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ABSTRACT
The typical enterprise data architecture consists of several actively
updated data sources (e.g., NoSQL systems, data warehouses), and a
central data lake such as HDFS, in which all the data is periodically
loaded through ETL processes. To simplify query processing, state-
of-the-art data analysis approaches solely operate on top of the
local, historical data in the data lake, and ignore the fresh tail
end of data that resides in the original remote sources. However,
as many business operations depend on real-time analytics, this
approach is no longer viable. The alternative is hand-crafting the
analysis task to explicitly consider the characteristics of the various
data sources and identify optimization opportunities, rendering the
overall analysis non-declarative and convoluted.

Based on our experiences operating in data lake environments,
we design System-PV, a real-time analytics system that masks the
complexity of dealing with multiple data sources while offering
minimal response times. System-PV extends Spark with a sophisti-
cated data virtualization module that supports multiple applications
– from SQL queries to machine learning. The module features a
location-aware compiler that considers source complexity, and a
two-phase optimizer that produces and refines the query plans, not
only for SQL queries but for all other types of analysis as well.
The experiments show that System-PV is often faster than Spark
by more than an order of magnitude. In addition, the experiments
show that the approach of accessing both the historical and the
remote fresh data is viable, as it performs comparably to solely
operating on top of the local, historical data.

∗Work done while the author was at IBM.
†Work done while the author was at IBM.
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1 INTRODUCTION
In the past decade, there has been an explosion in terms of data
volume and variety, as well as in terms of demand for data-driven
insights. Daily business operations are supported by a diverse set of
applications, each with its own characteristics. Therefore, different
parts of the same organization end up using different systems de-
pending on their application requirements. NoSQL stores and OLTP
systems are widely used as operational stores which store the most
recent data as generated by customer transactions, user tweets,
etc. ETL processes are periodically run over each operational data
source to extract the data, transform it appropriately, and load it in
a unifying data lake such as HDFS or a relational data warehouse,
on top of which various types of analytics are performed. Querying
data in such complex ecosystems is a significant challenge.

Data analysts typically use a scale-out processing system such as
Spark [59] to run analytics over the data portion stored in the data
lake. A major problem of accessing only the data lake is staleness, as
the tail end of data (i.e., most recent and interesting data [1]) in the
operational sources is ignored. Data staleness is often unacceptable
because many applications require analysis of the tail end of the
data, as well as the historical data.

To facilitate analysis over multiple data sources, engines such
as Spark [59] and Hive [53] offer connectors [15, 46] to provide
access to data sources that are external to the data lake. Although
the connectors provide the basic mechanism to access external
sources, the data analysts carry the burden of efficiently using
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them. For example, a user who creates a Spark job to process both
the historical data in the data lake and the most recent data in
the external sources has to hand-code her analysis using low-level
logic that considers the following factors: 1) the location of data
as well as recent data updates in the external sources, 2) potential
ETL invocations to ingest data into the lake, 3) the data overlap
between the external sources and the data lake, 4) potential schema
mediation between data sources, 5) optimization opportunities for
the overall analysis. Going through multiple steps and writing
boilerplate code before launching any type of analysis is a non-
sustainable, complicated process.

Data federation systems are an established alternative for queries
over multiple sources, yet they have two shortcomings which hin-
der their use in modern applications: First, traditional federation
systems focus solely on SQL analytics. Second, they encounter dif-
ficulties optimizing queries over logical datasets that are physically
spread across the data lake and an external source, and therefore
exhibit suboptimal performance [4]. Thus, users end up compro-
mising data freshness by operating only over the historical data in
the data lake and ignoring the tail end of data in external sources.

This work designs a data virtualization module that provides a
unified view over multiple data stores which are heterogeneous in
terms of i) data model, ii) update rates, and iii) query capabilities.
The design enables polymorphic virtualization, i.e., masking the
complexity of dealing with multiple stores, while offering minimal
response times [34].

To abstract away the complexity stemming from data source
variety, the data virtualization module exposes a global schema on
top of logically contiguous datasets which are physically partitioned
across systems. The module then uses a location-aware compiler to
map analysis from the global virtual schema to the actual sources.

The module additionally uses a two-phase optimizer to optimize
the overall analysis and offerminimal response times. The optimizer
operates in two phases to optimize both SQL and general analysis
tasks, and to reduce the overall complexity of query optimization
over multiple sources. Phase I considers established cost-based
query optimization techniques for complex SQL queries, without
being cluttered by the details of dispersed data sets. Phase II opti-
mizes all types of data analysis by considering the properties of the
underlying data sources to generate an efficient execution plan.

