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ABSTRACT
In the field of computer science, large-scale experimentation
on users is not new. However, driven by advances in artificial
intelligence, novel autonomous systems for experimentation
are emerging that raise complex, unanswered questions for
the field. Some of these questions are computational, while
others relate to the social and ethical implications of these
systems. We see these normative questions as urgent be-
cause they pertain to critical infrastructure upon which large
populations depend, such as transportation and healthcare.
Although experimentation on widely used online platforms
like Facebook has stoked controversy in recent years, the
unique risks posed by autonomous experimentation have not
received sufficient attention, even though such techniques
are being trialled on a massive scale. In this paper, we
identify several questions about the social and ethical im-
plications of autonomous experimentation systems. These
questions concern the design of such systems, their effects
on users, and their resistance to some common mitigations.

1. INTRODUCTION
Many computer scientists see experiments on users as a

necessary step toward improving products and services. In-
deed, user experimentation, such as classic A/B testing, has
become a normalized part of the technology sector. But,
thanks to advances in artificial intelligence, we are now at
the beginning of a new phase of experimentation involving
autonomous systems. As these systems spread throughout
our lives, affecting even critical infrastructure, they raise
difficult questions about the ethics of autonomous experi-
mentation practices and their wider social implications.

Consider, for example, navigation services that are re-
sponsible for providing millions of users with real-time di-
rections. Given the current traffic conditions, these services
attempt to suggest optimal routes for drivers. Experimenta-
tion is likely a core part of suggesting optimal routes. This is
because service providers often lack information about traf-
fic conditions on those routes to which they have purpose-
fully not directed drivers. To determine whether a previ-
ously slow route is still slow, these services will deliberately
send some users along it. Although such experiments may
have beneficial effects for the system as a whole, they can
be problematic for individual users or groups of users. For

some users, taking a slow route might mean that they are
slightly late for work; for others, though, it might delay a
trip to the hospital. Moreover, users seldom know whether
they are part of an experiment, nor do they have any way
to convey that one journey is more urgent than another.

Alternatively, consider ad placement systems intended to
increase click-through rates and, ultimately, revenue. These
systems display combinations of ads to users in order to
determine which combinations are most effective. In isola-
tion, each ad may seem completely innocuous, but, together,
these combinations and users’ responses may reveal privacy-
violating information or, worse yet, uniquely identify users.

As these examples illustrate, we are witnessing the ad-
vent of new autonomous experimentation systems that are
intended to maximize efficiency and seize opportunities to
learn, at the cost of providing some users with a sub-optimal
experience. In the aggregate, this approach results in sophis-
ticated systems that can rapidly adapt to changing condi-
tions. But it requires that users contribute to the “greater
good”of the system—that they ask not what their algorithm
can do for them, but what they can do for their algorithm.

In this paper, we set out to identify the complex ethi-
cal questions raised by autonomous experimentation. Some
of these questions concern privacy, although for novel rea-
sons; other questions are local, concerning the disadvantages
experienced by individual users or groups of users; finally,
some are more general and relate to informed consent, the
reduced agency of users, and increased power asymmetries.

2. WHEN MACHINE LEARNING
MEETS EXPERIMENTATION

Autonomous experimentation systems draw on both ma-
chine learning and experimentation. Machine learning is
a subfield of AI that is concerned with modeling observed
data, either to uncover meaningful patterns hidden in the
data or to make predictions about future, yet-to-be-observed
data. “Training” a machine learning system often requires
a large amount of data. Experimentation provides system
designers with a way to leverage user responses to evalu-
ate different design decisions, settings, and algorithms (even
machine learning algorithms). Unfortunately, both machine
learning and experimentation can expose users to risks. Ma-
chine learning systems can reflect and reinforce any biases
that are present in the training data [6], while experimen-
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tation can expose users to experimental treatments that are
not in their best interests or to which they would not have
knowingly consented. Both machine learning and experi-
mentation can threaten users’ privacy, but in different ways.

Although researchers have begun to acknowledge and ad-
dress these kinds of risks, focusing separately on machine
learning [4] and experimentation [3], new systems are being
deployed that combine machine learning and experimenta-
tion via multiworld testing, interactive learning, explore–
exploit, and reinforcement learning algorithms. Search en-
gines were early prototypes for these kinds of systems [19,
9], but increasingly they are found even in critical infras-
tructure, such as transportation [13] and healthcare [11].

