Microsoft at ICLR 2024
Central European Time (UTC +1)
地点: Vienna, Austria
所有时间都在 CET (UTC +1)
Tuesday, May 7, 2024
-
10:00 – 10:45 Talk session
-
10:45 – 12:45 Poster session Halle B
Poster Session 1
相关论文与出版物-
3D Feature Prediction for Masked-AutoEncoder-Based Point Cloud Pretraining
Siming Yan, Yu-Qi Yang, Yu-Xiao Guo, Hao Pan, Peng-Shuai Wang, Xin Tong, Yang Liu, Qi-Xing Huang
-
Combinatorial Bandits for Maximum Value Reward Function under Max Value-Index Feedback
Yiliu Wang, Wei Chen, Milan Vojnovic
-
Exploring Diffusion Time-steps for Unsupervised Representation Learning
Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, E. Chang, Hanwang Zhang
-
Fast-ELECTRA for Efficient Pre-training
Chengyu Dong, Liyuan Liu, Hao Cheng, Jingbo Shang, Jianfeng Gao, Xiaodong Liu
-
Harnessing Density Ratios for Online Reinforcement Learning
P. Amortila, Dylan Foster, Nan Jiang, Ayush Sekhari, Tengyang Xie
-
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Marco Federici, Patrick Forr'e, Ryota Tomioka, Bastiaan S. Veeling
-
MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-yue Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, Jianfeng Gao
-
Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning
Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Y. Yacoob, Lijuan Wang
-
Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs
Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, Jianfeng Gao
-
Tuan Le, Julian Cremer, Frank Noé, Djork-Arné Clevert, Kristof Schütt
-
PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization
Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shi-Bo Zhang, Yue Zhang
-
PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training
Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, Sujian Li
-
Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation
Xinyu Tang, Richard Shin, Huseyin Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin, Sivakanth Gopi, Janardhan (Jana) Kulkarni, Robert Sim
-
ResFields: Residual Neural Fields for Spatiotemporal Signals
Marko Mihajlovic, Sergey Prokudin, Marc Pollefeys, Siyu Tang
-
Teaching Language Models to Hallucinate Less with Synthetic Tasks
Erik Jones, Hamid Palangi, Clarisse Simoes Ribeiro, Varun Chandrasekaran, Subhabrata (Subho) Mukherjee, Arindam Mitra, Ahmed Awadallah, Ece Kamar
-
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving
Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, Weizhu Chen
-
Weakly-supervised Audio Separation via Bi-modal Semantic Similarity
Saeed Amizadeh, Kazuhito Koishida
-
16:30 – 18:30 Poster session Halle B
Poster Session 2
相关论文与出版物-
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, Pengcheng He
-
Kosmos-2: Grounding Multimodal Large Language Models to the World
Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei
-
Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, Liyue Shen
-
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs
Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao
-
Training-free Multi-objective Diffusion Model for 3D Molecule Generation
Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, Dongsheng Li
Wednesday, May 8, 2024
-
10:00 – 10:45 Talk session
Oral 3A
相关论文与出版物-
LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models
Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, Tuo Zhao
-
-
10:45 – 12:45 Poster session Halle B
Poster Session 3
相关论文与出版物-
Better Neural PDE Solvers Through Data-Free Mesh Movers
Peiyan Hu, Yue Wang, Zhi-Ming Ma
-
Designing Skill-Compatible AI: Methodologies and Frameworks in Chess
Karim Hamade, Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, Ashton Anderson
-
Diagnosing Transformers: Illuminating Feature Spaces for Clinical Decision-Making
Aliyah R. Hsu, Yeshwanth Cherapanamjeri, Briton Park, Tristan Naumann, A. Odisho, Bin Yu
-
Enhancing Tail Performance in Extreme Classifiers by Label Variance Reduction
Anirudh Buvanesh, Rahul Chand, Jatin Prakash, Bhawna Paliwal, Mudit Dhawan, Neelabh Madan, Deepesh Hada, Vidit Jain, Sonu Mehta, Yashoteja Prabhu, Manish Gupta, Ramachandran Ramjee, Manik Varma (manik)
-
Improving Offline RL by Blending Heuristics
Sinong Geng, Aldo Pacchiano, Aldo Pacchiano, A. Kolobov, Ching-An Cheng
-
In-context Autoencoder for Context Compression in a Large Language Model
Tao Ge, Jing Hu, Haixun Wang, Si-Qing Chen, Furu Wei
-
KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval
Marah I Abdin, Suriya Gunasekar, Varun Chandrasekaran, Jerry Li, Mert Yuksekgonul, Rahee Peshawaria, Ranjita Naik, Besmira Nushi
-
LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models
Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, Tuo Zhao
-
MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process
Xinyao Fan, Yueying Wu, Chang Xu, Yuhao Huang, Weiqing Liu, Jiang Bian
-
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
Kai Shen, Zeqian Ju, Xu Tan, Yanqing Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, Jiang Bian
-
Supervised Knowledge Makes Large Language Models Better In-context Learners
Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Weirong Ye, Xing Xie, Weizhu Chen, Yue Zhang
-
The Generative AI Paradox: "What It Can Create, It May Not Understand"
Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian R. Fisher, Abhilasha Ravichander, Khyathi Raghavi Chandu, Benjamin Newman, Pang Wei Koh, Allyson Ettinger, Yejin Choi
-
Whittle Index with Multiple Actions and State Constraint for Inventory Management
Chuheng Zhang, Xiangsen Wang, Wei Jiang, Xianliang Yang, Siwei Wang, Lei Song, Jiang Bian
-
-
16:30 – 18:30 Poster session Halle B
Poster Session 4
相关论文与出版物-
CNN Kernels Can Be the Best Shapelets
Eric Qu, Yansen Wang, Xufang Luo, Wenqiang He, Kan Ren, Dongsheng Li
-
Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers
Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, Yuqing Yang
-
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
Peiyan Zhang, Hao Liu, Chaozhuo Li, Xing Xie, Sunghun Kim, Haohan Wang
-
Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks
M. Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, Devis Tuia
-
InsertNeRF: Instilling Generalizability into NeRF with HyperNet Modules
Yanqi Bao, Tianyu Ding, Jing Huo, Wenbin Li, Yuxin Li, Yang Gao
-
LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models
Zecheng Tang, Chenfei Wu, Juntao Li, Nan Duan
-
Yu Chen, Yihan Du, Pihe Hu, Siwei Wang, Desheng Wu, Longbo Huang
-
Retro-fallback: retrosynthetic planning in an uncertain world
Austin Tripp, Krzysztof Maziarz, Sarah Lewis, Jose Miguel Hernandez-Lobato, Marwin Segler
-
Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation
Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, Yu Wang
-
Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution
Y. Ma, Huan Yang, Wenhan Yang, Jianlong Fu, Jiaying Liu
-
The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction
Pratyusha Sharma, Jordan Ash, Dipendra Misra
-
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition
Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen, Hoifung Poon
-
ZeRO++: Extremely Efficient Collective Communication for Giant Model Training
Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji Ruwase, Feng Yang, Lei Yang, Yuxiong He
Thursday, May 9, 2024
-
10:45 – 12:45 Poster session Halle B
Poster Session 5
相关论文与出版物-
Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models
Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar, Ranjita Naik, Hamid Palangi, Ece Kamar, Besmira Nushi
-
Coco-Periph: Bridging the Gap Between Human and Machine Perception in the Periphery
Anne Harrington, Vasha Dutell, Mark Hamilton, Ayush Tewari, Simon Stent, William T. Freeman, Ruth Rosenholtz
-
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, Weizhu Chen
-
Shitong Duan, Xiaoyuan Yi, Peng Zhang, T. Lu, Xing Xie, Ning Gu
-
Evoke: Evoking Critical Thinking Abilities in LLMs via Reviewer-Author Prompt Editing
Xinyu Hu, Pengfei Tang, Simiao Zuo, Zihan Wang, Qiang Lou, Jian Jiao, Denis Charles
-
MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design
Xiang Fu, Tian Xie, Andrew S. Rosen, Tommi Jaakkola, Jake Smith
-
RAIN: Your Language Models Can Align Themselves without Finetuning
Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, Hongyang Zhang
-
-
16:30 – 18:30 Poster session Halle B
Poster Session 6
相关论文与出版物-
Augmenting transformers with recursively composed multi-grained representations
Xiang Hu, Qingyang Zhu, Kewei Tu, Wei Wu
-
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing
Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruehle, Laks V. S. Lakshmanan, Ahmed Awadallah
-
Kosmos-G: Generating Images in Context with Multimodal Large Language Models
Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhu Chen, Furu Wei
-