We validate our design by coupling the data virtualization mod-
ule with the Spark framework to implement System-PV. System-
PV maintains all the Spark APIs and thus can support all types
of Spark applications (e.g., OLAP, machine learning, etc) over a
virtual, simplified schema. The location-aware compiler of System-
PV rewrites analysis into a Spark script over the actual physical
schema. The two-phase optimizer rewrites the resulting script us-
ing the sophisticated IBM Big SQL™ [29] query optimizer for its
SQL-oriented Phase I, and the Spark SQL Catalyst optimizer [15]
for its universal Phase II. As a result, System-PV efficiently serves
a spectrum of choices for enterprise applications, from operating
on stale data that is in the data lake, to accessing data remotely in
place, as well as a combination of the two by allowing data sets to
be split between the data lake (i.e., the historical part) and a remote
data source (i.e., the tail end of fresh data), all while masking the
actual data source and schema complexity from the users.

Overall, this paper makes the following contributions:
• We identify shortcomings of the state-of-the-art systems when
deployed on top of data lake environments and accessing fresh
data in external data sources (Section 3).

• Motivated by the challenges that users face, we design System-PV,
a real-time analytics system that extends Spark by introducing a
data virtualization module that employs a location-aware com-
piler and a powerful two-phase optimizer. System-PV supports
and optimizes diverse analytics over a global virtual schema that
masks data source variety and complexity (Sections 3-5).

• We evaluate System-PV using the TPCx-BB [28, 55] dataset appro-
priately extended to incorporate non-relational data, and show
that System-PV is faster than Spark when accessing multiple
data sources, often by more than an order of magnitude. Further,
System-PV considers fresh data in external data sources at neg-
ligible performance overhead compared to operating solely on
top of the data lake, while abstracting away the complexity from
the user (Section 7).

• We provide insights based on our experiences operating in data
lake settings (Section 8).

2 RELATEDWORK
System-PV leverages decades of research in database views, ETL,
and data federation systems [17, 19, 56, 57]. This section surveys
these works and highlights how System-PV pushes the state-of-the-
art further.

Querying Multiple Sources. In recent years, scale-out frame-
works such as Spark [15], Pig [46], and Hive [53] offer specialized
connectors to allow queries over multiple data sources that are
“external” to HDFS (e.g., RDBMS), yet lack higher-level abstractions
to hide source complexity. In addition, even when such systems per-
form cost-based optimizations [8], their optimizers ignore external
source characteristics.

On the contrary, traditional data federation approaches have ex-
tensively studied query execution across multiple data sources [19,
30, 44, 50, 54]. However, these approaches focus solely on SQL-
based data analysis and lack support for iterative or other kinds of
analytics (e.g., machine learning). In addition, federated optimizers
encounter difficulties when producing plans for queries that touch
datasets split between multiple sources; deciding the optimal way
to execute a query with multiple JOIN and UNION ALL operations
over different data sources is non-trivial [4], therefore users have
been avoiding such scenarios.

System-PV introduces a two-phase optimizer to specifically tar-
get cases with complex relationships between data sources, thus
allowing a single logical dataset to be split between different sources,
and handling data overlap. As we show later, such data distribu-
tions are frequent in data lake settings due to the periodic nature
of ETL processes. Two-phase optimization was initially proposed
as a way to perform site selection at runtime, and thus balance
the load equally among the execution sites [18]. Then, the XPRS
parallel DBMS [32] employed two-phase optimization to reduce the
overall search space of possible parallel query plans. Garofalakis et
al. proceeded to provide a formal framework for reasoning in terms
of both single- and two-phase optimization [27]; the framework
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uses metrics such as the “critical path length” of a parallel query
plan, the amount of resources that an operator reserves, and the
estimated execution time of an operator. Two-phase optimization
can result in a final physical query plan which is different than
the optimal plan [38]; still, combining a two-phase optimizer with
sufficient information about the overall physical database design
generally results in efficient distributed query plans [21].

Polystores. Another method to serve diverse types of queries
over heterogeneous data sources is through polystore systems [2,
16, 22, 24, 39] that bundle together multiple query engines and
use the most appropriate per query type. Polystore systems apply
frequent and multi-directional data migration across the various
engines [24]. Data exchange among multiple systems is challeng-
ing because it i) complicates query optimization and ii) requires
connecting each system with every other system via specialized
pairwise connectors [45]. The Myria [58] system uses the architec-
ture of a federated database system as its blueprint, and operates
over a polystore environment. Myria uses an extended relational,
rule-based optimizer, whose rules allow expressing complex opera-
tions in ways supported by different backends. In addition, Myria
uses PipeGen [31] – an underlying communication framework –
to facilitate data transfer between the different backends it sup-
ports. PipeGen reduces data transfer cost by allowing data stores
to exchange Apache Arrow [6] binary buffers.