These new autonomous experimentation systems are in-
herently adaptive and learn by conducting experiments with-
out human intervention. Typically, the experiments are rela-
tively crude and involve sequences of potentially sub-optimal
actions in order to explore the relationship between actions
and rewards. One of the most well-known approaches is rein-
forcement learning—a mature subfield of machine learning.
Reinforcement learning systems learn how software agents
should take actions in some changing environment in order
to maximize some long-term reward. Reinforcement learn-
ing recently played a crucial role in helping a computer de-
feat a highly ranked human Go player [16]. In this context,
the environment is the state of the board, the actions are
all possible stone placements, and the reward is winning the
game. But reinforcement learning has also been deployed
in online platforms. Here, for example, the environment
might be user attributes, the actions might be be various ad
placements, and the reward might be increasing revenue [5,
17]. Roughly speaking, reinforcement learning systems au-
tonomously adapt in the same way that other systems are
iteratively refined via manual A/B testing; however, the
number and range of experiments are much larger and the
experiments are performed at a considerably faster speed.

3. PROBING PRIVACY
Machine learning systems learn patterns and associations

that are present in the data on which they are trained. Cru-
cially, they are only able to learn patterns and associations
for which there are sufficiently many examples. Standard
machine learning systems, involving supervised or unsuper-
vised learning, are therefore limited in their ability to learn
privacy-violating patterns and associations (e.g., predicting
the sexual orientation of particular social media users [12])
by the number of supporting examples that are present in
the training data. In contrast, autonomous experimenta-
tion systems are not restricted to learning from historical,
already-observed data. These systems perform experiments
to obtain new data about users’ responses in situations for
which there are few or no examples in the existing train-
ing data. As a result, they are capable of uncovering user-
specific insights that may be sensitive or privacy violating.

Autonomous experimentation overcomes the primary lim-
itation of observational studies—i.e., their inability to iden-
tify causal relationships. Although causal inference from
observed data is an active area of research in machine learn-
ing and related fields, these methods are less powerful than
randomized, controlled experiments that can isolate the ef-
fects of an experimental treatment. Because autonomous
experimentation systems can establish that some treatment
causes a user to respond in a particular way, they can re-

veal an enormous amount of information. For example, such
systems might discover that there are specific combinations
of ads that are much more likely to cause a user to make a
purchase. Together, these combinations may uniquely iden-
tify that user. Finally, sequential variations in experimental
treatments can generate cumulative causal insights that far
exceed users’ expectations and even their levels of consent.

We argue that autonomous experimentation can be ac-
tively hostile to users’ privacy because it is capable of un-
covering user-specific insights in novel, uncertain situations.

4. ETHICAL PRINCIPLES
FOR EXPERIMENTATION

Moving beyond privacy, autonomous experimentation sys-
tems also raise new and difficult questions about broader
ethical frameworks, especially as these systems spread through-
out our lives. The ongoing debate about existing research
ethics regululations and their applicability to data science
is especially relevant. The U.S. Department of Health and
Human Services recently released a notice of proposed rule
making (NPRM) that proposes revisions to the Common
Rule that more effectively cover data-intensive research [8].
Although this NPRM characterizes such research as inher-
ently “low risk”—a contentious issue in and of itself [14]—it
notes that relationships between researchers, experimental
subjects, and data are in flux, with 1) subjects caring more
than ever about data management, 2) researchers being able
to access data without directly interacting with subjects,
and 3) the risk profile of human-subjects data changing un-
predictably. Given these observations and their relevance
to autonomous experimentation, we argue that it is illus-
trative to re-examine the basic ethical principles that have
constrained research experimentation on humans in the past.

The Common Rule, or Federal Policy for the Protection of
Human Subjects, was established in response to a series of
breaches to the public trust, and draws upon the Nuremberg
Code, the Declaration of Helsinki, and the Belmont Report.

The Nuremberg Code [2] was created after the atrocities of
World War II as a means to define ethical norms for human-
subjects research. It laid out many standard principles of
ethical research, including requiring subjects to give consent
and maintaining a balance between potential risks and ben-
efits. Although it was not specifically codified in U.S. law,
it was the first document to advocate informed consent.

