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Highlights

• A new chest X-ray (CXR) domain-specific
language model, CXR-BERT (Fig. 1),
available on HuggingFace:
https://aka.ms/biovil-models

• A self-supervised Vision-Language
Processing (VLP) approach for paired
biomedical data (BioViL, Fig.2).
https://aka.ms/biovil-code

• MS-CXR: a phrase grounding dataset for
chest X-ray data, released on PhysioNet:
https://aka.ms/ms-cxr

Motivation

• Clinical motivation: Growing backlogs of
medical image reporting puts pressure on
radiologists and leads to errors and omissions.

• Scalability ML models require a vast number
of manual annotations (experts’ time is
precious). Existing models are often limited to a
fixed set of abnormalities or body-part.

• Domain-specific challenges: Lack of
foundation models suitable for health data,
smaller scale datasets, domain specific-language.
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MS-CXR allows fine-grained evaluation of joint text-
image understanding in a biomedical domain.
• 1162 image bounding-box & sentence pairs,
• covering 8 different clinical findings,
• manually annotated and curated by radiologists.

Approach

• CXR-BERT is specialised to chest X-ray
reports via masked language modelling (MLM),
domain-specific vocabulary, contrastive learning
and augmentations (sentence shuffle) (Fig. 1).

• BioViL is a self-supervised VLP approach that
uses the domain specific CXR-BERT as a text
encoder, maintains an MLM loss, and utilises a
global/local contrastive loss to match
image-report pairs (Fig. 2).
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Figure 1: The proposed CXR-BERT text encoder has three phases of pretraining and uses a domain-specific vocabulary, masked
language modelling (MLM) and radiology section matching (RSM) losses, regularisation, and text augmentations.
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Figure 2: BioViL leverages our radiology-specific text encoder (CXR-BERT), text augmentation, regularisation, and maintains
language model quality via a masked language modelling (MLM) loss.

Experiments Preview

We conduct a broad evaluation including zero-shot classification, phrase grounding, and natural language
inference (NLI). Data: MIMIC-CXR v2 [2] chest radiograph dataset. After processing we have 146.7k
training and 22.2k validation samples. Downstream evaluation samples are kept in a held-out test set.

Table 1: Text encoder evaluation: radiology domain natural
language inference, fine-tuned and averaged over 5 runs.

RadNLI accuracy
RadNLI baseline 53.30
ClinicalBERT 47.67
PubMedBERT 57.71
CXR-BERT (after Phase-III) 60.46
CXR-BERT (Phase-III + Joint Training) 65.21
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Figure 3: Pneumonia classification, zero-shot and fine-tuned.

Table 2: Zero-shot phrase grounding results on our MS-
CXR Benchmark. Contrast-to-Noise Ratio (CNR) and In-
tersection over Union (mIoU) averaged over all findings.
Method Contrastive Obj. CNR mIoU
Baseline (w/ ClinicalBERT) global 0.76 .224
Baseline (w/ PubMedBERT) global 0.77 .225
GLoRIA [1] global & local 0.93 .246
BioViL global 1.02 .266
BioViL-L global & local 1.14 .284
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