Large Language Model Cascades with Mixture of Thoughts Representations for Cost-efficient Reasoning
Murong Yue, Jie Zhao, Min Zhang, Liang Du, Ziyu Yao
-
Privately Aligning Language Models with Reinforcement Learning
Fan Wu, Huseyin Inan, Arturs Backurs, Varun Chandrasekaran, Janardhan (Jana) Kulkarni, Robert Sim
-
PromptTTS 2: Describing and Generating Voices with Text Prompt
Yichong Leng, Zhifang Guo, Kai Shen, Xu Tan, Zeqian Ju, Yanqing Liu, Yufei Liu, Dongchao Yang, Leying Zhang, Kaitao Song, Lei He, Xiang-Yang Li, Sheng Zhao, Tao Qin, Jiang Bian
-
SliceGPT: Compress Large Language Models by Deleting Rows and Columns
Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, James Hensman
-
Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph
Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Sai Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, H. Shum, Jian Guo
-
Friday, May 10, 2024
-
10:45 – 12:45 Poster session Halle B
Poster Session 7
相关论文与出版物-
Adaptive Instrument Design for Indirect Experiments
Yash Chandak, Shiv Shankar, Vasilis Syrgkanis, Emma Brunskill
-
Cascading Reinforcement Learning
Yihan Du, R. Srikant, Wei Chen
-
Data Debugging with Shapley Importance over Machine Learning Pipelines
Bojan Karlas, David Dao, Matteo Interlandi, Sebastian Schelter, Wentao Wu, Ce Zhang
-
Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals
Y. Gat, Nitay Calderon, Amir Feder, Alexander Chapanin, Amit Sharma, Roi Reichart
-
GAIA: Zero-shot Talking Avatar Generation
Tianyu He, Junliang Guo, Runyi Yu, Yuchi Wang, Jialiang Zhu, Kaikai An, Leyi Li, Xu Tan, Chunyu Wang, HsiangTao Wu, Sheng Zhao, Jiang Bian
-
In-Context Learning through the Bayesian Prism
Kabir Ahuja, Madhur Panwar, Navin Goyal
-
Inverse Approximation Theory for Nonlinear Recurrent Neural Networks
Shida Wang, Zhong Li, Qianxiao Li
-
Is Self-Repair a Silver Bullet for Code Generation?
Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, Armando Solar-Lezama
-
Neural Structure Learning with Stochastic Differential Equations
Benjie Wang, Joel Jennings, Wenbo Gong
-
PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. Xing, Zhiting Hu
-
Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective
Ming Zhong, Chenxin An, Weizhu Chen, Jiawei Han, Pengcheng He
-
Unifying Feature and Cost Aggregation with Transformers for Dense Correspondence
Sunghwan Hong, Seokju Cho, Seungryong Kim, Stephen Lin
-
-
16:30 – 18:30 Poster session Halle B
Poster Session 8
相关论文与出版物-
BatchPrompt: Accomplish more with less
Jianzhe Lin, Maurice Diesendruck, Liang Du, Robin Abraham
-
DyVal: Graph-informed Dynamic Evaluation of Large Language Models
Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, Xing Xie
-
How to Fine-Tune Vision Models with SGD
Ananya Kumar, Ruoqi Shen, Sébastien Bubeck, Suriya Gunasekar
-
MRVM-NeRF: Mask-Based Pretraining for Neural Radiance Fields
Ganlin Yang, Guoqiang Wei, Zhizheng Zhang, Yan Lu, Dong Liu
-
PTaRL: Prototype-based Tabular Representation Learning via Space Calibration
Hangting Ye, Wei Fan, Xiaozhuang Song, Shun Zheng, He Zhao, Dandan Guo, Yi Chang
-
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks
Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj
-
V-DETR: DETR with Vertex Relative Position Encoding for 3D Object Detection
Yichao Shen, Zigang Geng, Yuhui Yuan, Yutong Lin, Ze Liu, Chunyu Wang, Han Hu, Nanning Zheng, Baining Guo
-
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin 林庆维, Daxin Jiang (姜大昕)
Saturday, May 11, 2024
-
09:00 Workshop Halle A 2
Generative and Experimental Perspectives for Biomolecular Design
Chenghao Liu · Jarrid Rector-Brooks · Jason Yim · Soojung Yang · Sidney Lisanza · Francesca-Zhoufan Li · Pranam Chatterjee · Tommi Jaakkola · Regina Barzilay · David Baker · Frances Arnold · Yoshua Bengio
相关论文与出版物-
Re-evaluating Retrosynthesis Algorithms with Syntheseus
Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp Seidl, Marwin Segler
-
-
09:00 Workshop Stolz 2
Data-centric Machine Learning Research (DMLR): Harnessing Momentum for Science
Manil Maskey · Lilith Bat-Leah · Danilo Brajovic · Paolo Climaco · Alicia Parrish · Chanjun Park · Xiaozhe Yao · Holger Caesar · Bernard Koch · Fatimah Alzamzami · Zhangyang Wang · Jerone Andrews · Praveen Paritosh · Steffen Vogler · Mayee Chen · Sang Truong · Bolei Ma
相关论文与出版物-
Re-evaluating Retrosynthesis Algorithms with Syntheseus
Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp Seidl, Marwin Segler
-