k trips will likely have similar Euclidean distance val-
ues. So how can we differentiate between candidates, and
recommend one over another? Our solution is to examine
each trip’s travel sequence and score them for any classical
travel sequences (Definition 8). When two trips have similar
values in Euclidean distance after the first ranking, however

Algorithm 2 CandidateRanking(G,Tr,q;)
Input: A Location-Interest Graph G, a set of trips 7'r, and the duration
qt
Output: A set of top-k trips 7+, sorted by Euclidean distance
1: for all Trip tr € Tr do
2 for all Location loc € tr do
3 tray <= tiray + ATprevLaL‘,loc‘
4: tstay <= tstay 1 Stioc
S: iden = iden +Iloc
6‘
7
8

prevLoc < loc
taur <= ttray + [,\'tay
: if ijon > ipay then
9: Inmax <= iden
10: tr.Set EucDist (t4u,/q1 , tstay/q1 » iden/imax )
11: Tr' < SortByED(Tr)
12: return T+

they will have different classical travel sequence score. We
give preference toward trips with higher classical travel se-
quence score, which means that we recommend trips to re-
visit previous visitors’ practical travel sequences. Using the
classical travel sequence accumulation using classical travel
sequence matrix M, we can score any travel sequence,

ci v h—=h)=cio+c3 (15)

Once we have classical travel sequence score of ¢r; by
calculating c(tr;), we normalize it by the maximum classi-
cal travel sequence score MaxC found of all candidates.

Classical Travel Score Ratio (CTSR) = c(tr;)/MaxC.
Then we once again use the Euclidean distance, this time
including classical travel sequence score to re-rank k can-
didates. We use equal weights for all four factors as shown
in Equation 16, but with the user preference value or user
interaction, this settings can be changed for personalization.
The first itinerary with the highest Euclidean distance value
is recommended to user, and the user can view alternative
itineraries in the order of the Euclidean distance.

ED = \/ocl (ETR)2 + 02 (s7R)? + @3 (1DR)? + 014 (cTSR)?  (16)

Definition 12: Itinerary. An itinerary It is a trip recom-
mendation based on user’s start point g and destination g,
constrained by trip duration threshold g, in a query.

ATgy ATy

ATy _
It={q;€ly %1, =D, .. e

ATktd
, lk,1 — lk —q4 € ld>(17)

This means that the resulting itinerary starts from g, and
end in g; where the duration of trip #4,, does not exceed
available ¢, 4, < gq; while maximizing the Euclidean dis-
tance of four attributes.

4.4 User Interface

Figure 7 shows the user interface of social itinerary recom-
mendation system. Our user interface has three components.
The upper-left input panel is for specifying a start, an end lo-
cation and duration for querying. User can mark locations by



clicking on the map or by searching with keywords. User can
also set the start and end location same for the round-trip.
The lower-left is an output panel for showing step-by-step
instructions in text and on the right an itinerary is visualized
on the map.

Fig. 7 User interface of itinerary recommender

5 Experiments

In this section, we explain the experiment settings, evalua-
tion approaches, and present the experiment results.

5.1 Settings

To collect user-generated GPS trajectories, we have used
stand-alone GPS receivers as well as GPS phones. Using
these devices, 125 users recorded 17,745 GPS trajectories in
Beijing from May 2007 to Aug. 2009. 125 volunteers are re-
cruited from Microsoft employees, employees of other com-
panies, government staff and college students. These volun-
teers are motivated by payment-based incentives to log their
outdoor movements as much as possible since more GPS
trajectory collected by them would yield more money. In
this experiment, time threshold 7, and distance threshold D,
are set to 20 minutes and 200 meters respectively. With these
parameters, we detected 35,319 stay points from the dataset
and excluded work/home spots. For clustering these stay
points into unique locations, we used a density-based clus-
tering algorithm OPTICS (Ordering Points To Identify the
Clustering Structure) which resulted in 119 locations as de-
picted in Figure 8(a). For the grid-based indexing and near-
est location search, we divided Beijing area into 25 grid cells
as shown in Figure 8(a). Note that there are some grids with
no locations or very few locations. Among these 119 loca-
tions, typical traveling time is assigned for the connected lo-
cations which serves as an edge set for G. Figure 8(b) shows
the visualization of edges, representing travel connections in
our data set. The data set has been made public for research

use [6]][30][33].

