Deep Quantization: Encoding Convolutional Activations with Deep Generative Model
- Zhaofan Qiu ,
- Ting Yao ,
- Tao Mei
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
Deep convolutional neural networks (CNNs) have proven highly effective for visual recognition, where learning a universal representation from activations of convolutional layer plays a fundamental problem. In this paper, we present Fisher Vector encoding with Variational AutoEncoder (FV-VAE), a novel deep architecture that quantizes the local activations of convolutional layer in a deep generative model, by training them in an end-to-end manner. To incorporate FV encoding strategy into deep generative models, we introduce Variational Auto-Encoder model, which steers a variational inference and learning in a neural network which can be straightforwardly optimized using standard stochastic gradient method. Different from the FV characterized by conventional generative models (e.g., Gaussian Mixture Model) which parsimoniously fit a discrete mixture model to data distribution, the proposed FVVAE is more flexible to represent the natural property of data for better generalization. Extensive experiments are conducted on three public datasets, i.e., UCF101, ActivityNet, and CUB-200-2011 in the context of video action recognition and fine-grained image classification, respectively. Superior results are reported when compared to state-of-the-art representations. Most remarkably, our proposed FVVAE achieves to-date the best published accuracy of 94.2% on UCF101.