Still, data transfers to and from operational data stores create
additional load that can affect the stability and performance of the
data stores: As opposed to polystores, we design System-PV for
scenarios where the majority of data is stored in the data lake and
only the tail end of the data is in external sources. In such envi-
ronments, data is typically transferred from the external sources
to the data lake; unidirectional communication avoids overloading
the operational stores and reduces the number of plans that the
optimizer considers.

ETL. ETL (Extraction, Transformation, Loading) [42, 56] is a
process that populates a data warehouse with data originating in
external sources. In recent years, HDFS is frequently used as the
staging/destination area [48]. The popularity of HDFS has led to
specialized tools [11, 13] for data ingestion. System-PV performs
ETL on demand when accessing a variety of external sources, and
masks ETL costs through data-source-specific optimizations.

Database Views. Database views are frequently used to mask
the underlying structure of the data. System-PV supports both lazily
evaluated and materialized views depending on the user require-
ments and the optimizer guidelines. Views are also extensively
used in the domain of data integration [40], where data sources are
mapped to a global schema using local-as-view (LAV [36]) or global-
as-view (GAV [19]) methods. System-PV uses the GAV variation to
form a global virtual schema.

3 MOTIVATION AND BACKGROUND
We now use an example to describe the challenges faced by users
when developing applications that access external sources. We use
Spark as a representative state-of-the-art framework [59]. Spark is
frequently deployed in data lake environments because it supports
various types of data analysis (e.g., OLAP, machine learning, etc.)
and is compatible with various types of external sources. Spark

Sales
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Products

RDBMS

Carts
KV

Key-Value Store

HDFS

Sales
HDFS

Carts
HDFS

[Jan. 1990 – Dec. 2016]

HDFS Data Range

[Dec. 2016 – May. 2017)

External Data Range

Figure 1: Typical scenario in a data lake: Analyzing recent,
actively updated data along with historical data.

provides both a procedural (e.g., Scala) and a declarative inter-
face through Spark SQL [15]. Other frameworks (e.g., Hadoop [14],
Hive [53], Flink [5, 10]) have similar characteristics, and their users
face similar challenges.

Motivating Example. Figure 1 depicts a modern data analysis
scenario: A company uses an RDBMS to store transactional data
about product sales (Sales dataset), and a NoSQL key-value store
to store the shopping cart data of online clients (Shopping Carts
dataset). ETL processes periodically load the data into a central data
lake (HDFS), over which users run analysis using Spark. Thus, the
Shopping Carts dataset ends up being stored across the data lake
(CartsHDFS table) and the key-value store (CartsKV table). Similarly,
the Sales dataset is spread across the data lake (SalesHDFS table)
and the RDBMS (SalesFact, Products tables). The Products table is a
dimension tablewhich is frequently updated and thus remains in the
RDBMS through its entire lifetime. On the contrary, the shopping
cart data and the fact table of the sales data are periodically loaded
to the data lake, while new data is continuously appended into their
RDBMS and key-value store parts, respectively. Thus, the tail end
of the data resides in the external sources.
1 / ∗ HDFS s i d e o f S a l e s d a t a s e t ∗ /
2 SalesHDFS . f i l t e r ( " s o l d _ d a t e < 20161201 " )
3 / ∗ RDBMS , no rma l i z ed s i d e o f S a l e s ∗ /
4 SalesDB = S a l e s F a c t . j o i n ( Produc t s ,
5 S a l e s F a c t ( " s _ i d " ) === Produc t s ( " s _ i d " ) )
6 SalesDB = Sa l e sDBAl l . f i l t e r ( " s o l d _ d a t e >= 20161201 " )
7 / ∗ Un i f i e d S a l e s d a t a s e t ∗ /
8 S a l e s = SalesHDFS . unionAll ( Sa lesDB )
9 / ∗ HDFS s i d e o f Ca r t s d a t a s e t ∗ /
10 CartsHDFS . f i l t e r ( " s o l d _ d a t e < 20161201 " )
11 / ∗ NoSQL s i d e o f Ca r t s d a t a s e t ∗ /
12 CartsKV . f i l t e r ( " s o l d _ d a t e >= 20161201 " )
13 / ∗ Un i f i e d Ca r t s d a t a s e t ∗ /
14 Car t s = CartsHDFS . unionAll ( CartsKV )
15 / ∗ Get number o f p roduc t s p l a c ed in shopping c a r t s and

e v e n t u a l l y purchased ∗ /
16 query = S a l e s . j o i n ( Car t s ,
17 S a l e s ( " u s e r _ i d " ) ===
18 Car t s ( " u s e r _ i d " ) ) . count ( )

Listing 1: Spark SQL query across multiple sources.