(a) Locations

Fig. 8 Locations and edges of G,

5.2 Evaluation Approaches

In the experiment, we use three evaluation approaches to
evaluate our itinerary recommendation methods. First ap-
proach is based on a large amount of simulated user queries
for the algorithmic level comparison. Using this synthetic
data set, we evaluate the quality of the generated itineraries
quantitatively compared to other baseline methods. Second
approach is based on a user study where real users evalu-
ate the generated itineraries by our method and baselines
methods. In second approach, we observe how user’s per-
ceived quality of itineraries compare by different methods.
Lastly, we evaluate our recommendation methods on Mo-
bile+Cloud architecture for practical mobile adaptation and
application deployment.

5.2.1 Simulation

We simulated a large quantity of user queries to evaluate
the effectiveness of our method. For our simulation to cover
most general cases of user input, we used four different lev-
els for duration, 5 hours, 10 hours, 15 hours and 20 hours.
Duration longer than 20 hours is not simulated, since it is un-
likely to travel for that long duration continuously. Nonethe-
less, user can break down a longer travel to a number of
shorter trips of manageable length. Also the duration length
seems reasonable for Beijing, China where all the GPS tra-
jectories are exclusively collected, since it covers an area
of about 16,000km?>. For each duration level, we generated
1,000 queries. Since user query Q = {¢s, 44, ¢: } is composed
of two points, we generate two sets of GPS coordinates ran-
domly. Here we put some constraints so that the generated
queries follow normal distribution in terms of the distance
between the start and end points. Figure 9 shows that the
1,000 queries generated for each level follows a normal dis-
tribution.
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Fig. 9 Distribution of distance in simulated queries

The maximum distance between two points is set to 2 X
gy, to increase chances for some round-trip like itineraries
(shorter distance between) and to guarantee enough loca-
tions are added for comparison. For instance, we limit the
distance between start and end points for duration 20 hours
to 40km, so that the query may return results by providing
enough time for traveling and staying.

5.2.2 User Study

In user study, we recruited 10 participants who are currently
active residents and have lived in Beijing for preferably at
least 3 years (average of 3.8 years), since our GPS logs are
exclusively collected from the past three years. We asked
each participant to use our system to generate itineraries
by selecting a start location, an end location and duration
of their choice. The recruited participants knew the Bei-
jing area well, and generated queries in their choice of lo-
cations which they were familiar with. Each user submit-
ted 3 queries and gave ratings to 3 itineraries generated by
our method and two other baseline methods. They carefully
reviewed locations and sequences in the itinerary without
knowing about the methods that produced results. Partici-
pants took about 30 minutes to completely review 3 sets of
3 itineraries where they were allowed to browse through 3
different itineraries for the query to give relative ratings af-
ter comparison. We asked participants following questions
to give scores for each generated itinerary in different as-
pects (score of 1 being the lowest and 5 represents the high-

est score for better performance) as shown in Table 1. Also
users rated itineraries according to relevance score presented
in Table 2.

Criteria Question
Elapsed Time How efficient is the itinerary in terms of the
duration? (1-5)
Stay & Travel Time | How reasonable/appropriate are staying
time and traveling time? (1-5)
Interest How interesting/popular and representative
are the included locations? (1-5)

Table 1 Questions for itinerary evaluation

Ratings | Explanation
2 This itinerary is realistic and I like most of directional
instructions.
1 I would take this itinerary with minor changes.
0 I would have taken different directions, but don’t op-
pose the given itinerary.
-1 This itinerary is unrealistic and poorly constructed.