The Declaration of Helsinki [1] was developed by the World
Medical Association as a guide for the medical community.
It draws upon the Nuremberg Code, but also stipulates that
human experiments must be grounded in animal trials, that
researchers must be medically and scientifically qualified,
and that research protocols must be independently reviewed.

These principles were enacted in U.S. law by the National
Research Act in 1974. The National Resarch Act created
the National Commission for the Protection of Human Sub-
jects of Biomedical and Behavioral Research, which subse-
quently published the Belmont Report in 1979. This report
established three basic ethical principles: respect for per-
sons, beneficence, and justice. Respect for persons protects
human autonomy, allows for informed consent, and requires
researchers to be truthful. Beneficence embodies the idea of
“do no harm,” with the aim of minimizing any risks to re-
search subjects while maximizing research benefits. Finally,
justice addresses the process of distributing risks and bene-



fits to potential research subjects in a manner that is fair.
We argue that autonomous experimentation challenges

these basic ethical principles. Although the Common Rule
does not have any legal force outside of government-funded
research, it is widely viewed as a baseline for ethical con-
duct, and we see its violation as a cause for concern. This
viewpoint is loosely echoed by companies that have recently
drafted review procedures that look to these basic ethical
principles to guide their interactions with users [18, 15].
In the remainder of this paper, we therefore examine au-
tonomous experimentation in the context of respect for per-
sons, beneficence, and justice, and outline some of the ob-
stacles to realizing these basic ethical principles in practice.

5. VIOLATING ETHICAL PRINCIPLES
As we described in section 2, autonomous experimentation

systems conduct experiments that involve sequences of po-
tentially sub-optimal actions in order to explore the relation-
ship between actions and outcomes. By subjecting users to
potentially sub-optimal actions, some users will experience
inconveniences or risks not experienced by others. For ex-
ample, by deliberately sending some users along a previously
slow route to determine whether it is still slow, navigation
services expose these users to risks, even though the goal is
to improve the system as a whole. This disparity raises the
question of who should serve as an“explorer”and who should
“exploit” the information discovered. One obvious answer is
to require that explorers be selected uniformly at random.
Unfortunately, even though this selection procedure is tech-
nically unbiased, it can still violate the ethical principle of
respect for persons if some users are unknowingly enlisted
into the process of taking potentially sub-optimal actions.

We argue that in the absence of informed consent, such
experiments take advantage of users’ ignorance and poten-
tially direct them to engage in activities that depart from
their goals, preferences, and expectations. A person who will
lose their job if they are late to work might decline an invita-
tion to serve as an explorer, even if there were some chance
that they would arrive at work earlier than expected. Other
users might prefer to take a route with an uncertain dura-
tion over one that is certain to take a long time. Respect for
persons dictates the importance of allowing users to make
such decisions for themselves in an informed manner—that
exploration will discover information that improves the sys-
tem as a whole may not justify the risks for any specific user.

Even systems that do not have a non-experimental de-
fault setting—such as those that rely on confidence-based
sampling [7]—will subject some users to actions that are
less certain to be optimal. These users will serve as more
adventurous explorers, and may be exposed to greater risks.

In practice, explorers do not need to be selected uniformly
at random. Moreover, because exploration can be driven by
uncertainty and uncertainty arises from a lack of informa-
tion, users who belong to some minority group (about which
there is proportionally less information by definition) may
be more likely to serve as an explorer. In other words, au-
tonomous experimentation systems can disproportionately
target users who do not resemble the majority, in some cases
because they belong to a historically disadvantaged group.
Although other machine learning systems can also discrimi-
nate against minority users [10], the context of experimenta-
tion raises questions that relate to justice—i.e., the process
of distributing risks and benefits in a manner that is fair.

Unfortunately, the standard notion of justice does not
translate cleanly to autonomous experimentation. In a tra-
ditional human-subjects experiment, upholding justice means
ensuring that one group does not bear most of the risks,
while another accrues most of the benefits. However, al-
though autonomous experimentation systems may dispro-
portionately experiment on minority users, these same users
are the ones who stand to benefit the most from the exper-
iments. As a result, a more pertinent question is whether
the extent or nature of the experiments is necessary—would
other experiments, with fewer risks, be equally effective at
benefiting those users? This is exactly what beneficence
captures. Here, the goal is to ensure that any risks to re-
search subjects are minimized, while maximizing research
benefits. Indeed, upholding beneficence sometimes requires
researchers to consider using alternative research methods.