1 query = V i r t u a l S a l e s . j o i n ( V i r t u a l C a r t s , V i r t u a l S a l e s ( "
u s e r _ i d " ) ===

2 V i r t u a l C a r t s ( " u s e r _ i d " ) ) . count ( )

Listing 2: System-PV query across multiple sources.
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Listing 1 shows a Spark SQL query that computes the number
of products which were placed in customer shopping carts and
eventually purchased. The query performs a join between the Sales
and Shopping Carts datasets, followed by an aggregation (Lines
16-18). Putting together the query script is non-trivial because of
numerous reasons. First, a single logical dataset (Sales and Shopping
Carts) consists of subsets that are physically stored across the data
lake and an external data source. Thus, the user needs to be aware
of the portions of these datasets that are present in each source,
then manually perform the necessary filter operations to extract
the correct data from each source (Lines 2, 6, 10, 12), and finally
perform the appropriate union operations (Lines 8, 14). Second,
these subsets might overlap. In our example, the sales data of De-
cember 2016 is stored in the data lake but is still actively updated
in the RDBMS (e.g., for auditing reasons); likewise for the carts
data. Thus, the user must consider her desirable query semantics
in order to determine where to read the data from. In this example,
the user wants to get the most recent data values, and thus she
must be careful to read the data corresponding to December from
the external sources instead of HDFS (Lines 2, 6, 10, 12). Third, the
physical data layouts of subsets of the same dataset can differ. For
example, the part of the Sales dataset in the RDBMS is normalized
across two tables (SalesFact, Products), whereas the subset stored
in the data lake is denormalized (SalesHDFS). Thus, the user must
join the SalesFact and Product tables (Line 6). Note that this is not
the case when retrieving the sales data from the data lake (Line 2).
Finally, when loading the data in the lake, the ETL process might
perform lightweight data transformations which must be taken
into account when querying the data (not shown in this example).

As queries become more complex, the burden on the user in-
creases; she has to hand-codemore complex analysis plans, all while
considering the desirable query semantics, potential data overlap, di-
versity in terms of data layouts, etc. In addition, every time the user
wants to submit a new query, she must consider whether any of her
previous assumptions have changed. Thus, query formulation over
intermingled data sources becomes complex and non-declarative.
On the contrary, System-PV masks source complexity by exposing
a virtual schema; Listing 2 shows the System-PV query correspond-
ing to the Spark SQL query of Listing 1. The System-PV query is
significantly simpler than the Spark SQL equivalent; we will be
discussing this query in detail later.

The Spark Computing Framework.We now provide a brief
overview of the Spark computing framework since System-PV builds
on top of it. Spark supports various types of applications (e.g.,
OLAP, machine learning) written as Scala, Java, and Python scripts,
or as declarative queries through Spark SQL [15]. The architec-
ture of Spark SQL is depicted in Figure 2a. Spark SQL manipulates
DataFrames, which are distributed collections of structured records.
Users express their analysis through a combination of procedural
code that invokes the DataFrame API and declarative SQL queries
that are translated to DataFrame API calls by Spark SQL. Regarding
data access, the Data Sources API enables access to common HDFS
formats (e.g, Avro [7], Parquet [12], etc.) and to external sources
such as RDBMSs and key-value stores. Adding support for an addi-
tional data source only requires coding in a plug-in that implements
the Data Sources API.

SQL/
Spark Program

Data Frame API

Metadata Manager

Catalyst Optimizer

Data Source API

Spark Engine

RDBMS 
Engine

NoSQL 
Engine

HDFS
Data

...

(a)

Data Frame API

PV Compiler

Data Source API

SQL

SQL 
Optimizer

Spark 
Program

Catalyst Optimizer

Source-Aware 
Optimizer

PV Catalog
Metadata Manager

Spark Engine

RDBMS 
Engine

NoSQL 
Engine

HDFS
Data

...

(b)

Figure 2: Architecture of (a) Spark SQL and of (b) System-PV.
Dotted boxes represent extensions.

External tables and user-created DataFrames can be registered
in the Metadata Manager (e.g, Hive Metastore [53]). Once an SQL
query arrives, Spark rewrites it to the DataFrame API and optimizes
it using the Catalyst optimizer. Catalyst currently performs logical
rewrites (e.g., filter pushdown), and basic cost rewrites (e.g., choos-
ing between a broadcast or shuffle join). Spark pushes computation
to external sources when applicable. Finally, the query engine of
Spark executes the resulting physical plan.

4 SYSTEM-PV
System-PV addresses the challenges related to data analysis over
multiple data sources by making the following two key contribu-
tions: First, System-PV abstracts away the complexity of writing
data analysis applications through a data virtualization module that
exposes a “virtual” schema across heterogeneous data sources while
still supporting all types of Spark applications. Instead of forcing
the user to manually deal with data locations, ETL processes, data
overlap, and conflicting schemata across sources, System-PV op-
erates on top of view definitions that mask the complexity of the
underlying data sources. Second, System-PV optimizes the execu-
tion of data analysis scripts using a powerful two-phase optimizer
that supports both SQL and arbitrary analysis scripts, performs
cost-based optimizations, and also considers the properties of the
external sources. As a result, System-PV offers the performance of
hand-coded, fine-tuned execution plans, while providing a declara-
tive way to perform data analysis across multiple sources.