Table 2 User’s rating on the overall itinerary

5.2.3 Baselines

We compared the result of our recommendation with two
other baseline methods, Rank-by-Time (RbT) and Rank-by-
Interest (Rbl). RbT recommends an itinerary with the high-
est elapsed time usage. Ideally, it recommends an itinerary
with the elapsed time equal to the duration in the query, if
there is such candidate exists. Similarly, Rbl ranks the can-
didates in the order of total interest of locations included in
the itinerary. So the candidate with the highest interest den-
sity ratio is recommended.

5.2.4 Mobile+Cloud Configuration

For practical mobile application deployment, we adopted
Mobile+Cloud architecture. In the mobile part, we keep the
number of tasks to minimal and include processes that are
light and essential which cannot be processed elsewhere.
In the cloud, it takes care of social itinerary recommenda-
tion and data mining. Figure 10 shows the Mobile+Cloud
architecture. We show the performance advantage in Mo-
bile+Cloud architecture since the recommendation process
is time consuming for mobile device. For implementation,
we used a commercial mobile phone, Samsung SCH-M490
running Windows Mobile 6.1 at CPU clock of 806MHz. For
implementing the cloud side, we used a server PC running
Intel Xeon CPU clock of 2.40GHz with 2 processors, main
memory of 4.00GB and Windows Vista Enterprise Service



Pack 2. For the communication between the mobile device
and the cloud service, we used Microsoft Windows Com-
munication Foundation (WCF) for mobile as a client and
the cloud service as a WCF service.
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Fig. 10 Mobile+Cloud architecture

5.3 Results
5.3.1 Simulation

We generated 1,000 queries for each time level (5, 10, 15
and 20) and ran through 3 algorithms. For the duration of 5
hours, only 452 itinerary results were retrieved. For the du-
ration of 10 hours, 15 hours and 20 hours, 935, 961, and 973
itinerary results are acquired respectively. There are three
reasons that not all queries returned results. First reason is
that simply there was not enough time to go from a start
location to an end location. Even though the queries would
pass initial query verification, there may be very few or no
shorter directions to the end location while consuming the
specified duration. Second reason is that as shown in Fig-
ure 8(a), there are areas with very few or no locations at
all. So when the given time is short and the user starts from
one of these empty areas, the most of time is used up to
go to a nearby location, yielding no results. Third reason
is that user starts at a location which has very few outgo-
ing edges, in that case, user might end up in dead end early
even though there are plenty of remaining time. For the rec-
ommended itineraries, we looked closely at the average of
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Fig. 11 Simulation results showing the average quality of itinerary
generated by different methods

elapsed time, stay time, interest, classical sequence and Eu-
clidean distance. Figure 11 shows the result for four differ-
ent time levels. As expected, the baseline algorithm RbT and
Rbl yields best results in the aspect of elapsed time and in-
terest respectively. However, the difference is minimal in the
5 hours level. All three algorithms produced similar quality
results. If the duration is very short then there are not many
candidates to consider and then many of them would over-
lap anyway. This explains almost identical graphs in Fig-
ure 11(a). The difference gets larger and noticeable as the
duration gets longer. Still baseline algorithms successfully
recommend itineraries that perform well in only one aspect.
RbT has lower average of interest score compared to Rbl
and our algorithm. Also Rbl has lower average of elapsed
time compared to RbT and ours. Furthermore, both base-
line algorithms produce itineraries that are poor in classi-
cal sequence aspect as defined in Definition 8. The result
shows that both RbT and Rbl fail to produce itineraries re-
visiting classical sequence, which means that locations vis-
ited in sequence are not practical nor realistic. So we can
observe on the average, RbT and Rbl will produce a bi-
ased or skewed itinerary focusing on only one attribute in a
long term. On the other hand, our algorithm produces well-
balanced itineraries in all four aspects. The Euclidean dis-
tance value gives a good indication that our algorithm pro-
duces balanced itinerary overall and even the recommended
itineraries are comparable in other factors that are special-
ized by baseline algorithms. By looking at the Euclidean
distance value, we observe that the performance of our algo-
rithm increases with time whereas two baseline algorithms
suffer from performance degradation.
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5.3.2 User Study