Ultimately, any rigorous discussion of fairness and au-
tonomous experimentation will have to address which ex-
periments are justified and which are not, as well as who
is most likely to be affected by them. When humans lack
any intuition about which actions are optimal, a system that
selects explorers and actions uniformly at random will not
elicit the fairness concerns described above. No user will
be subjected to actions that are known to be sub-optimal.
However, there are many scenarios where humans—and es-
pecially domain experts—have well-honed intuitions about
the kinds of actions that are more or less likely to be optimal,
even if a system does not. For example, a user may know a
near-optimal route to work, even though the navigation ser-
vice she relies on has not discovered it yet. One possible way
to assess a system’s fairness is therefore to allow users to ask
whether they are part of an experiment, what information
that experiment is intended to discover, and whether that
information could have been discovered by other means.

6. REALIZING ETHICAL PRINCIPLES
In a traditional human-subjects experiment, informed con-

sent means that potential research subjects must be pro-
vided with information about the experiment (e.g., the se-
lection procedure for research subjects, the research meth-
ods, the potential risks and benefits) and given the oppor-
tunity to assent. Unfortunately, it is much harder to obtain
informed consent from the users of an autonomous experi-
mentation system. First, the reasons for performing an ex-
periment depend on the internals of the system—its current
representation of the environment, its set of possible actions,
its strategy for selecting explorers and actions, and its as-
sessment of the potential risks and benefits. Communicating
these reasons to a user in a manner that is unambiguous and
that accords with the user’s own notions of risks and benefits
is not easy. Second, the number and range of experiments
and the speed at which they are typically performed make
enacting the informed consent process extremely difficult.

These obstacles to obtaining informed consent also make it
hard to develop procedures for ensuring accountability. For
government-funded human-subjects research, the Common
Rule requires that institutional review boards (IRBs) review
all experiments to evaluate research protocols and methods
and to assess potential risks and benefits. There is no clear
analog for autonomous experimentation systems. One pos-
sibility is an automated “checks and balances” mechanism,
perhaps as part of a system’s reward signal, for monitoring
and regulating a system’s actions to avoid or penalize exper-



iments that an IRB would find problematic. In many scenar-
ios, though, it is likely that such a mechanism would have
to be accompanied by some form of human review. This
hybrid approach would make it possible to share account-
ability between the system designers and external reviewers,
but again raises the challenge of communicating the reasons
for performing an autonomous experiment to a human. In
addition, it would slow the system down and obfuscate who
users should hold accountable if something goes wrong.

Regardless of the procedure for ensuring accountability,
the task of assessing potential risks and benefits to users is
non-trivial. In autonomous experimentation systems, risks
and benefits are typically derived from behavioral data such
as clicks or wearable sensors—often by another machine
learning system, which may be crude or even vulnerable to
approximation errors and bias. If a system’s assessments of
risks and benefits are inaccurate, then any decisions based
on those assessments will necessarily also be inaccurate.

Finally, reviewing an experiment according to IRB stan-
dards involves the notion of minimal risk. Minimal risk
means that the probability and magnitude of harm or dis-
comfort experienced in an experiment are no greater than
those ordinarily encountered in a research subject’s day-to-
day life. If an experiment qualifies as minimal risk, it is
typically allowed to proceed with fewer precautions and a
less rigorous review process. In practice, although an au-
tonomous experimentation system may have a sophisticated
model of the comparative risks caused by various actions, it
is unlikely to have any model of the absolute probability or
magnitude of these risks or how these values might compare
to those associated with other systems or other activities in a
user’s life. This makes maintaining IRB standards difficult.

7. CONCLUSIONS
We are at the beginning of a new phase of experimenta-

tion, with autonomous experimentation systems increasingly
found even in critical infrastructure, such as transportation
and healthcare. However, despite the ongoing debate about
existing research ethics regululations and their applicability
to data science, researchers have largely ignored the unique
risks posed by autonomous experimentation. As we have
shown in this paper, autonomous experimentation systems
challenge the ethical principles outlined in the Belmont re-
port and subsequently codified in the Common Rule: respect
for persons, beneficence, and justice. We therefore believe
that more research is urgently needed in order to fully under-
stand the social and ethical implications of autonomous ex-
perimentation systems and to develop mitigating strategies.
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