We build System PV on top of Spark, because Spark i) supports
a wide range of analysis types and ii) is extensible in terms of
supported data sources. System-PV serves both SQL queries as well
as arbitrary data analysis scripts (typically machine learning jobs)
expressed using the Spark DataFrame API over the global virtual
schema. Figure 2b presents the high-level architecture of System-PV.
The SQL Optimizer optimizes SQL queries. Arbitrary data analysis
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scripts are passed directly to the PV Compiler. System-PV uses
the IBM Big SQL™ [29] query optimizer to optimize the incoming
SQL queries, which is based on the IBM DB2™ query optimizer,
and is more sophisticated than Catalyst as it considers cost-based
optimizations as well as additional query rewrite opportunities. The
output of the optimizer is an optimized SQL query plan over the
virtual schema, which is then expressed in the Spark DataFrame
API and routed to the PV Compiler.

The PV Compiler rewrites the query plan in a form that refer-
ences the original data sources and is understood by the Spark
Engine. The PV Compiler uses the view definitions that comprise
the virtual schema and are contained in the PV Catalog. In particu-
lar, the PV Compiler replaces each view occurrence with a sub-plan
corresponding to its definition, producing an extended plan over
the external data sources.

After the compilation phase, the Source-aware Optimizer per-
forms a series of logical rewrites to the plan. We implement the
Source-aware Optimizer as an extension of the Spark Catalyst Op-
timizer. Its responsibility is examining the underlying data sources
and producing plans conforming to their capabilities. For exam-
ple, the Source-aware Optimizer detects whether the data source
targeted is an RDBMS or a NoSQL key-value store, and rewrites
the logical plan accordingly. The output is a physical plan that the
Spark Engine executes.

The following two sections elaborate on the System PV com-
ponents: Section 5 explains how to express a virtual schema over
the different data sources and launch analysis over the schema.
Then, Section 6 presents the two-phase optimization process that
System PV follows in order to optimize the overall analysis.

5 COMPILING CROSS-STORE QUERIES
System-PV users develop analysis scripts over a global virtual
schema that abstracts away the complexity of the underlying data
sources. We now discuss the properties of the virtual schema and
describe how System-PV automatically rewrites user programs
over the virtual schema into specialized programs that reference
the external sources.

5.1 Exposing a Virtual Schema
The virtual schema consists of view definitions over datasets that
are scattered across various data sources. A view provides an ab-
straction over a logical dataset that is physically stored in one or
more data sources. We now discuss the characteristics of the view
definitions.

Data Sources. System-PV supports views over both “native”
and external sources. Specifically, it supports “native” Spark stor-
age (i.e., Parquet files [12], transient in-memory DataFrames, and
DataFrames cached in Tachyon [41]) and external sources such as
RDBMSs and key-value stores. System-PV connects to an external
source by invoking the Spark Data Sources API.

View Definitions. In most System-PV use cases, the view def-
initions that comprise the global virtual schema are created once;
users then submit queries over the virtual schema. Note that the
views need not be materialized.

To express the views, System-PV uses a subset of the relational
algebra and a number of user-defined scalar functions (UDFs) that

Scan(srcName)

Select(expression,view)

Project(expression,view)
Join(expression,view1,view2)

Union(view1,view2)

UDFunc(expression,view)

Materializer(expression,view,mode)

Table 1: Operators used in view definitions

correspond to lightweight ETL primitives. The algebra which is
presented in Table 1 is straightforward and allows composability
of view definitions: a view can be defined based on a previously
defined view. The algebraic operations take as input views and
expressions. The expressions have different semantics depending
on the operation. In the case of Select and Join, the expression
filters the result, whereas in the case of Project, the expression
projects certain columns of the dataset. UDFunc is an aggregating
term for the various UDFs that correspond to lightweight ETL
processes. Finally, a Materializer produces a materialized view.
Depending on the value of the mode parameter, the view is cached
as a Parquet file, a DataFrame stored in memory, or a DataFrame
stored in Tachyon [41].

Listing 3 shows the view definitions for our running example,
which are created once. Using the view definitions, the users operate
directly on the virtual schema (VirtualCarts, VirtualSales) and thus
can be unaware of the actual data locations. Listing 2 shows the sim-
plified System-PV query over the virtual schema that corresponds
to the Spark SQL query of Listing 1.
1 cKVSel = Select(‘t >= 20161201’, Scan(CartsKV))
2 cHDFSSel = Select(‘t < 20161201’, Scan(CartsHDFS))
3 V i r t u a l C a r t s = Union ( cKVSel , cHDFSSel )
4 SalesDB = S a l e s F a c t . j o i n ( Produc t s ,
5 S a l e s F a c t ( " s _ i d " ) === Produc t s ( " s _ i d " ) )
6 sDBSel = Select(‘t >= 20161201’, Scan(SalesDB))
7 sHDFSSel = Select(‘t < 20161201’, Scan(SalesHDFS))
8 V i r t u a l S a l e s = Union ( sDBSel , sHDFSSel )

Listing 3: Views for running example, created once.