Itinerary at equilibrium: For 10 participants’ 30 queries
over Beijing area, we observed the equilibrium of different
itinerary attributes in our algorithm compared to the base-
line algorithms. As we observed from the simulation, our
algorithm produces an itinerary that is well-balanced in the
four attributes. So in this user study, we show that our al-
gorithm produces results that are nearly equal to the base-
lines which specialize in a certain single attribute. For in-
stance, we check how our result compares with RbT pro-
duced itinerary in terms of elapsed time, stay time and travel
time. Since RbT produces results that maximize the time
use, we wanted to check whether the difference user per-
ceives is significant compare to our result which produces
well-balanced and nearly close result. Table 3 shows the
comparison between our algorithm and RbT in terms of time
use. As the T-test reveals that there is no significant advan-
tage in perceived elapsed time, stay time, and travel time
from using RbT over ours. Actually, in 30 queries in our
user study, itineraries recommended by our algorithm re-
ceived higher scores compared to that of RbT. Similarly, we
compared our result in terms of locations interest included
in the itinerary as shown in Table 3. Here again our results
scored higher and the T-test reveals that there is no signif-
icant advantage in perceived interest from using Rbl over
ours.

Attributes Ours Rank-by-Time T-test
Elapsed Time 3.97 3.67 p £ 0.01
Stay and Travel Time | 3.60 3.27 p £0.01

Attribute QOurs | Rank-by-Interest T-test
Interest 3.27 2.92 p £0.01

Table 3 Comparison of temporal and location interest attributes

Ranking ability: Table 4 shows the ranking ability of
different methods measured by MAP (Mean Average Preci-
sion). MAP for a set of queries is the mean of the average
precision scores for each query.

23:1 AveP(q)
Qo

where Q is the number of queries. We treat 30 recommended
itineraries as a ranked retrieval run. In our experiment, MAP
stands for the mean of the precision score after each relevant
itinerary is retrieved, which is determined by users. We con-
sider an itinerary relevant, if its relevance score is 1 or 2 as
shown in Table 2. For 30 itineraries generated for three dif-
ferent methods, the result is shown in Table 5. Our method
showed a better performance compared to other baselines.

MAP = (18)

Ours
0.684

Measurement
MAP

Rank-by-Time
0.622

Rank-by-Interest
0.645

Table 4 Ranking ability of different methods

5.3.3 Mobile+Cloud Configuration

We compared the time it takes to recommend an itinerary in
standard-alone mobile approach (Mobile_Only) and cloud
approach (Mobile+Cloud). In Mobile_Only, recommenda-
tion is operated fully in the mobile phone. Mobile+Cloud
has distributed tasks between the mobile and the cloud. All
collected trajectories are data mined in offline in a sepa-
rate server and the resulting Location-Interest Graph (G) is
used in both Mobile_Only and Mobile+Cloud modes. The
data size of Location-Interest Graph (G) is small which only
contains information on 1) location itself (interest, typical
staying time) and 2) relationship between locations (typical
traveling time, classical travel sequence). We measured the
processing time for three durations (5 hours, 10 hours and
15 hours). We did not test with 20 hours, since it took unrea-
sonable long time to measure on the mobile side. For each
duration level, 10 unique test queries are used. Figure 12
shows the experiment results.
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Fig. 12 Performance comparison of Mobile+Cloud architecture

In 5 hours, Mobile_Only was faster than Mobile+Cloud.
This can be explained by the fact that the finding trip can-
didate process in shorter duration does not take much time.
Since we cannot add many locations nor travel further given
shorter duration. In Mobile_Only, it took less than 1 second
to find candidate trips and get the recommended itinerary for
5 hours duration. However, in Mobile+Cloud it took couple
of seconds. So even though the actual processing was done
much faster in the cloud, the time needed for binding the
mobile client with the WCF service took some time and it
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also took more time for communication. So in our obser-
vation, the cloud approach had at least couple of seconds
for communication. The performance gap is noticeable for
time duration of 10 hours and 15 hours. The longer dura-
tion means that there are more number of candidate trips
to find and rank. As shown in Figure 12 (b), the process-
ing time for Mobile_Only takes about three times longer
than Mobile+Cloud. For some queries, Mobile_Only was
faster, this is due to the fact that the result contains only a
small number of candidates. In 15 hours, the high computa-
tion burden on Mobile_Only is clear. As shown in Figure 12
(c), Mobile_Only takes at least few minutes to recommend
an itinerary whereas Mobile+Cloud can handle the request
within a minute. In comparison, Mobile_Only failed to pro-
duce results in neither real-time nor interactive time. Some
test queries lasted for over 15 minutes, which is unbearable
in real use cases.

5.4 Discussions

Temporal aspects: The length of duration is an interesting
attribute to look at. Many participants used duration between
6 to 12 hours. It supports our initial assumption that people
would not have such a long journey and keep them in a man-
ageable size. For shorter duration, the measured quality of
itineraries were less for our algorithm based on Euclidean
distance of attributes. Conversely, two baseline algorithms
produced the best quality at the shorter duration and recom-
mended less efficient itineraries with longer duration. In ex-
treme cases though, it was possible for baseline algorithms
such as Rbl to recommend an itinerary that only contains a
couple of interesting locations without spending all available
time. However, since duration was used as a stopping condi-
tion in selecting candidates, most recommended itineraries
spend good ratio of available time in simulation and in real
user queries alike. Also users were more judgmental of and
interested in traveling time (on average, less than 1 hour)
than staying time at locations (on average, greater than 1
hour). Therefore, it would be interesting research direction
to give a good projection on traveling time including many
options of transportation modes.

Location interest and classical sequence. As shown in
Figure 11, our algorithm produced a balanced itinerary with
higher classical sequence scores. In algorithmic level, our al-
gorithm showed a great performance advantage in terms of
the four attributes including classical travel sequence. How-
ever, in real queries by users it was difficult to measure lo-
cation interest and classical travel sequences from the rec-
ommended itinerary. Even though an itinerary is composed
of many locations and sequences, we only asked the partici-
pants to give ratings for the overall location interest and clas-
sical sequence. So they gave high score for classical travel

sequences they could find, and gave lower score for any ab-
normal sequences that sometimes balances each other out.
So this is different from our simulation where each location
interest and classical travel sequences were accumulated to
give the overall score. In our current algorithm, we only con-
sider increment of score for location interest and any clas-
sical travel sequences found, yet in the real situation, we
might need to decrease score or give penalties for totally
uninteresting locations and awkward sequences. This is an-
other research direction that can help recommend a better
itinerary by avoiding (possibly known) bad sequences in the
first place.

Mobile deployment. Table 5 shows performance com-
parison results for 15 hours duration. When we closely ob-
serve the query that took the longest time to process, we can
notice that those queries resulted in a very large number of
initial candidates. Also the query with the shortest process-
ing time deals with a very small number of initial candidates.
So we have two heuristics that we can use to choose between

Mobile_Only and Mobile+Cloud.

Mobile_Only | Mobile+Cloud | Candidates

Ql 367.658 15.847 6472
Q2 449.245 20.988 1165
Q3 267.207 13.545 4603
Q4 | 1081.038 (L) 27.489 (L) 30734 (L)
Q5 460.502 20.242 6375
Q6 174.044 10.200 45

Q7 123.984 6.181 17899
Q8 291.448 15.292 789
Q9 1.647(S) 2.517(S) 21 (S)
Q10 19.958 3.472 503

Table 5 Recommendation processing time(sec) comparison for 15
hours, (L) indicates the longest/largest and (S) indicates the short-
est/smallest.