ManagingViews. System-PV contains a catalog service, namely
PV Catalog, to maintain the virtual schema. Apart from storing the
view definitions, the PV Catalog captures information about each
data source, such as its type and capabilities (e.g., whether the data
source exposes an index or whether it supports range queries).

Whenever an ETL process loads new data in the data lake, System-
PV updates automatically the view definitions in the PV Catalog.
For this purpose, System-PV assigns a “watermark” to the views
that capture a certain temporal range (shown in blue in Listing 3).
Additionally, System-PV assigns a temporal range to each data
batch loaded from the external sources to the data lake; these data
batches are stored as separate HDFS partitions [37]. The range of
a data batch corresponds to the period from the transaction time1
of the oldest batch entry to that of the newest batch entry. In the
example of Figure 1, loading the tail end of data into the data lake
would result in a batch with the range [Dec.2016 - May 2017).
System-PV supports external sources that handle transactional
workloads such as RDBMSs or key-value stores. If the last batch
ingested into the data lake corresponds to the range [t1, t2), then

1The time when the fact is (logically) current in the database [51].
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Figure 3: System-PV Pipeline.

System-PV automatically assigns the range [t2, +∞) to the data
in the external source. When an ETL process loads a data batch, it
edits the watermarks of the affected views to incorporate the tem-
poral range of the incoming batch, thus triggering System-PV to
update the view definitions.

Data Overlap. A common scenario is to have a large portion of
a dataset stored in the data lake whereas the tail end of the data is
stored in an actively updated external source. Depending on the
nature of the application and the periodic ETL processes, it is pos-
sible that these two subsets overlap. In the example of Section 3,
the sales data corresponding to the period between 1990 and 2016
is archived in the data lake (HDFS). The data for December 2016,
however, is also stored in the company’s operational data store
because updates still occur over this data. This data will eventually
be pushed to the data lake and the stale HDFS counterpart will be
refreshed. Until then, System-PV enables users to define a view
that specifies which side (HDFS or the RDBMS) should serve the
overlapping data. This view is defined based on the application
requirements: If data freshness is important, then the data corre-
sponding to December 2016 must be fetched from the RDBMS as
shown in Line 6 of Listing 3. Otherwise, accessing the local HDFS
data is prone to be more efficient.

Lightweight ETL. System-PV handles datasets that are physi-
cally split across the data lake and an external source even when the
corresponding data subsets have different schemata. Specifically,
System-PV offers primitives for expressing lightweight ETL pro-
cesses. Users can remap schemata by changing the name, datatype,
and the order of fields. In addition, users can employ UDFs that
transform column values in order to, for example, convert different
units of measurement and handle out-of-bound values (e.g., neg-
ative ages). System-PV also handles more complex cases such as
the one presented in Figure 1, where the Sales data is normalized
in the RDBMS but it is denormalized in the data lake. As shown in
Line 4 of Listing 3, users can express views using join operations
to denormalize the external data at query time.

5.2 Querying over a Virtual Schema
As shown in the example of Listing 2, System-PV users express
their scripts directly over a virtual schema. At some point, System-
PV must therefore translate the virtual schema to the actual hetero-
geneous data sources. Figure 3 shows how PV Compiler performs
the translation:When a user expresses an SQL query or a procedural
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Figure 4: Virtual plan of our running example (a), and its
corresponding grounded plan (b).

script, System-PV generates a logical plan over the virtual schema
that is described using the DataFrame API ; we call this a virtual
plan. Then, System-PV feeds the virtual plan to the PV Compiler,
which in turn uses the view definitions stored in the PV Catalog to
rewrite the plan into a grounded plan; the grounded plan references
the original data sources and is understandable by the Spark en-
gine. The virtual and grounded plan corresponding to our running
example are depicted in Figure 4.

Specifically, the PV Compiler traverses the virtual plan until it
locates scan operations corresponding to virtual datasets. For each
of the virtual datasets, the PV Compiler looks up its view defini-
tion in the PV Catalog, and outputs code that describes how to
access the corresponding data in the external data sources. The
PV Compiler performs the rewriting using two components: an Al-
gebraic Rewriter and an Expression Rewriter. The Algebraic Rewriter
takes as input a view definition, maps the operators of the view
into equivalent operations of the DataFrame API, and calls the Ex-
pression Rewriter to transform expressions when necessary. For a
view defined as Select(’x < 10’,Scan(table)), the Algebraic
Rewriter invokes the Spark SQL filter() function, and the Ex-
pression Rewriter produces the code for the predicate evaluation.