(1) If the time duration is large (g; > 5 hr), we are better
off to use Mobile+Cloud. Only use Mobile_Only for a very
short duration, since Mobile+Cloud approach has a reason-
ably low lower-bound around 2 seconds to match the perfor-
mance of mobile approach.

(2) If we know that the query will generate many candi-
date trips, then we should use Mobile+Cloud. We can sim-
ply check this by counting the number of outgoing edges of
start location and incoming edges of end location. If these
numbers are large then the number of candidate trips will be
large also.

Alternative sources of digital trails. In our work we
used GPS trajectories as the primary means of digital trails
generated by users. Taking this idea further, different combi-
nations of digital trails can be incorporated for cross check-
ing and improving accuracy of the work proposed here. The
notable and relevant research domain deals with many re-
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sources found on the web, especially with user comments
[27], geo-tagged multimedia such as Flickr photo streams
[4][10] and social network services. For end-user side, [24]]
proposed mashup paradigm in ubiquitous computing envi-
ronment through augmented reality where users can pro-
duce content and services attached to real world objects. Re-
cently Zhang et al. proposed “’social and community intelli-
gence (SCI)” to learn from different patterns of individual,
group and societal behaviors detected pervasive sensing and
context-aware computing environment [26]].

Limitation. There are number of limitations in our ap-
proach. Since our method relies on user-generated GPS tra-
jectories, it is important to collect a good data set. Our data
is collected by highly motivated and active volunteers as a
trusted source, but in real case including different Web 2.0
check-in sites, many user-generated GPS trajectories need
to be validated. In our current setting, we use stay point
detection, stay point clustering and location clustering to
remove much noise, but stronger means of detecting ab-
normities in the source are required. One of our goal in
itinerary recommendation was to minimize user interven-
tion and automate the process with a simple query. However,
to get a more personalized and accurate itinerary beyond
itinerary recommendation for new travelers, we need to con-
sider various contextual information such as different trans-
portation modes and ranges of itineraries. In our previous
works[30][31]] transportation mode is considered, but these
are not fully incorporated with itinerary recommendation.
Also our itinerary recommendation is tested in city-level,
but scalability is another direction for future work. Lastly,
semantic aspects need to be combined with locations, since
some locations have opening and closing hours and may be
affected by the contextual situations such as weather con-
ditions, traffic jams, festivities, and crowded holiday peri-
ods. Our current itinerary recommendation framework can
be improved by considering these issues.

6 Conclusion

In this paper, user-generated digital trails such as GPS trajec-
tories are collected and data mined to extract collective so-
cial intelligence. Specifically we used GPS trajectories from
125 users to build Location-Interest Graph which reflects
travel history and experience of travel experts and active res-
idents. By using Location-Interest Graph and the proposed
itinerary model, itinerary is recommended according to a
user-supplied query. To recommend an efficient itinerary, we
collectively used four attributes mined from out data set to
generate balanced and practical itineraries. When compared
to baselines RbT and Rbl, our proposed method was com-
petitive in both time use and interest level and outperformed
baselines in classical travel sequence aspect in both simula-
tion mode and through user study. Especially, the best per-

formance of our method was observed in the longer dura-
tion. Also we found that computation intensive task such
as social itinerary recommendation can be distributed ef-
fectively in Mobile+Cloud architecture for practical mobile
adaptation and application deployment.

For future work, we would like to give better indications
in traveling time between locations by differentiating use
of transportation modes. Also hybrid itinerary recommen-
dation based on other sources of digital trails and contextual
information such as geo-tagged multimedia and check-ins
are potential works.

Acknowledgements This research was supported by Ministry of Cul-
ture, Sports and Tourism (MCST) and Korea Creative Content Agency
(KOCCA), under the Culture Technology(CT) Research & Develop-
ment Program 2011 and Microsoft Research Asia (MSRA). We also
like to acknowledge anonymous reviewers for providing invaluable
comments and suggestions.