Most of the algebraic nodes of Table 1 have 1-1 mappings to
Spark operations, similar to the ones of Select. System-PV models
UDFunc operations as overloaded versions of a projection operation.
Finally, the Materializer operator is mapped to a different type
of Spark operation (e.g., a persistent flush command, transient in-
memory caching, etc.) based on a mode parameter specified at view
definition time.

Summary. System-PV masks data source complexity by expos-
ing a global virtual schema and by using a location-aware compiler
to generate specialized scripts that access the external sources.
System-PV also alters its view definitions to cater for ETL-triggered
data updates.

6 A TWO-PHASE OPTIMIZER
FOR CROSS-STORE ANALYTICS

System-PV allows users to perform their analysis over a global vir-
tual schema, thus masking source complexity. Nevertheless, by en-
abling data analysis over a wide combination of heterogeneous data
sources, the query optimization task seemingly becomes harder. Dis-
tributed query optimization is a well-studied problem [38], which
is intensified in our case because i) System-PV supports different
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types of analysis besides relational queries and ii) heterogeneous
data sources (e.g, NoSQL stores, RDBMSs) are accessed in the same
analysis task.

System-PV makes use of a sophisticated two-phase optimizer.
As shown in Figure 3, System-PV applies the first optimization
phase to SQL queries only. System-PV applies the second phase
regardless of whether the data analysis is expressed using SQL or
an arbitrary Spark program. Specifically, when receiving an SQL
query, System-PV applies the cost-based optimizations of a mature
SQL optimizer by considering only the virtual schema (Phase I ).
System-PV further optimizes the analysis plan by exploiting the
capabilities of the underlying data sources (Phase II ).

The IBM Big SQL optimizer performs numerous cost-based op-
timizations over an input SQL query, yet is unable to reason in
terms of non-relational types of analysis such as Spark SQL proce-
dural scripts. On the contrary, the Spark SQL Catalyst optimizer
can process any type of analysis expressed in the Data Frame API –
relational or not. Therefore, Phase I uses the specialized Big SQL
optimizer so that it specifically target SQL analysis, and Phase II
uses the Catalyst optimizer so that it is compatible and applicable
to any type of Spark SQL analysis.

System-PV keeps the two optimization phases separate for two
reasons: First, compared to optimizing procedural data scripts, opti-
mizing declarative SQL queries is a more nuanced process, requires
examining multiple execution plans, and typically benefits more
from complex query optimization. Therefore, System-PV applies
Phase I over SQL queries and not arbitrary data scripts. Second, the
separation confines the universe of decisions in each phase. Uni-
fying the two phases complicates plan enumeration: The source-
specific rewrites of Phase II expand the query plan and thus in-
crease the optimization space, so exposing the complexity to the
SQL query optimizer would complicate its major task of identifying
the appropriate join order.

6.1 Phase I: SQL Optimization
Optimizing SQL queries in a distributed setting is a challenging,
error-prone task [3, 23, 25, 26, 30, 38, 43]. In the case of Spark,
the Catalyst optimizer is a promising first step, but at the time of
writing, it mainly focuses on simple rewrites, and it supports very
few cost-based optimizations. System-PV therefore uses the IBM
Big SQL federated query optimizer because it supports sophisticated
rewrites and cost-based optimizations.

As depicted in Figure 3, when System-PV receives an SQL query
over the virtual schema, it routes the query to the SQL Optimizer.
The SQL Optimizer requires data source information to perform
costing and to come upwith an efficient query plan; System-PV thus
exposes such information for every “virtual table”, based on the
metadata and statistics stored in the PV Catalog.

Specifically, when a dataset is split across an external source and
the data lake, System-PV distinguishes between two cases. When
the ETL process that loads the data in the data lake is frequent
(“frequency” is measured based on a tunable threshold), the SQL
optimizer considers only the data in the data lake. The tail end of
data is thus masked during optimization Phase I and is considered
only in Phase II. System-PV masks the tail end during Phase I for

the following reasons: i) the tail end of data is typically small com-
pared to the overall dataset, which is the default case in data lake
environments, and ii) exposing more complex view definitions that
capture the full dataset can complicate plan enumeration [4]. On
the other hand, when ETL is sporadic, the SQL optimizer considers
only the remote data source, since the remote data access dominates
query execution costs.