References

1. Ardissono L, Goy A, Petrone G, Segnan M (2005) A multi-agent
infrastructure for developing personalized web-based systems. ACM
T Internet Techn 5:47-69. doi:10.1145/1052934.1052936

2. Ashbrook D, Starner T (2003) Using GPS to learn significant lo-
cations and predict movement across multiple users. Pers Ubiquit
Comput 7:275-286. doi:10.1007/s00779-003-0240-0

3. Cao L, Krumm J (2009) From GPS traces to a routable
road map. In: Proceedings of GIS 2009, pp 3-12.
doi:10.1145/1653771.1653776

4. Chodhury MD, Feldman M, Amer-Yahia S, Golbandi N, Lem-
pel R, Yu C (2010) Automatic construction of travel itineraries us-
ing social breadcrumbs. In: Proceedings of HT 2010, pp 35-44.
doi:10.1145/1810617.1810626

5. Dunstall S, Horn MET, Kilby P, Krishnamoorthy M, Owens B, Sier
D, Thiebaux S (2003) An automated itinerary planning system for
holiday travel. Infor Technol Tour 6:195-210

6. GeoLife GPS  Trajectories  (2010).
http://bit.ly/gY2JHq

7. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajec-
tory pattern mining. In: Proceedings of KDD 2007, pp 330-339.
doi:10.1145/1281192.1281230

8. Girardin F, Calabrese F, Flore F, Ratti C, Blat J (2008) Digital foot-
printing: uncovering tourists with user-generated content. IEEE Per-
vas Comput 7:36-43. doi:10.1109/MPRV.2008.71

9. Haversine formula (2010), http://en.wikipedia.org/wiki/Haversine_
formula. Accessed 24 November 2010

10. Hollenstein L, Purves R (2010) Exploring place through user-
generated content: using Flickr to describe city cores. J Spat Infor
Sci 1:21-48. doi:10.5311/J0S1S.2010.1.3

11. Huang Y, Bian L (2009) A Bayesian network and ana-
lytic hierarchy process based personalized recommendations for
tourist attractions over the Internet. Expert Syst Appl 36:933-943.
doi:10.1016/j.eswa.2007.10.019

12. KimJ, Kim H, Ryu JH (2009) TripTip: a trip planning service with
tag-based recommendation. In: Proceedings of CHI EA, pp 3467—
3472. doi:10.1145/1520340.1520504

13. Krumm J (2010) Where will they turn: predicting turn pro-
portions at intersections. Pers Ubiquit Comput 14:591-599.
doi:10.1007/s00779-009-0248-1

14. Kumar P, Singh V, Reddy D (2005) Advanced traveler infor-
mation system for Hyderabad city. IEEE T Intell Transp 6:26-37.
doi:10.1109/TITS.2004.838179

http:/bit.ly/bd78Rt,



15

15. LiQ,Zheng Y, Xie X, Chen Y, Liu W, Ma WY (2008) Mining user
similarity based on location history. In: Proceedings of GIS 2008, pp.
1-10. doi:10.1145/1463434.1463477

16. Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext:
a location predictor on trajectory pattern mining. In: Proceedings of
KDD 2009, pp. 637-646. doi:10.1145/1557019.1557091

17. Stabb S, Werther H, Ricci F, Zipf A, Gretzel U, Fesenmaier D,
Paris C, Knoblock C (2002) Intelligent systems for tourism. IEEE
Intell Syst 17:53-66. doi:10.1109/MIS.2002.1134362

18. Spherical law of cosines (2010), http://en.wikipedia.org/wiki/
Spherical_law_of_cosines. Accessed 24 November 2010

19. Suh Y, Shin C, Woo W (2009) A Mobile Phone Guide: Spatial,
Personal, and social experience for cultural heritage. IEEE T Con-
sum Electr 55:2356-2364. doi:10.1109/TCE.2009.5373810

20. Suh Y, Shin C, Dow S, MaclIntyre B, Woo W (2010) Enhancing
and evaluating users’ social experience with a mobile phone guide
applied to cultural heritage. Pers Ubiquit Comput Online First:1-17.
doi:10.1007/s00779-010-0344-2

21. Tai CH, Yang DN, Lin LT, Chen MS (2008) Recommending per-
sonalized scenic itinerary with geo-tagged photos. In: Proceedings
of ICME 2008, pp. 1209-1212. doi:10.1109/ICME.2008.4607658

22. Takeuchi Y, Sugimoto M (2009) A user-adaptive city guide sys-
tem with an unobtrusive navigation interface. Pers Ubiquit Comput
13:119-132, doi:10.1007/s00779-007-0192-x

23. Werthner H (2003) Intelligent systems in travel and tourism. In:
Proceedings of IICAI 2003, pp. 1620-1628

24. Yoon H, Woo W (2009) CAMAR Mashup: Empowering end-user
participation in U-VR environment. In: Proceedings of ISUVR 2009,
pp. 33-36. doi:10.1109/ISUVR.2009.22

25. Yoon H, Zheng Y, Xie X, Woo W (2010) Smart itinerary recom-
mendation based on user-generated GPS trajectories. In: Proceedings
of UIC 2010, pp. 19-34. doi:10.1007/978-3-642-16355-5_5

26. Zhang D, Guo B, Li B, Yu Z (2010) Extracting social and com-
munity intelligence from digital footprints: an emerging research
area. In: Proceedings of UIC 2010, pp. 4-18. doi:10.1007/978-3-
642-16355-5_4

27. Zheng VW, Zheng Y, Xie X, Yang Q (2010) Collaborative location
and activity recommendations with GPS history data. In: Proceed-
ings of WWW 2010, pp. 1029-1038. doi:10.1145/1772690.1772795

28. Zheng VW, Cao B, Zheng Y, Xie X, Yang Q (2010) Collaborative
filtering meets mobile recommendation. In: Proceedings of AAAI
2010, pp. 238-241

29. Zheng Y, Wang L, Zhang R, Xie X, Ma WY (2008) GeoLife: man-
aging and understanding your past life over maps. In: Proceedings of
MDM 2008, pp. 211-212. doi:10.1109/MDM.2008.20

30. Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding
mobility based on GPS data. In: Proceedings of Ubicomp 2008, pp.
312-321. doi:10.1145/1409635.1409677

31. Zheng Y, Liu L, Wang L, Xie X (2008) Learning trans-
portation mode from raw GPS data for geographic applications
on the web. In: Proceedings of WWW 2008, pp. 247-256.
doi:10.1145/1367497.1367532

32. Zheng Y, Chen Y, Xie X, Ma WY (2009) GeoLife2.0: a location-
based social networking service. In: Proceedings of MDM 2009, pp.
357-358. doi:10.1109/MDM.2009.50

33. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting lo-
cations and travel sequences from GPS trajectories. In: Proceedings
of WWW 2009, pp. 791-800. doi:10.1145/1526709.1526816

34. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining correlation be-
tween locations using human location history. In: Proceedings of GIS
2009, pp. 472-475. doi:10.1145/1653771.1653847

35. Zheng Y, Chen Y, Li Q, Xie X, Ma WY (2010) Understanding
transportation modes based on GPS data for web applications. ACM
Trans Web 4:1-36. doi:10.1145/1658373.1658374

36. Zheng Y, Xie X, Ma WY (2010) GeoLife: a collaborative social
networking service among user, location and trajectory. IEEE Data
Eng Bull 33:32-39

37. Zheng Y, Xie X (2011) Learning travel recommendations from
user-generated GPS traces. ACM Trans Intell Syst Technol 2:1-29.
doi:10.1145/1889681.1889683

38. Zheng Y, Zhang L, Ma Z, Xie X, Ma WY (2011) Recommend-
ing friends and locations based on individual location history. ACM
Trans Web 5:1-44. doi:10.1145/1921591.1921596



	Introduction
	Related Work
	Proposed Itinerary Model
	Social Itinerary Recommendation
	Experiments
	Conclusion