System-PV exposes the local HDFS cluster to Big SQL as the
“primary” data source, and the rest of the data sources as remote
data stores. Depending on the data source exposed, the optimizer
identifies the source capabilities (e.g., ability to perform projection
pushdown, indexes) through specialized source wrappers2 [17, 44].
Each source wrapper exposes data statistics to Big SQL in order
for it to compute the overall query cost. Big SQL offers sophisti-
cated, statistics-aware wrappers for RDBMS. On the other hand, Big
SQL lacks a source wrapper for distributed key-value stores such
as Cassandra [9]. System-PV therefore emulates the connection
with an instance of Cassandra by re-using an existing wrapper:
Specifically, given that Cassandra is a distributed key-value store,
System-PV uses a wrapper designed for a parallel RDBMS, and
informs Big SQL about a hypothetical hash index over the mock
RDBMS in order to emulate Cassandra’s key-based accesses. In
addition, System-PV specifies a data partitioning scheme that the
mock RDBMS hypothetically uses (e.g., hash partitioning) in order
to emulate the partitioning scheme employed by Cassandra [20]. Fi-
nally, System PV collects statistics over Cassandra and injects them
in the PV Catalog. Overall, System PV uses the different source
wrappers of Big SQL and the accumulated data statistics to make
well-informed decisions for SQL query optimization.

The SQL Optimizer uses the information of the exposed data
sources to produce an optimized logical query plan over the virtual
schema. In addition, it produces information about the correspond-
ing physical plan. For example, the optimizer indicates the physical
join algorithms to be used, and potential intermediate result ma-
terializations. System-PV uses the information about the physical
plan as optimization hints during the source-aware optimization
that produces the final, physical plan (Phase II).

The optimized logical query plan is forwarded to the PV Com-
piler, which rewrites any occurrences of views and generates the
grounded plan that references the original data sources. The grounded
plan alongwith the optimization hints are then passed to the Source-
aware optimizer used in Phase II.

6.2 Phase II: Source-aware Optimization
The second optimization phase applies source-specific optimiza-
tions to all data processing tasks, regardless of whether they are
expressed in SQL or procedural code, through use of the Source-
aware Optimizer.

An issue of Catalyst is that it misses multiple optimization oppor-
tunities for queries over external sources. Specifically, Catalyst uses
the Data Source API to access external sources. The Data Source
API, however, is meant for single-table accesses. As a result, only
selections and projections are pushed down to the external sources.

2The data source wrappers of Big SQL are not to be confused with the data
source connectors of the Spark Data Source API; the former are used during query
optimization, whereas the latter only perform data access during query execution.

114



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Karpathiotakis et al.

𝜎𝑡<2016

𝑆𝑎𝑙𝑒𝑠𝐻𝐷𝐹𝑆

∪

𝑆𝑎𝑙𝑒𝑠DB

𝜎𝑡≥2016

𝑽𝟏

𝑉1

𝜎𝑡<2015

π𝑸𝟏

𝑆𝑎𝑙𝑒𝑠𝐻𝐷𝐹𝑆

𝜎𝑡<2015

π𝑸𝟏
′

Rewrite

Figure 5: Query plan simplification during source-aware op-
timization.

More complex operators such as joins are not pushed down, thus
often missing opportunities for reducing the network traffic. Even
worse, when the underlying external source is not an RDBMS, few
query templates allow pushdown of any operator.

As shown in Figure 3, the input of the Source-aware Optimizer
comprises i) a grounded plan that references the original data sources,
and ii) the optimization hints produced by the SQL optimizer. The
Source-aware Optimizer extends Catalyst with different categories
of rewrite rules. The first category simplifies the grounded plan and
applies the optimization hints to improve the physical plan quality.
The second category maximizes operator pushdown. Finally, the
third category examines each data source type in isolation and
applies targeted optimizations. We now elaborate on each category.

Rewriting Internal Plan Nodes. After the PV Compiler ex-
pands the definitions of views, the resulting grounded plan becomes
more complex because additional operations such as unions and
selection predicates are exposed. The Source-aware Optimizer sim-
plifies the plan by pruning redundant sub-trees and coalescing
filtering expressions into disjunctive normal form.

Figure 5 presents an optimization instance over the rolling ex-
ample of Figure 1: V1 is a view that models a union between HDFS
and RDBMS-resident data of the Sales dataset. Both sides of the
union have a filtering predicate applied. When the Source-aware
Optimizer examines the filtering predicate of Query Q1, it detects
that the Sales data in the RDBMS does not need to be accessed
to answer the query. It thus rewrites the plan to access only the
HDFS-resident data.

After simplifying the plan, if the original analysis task was an
SQL query, the Source-aware Optimizer enforces the optimization
hints suggested by the SQL Optimizer during Phase I. Specifically, if
the SQL optimizer suggests that a join operation must broadcast the
smaller dataset involved, the Source-aware Optimizer rewrites the
plan accordingly to use the appropriate Spark broadcast hash-join
operation. The SQL optimizer may also suggest that a sub-tree of
the overall query plan must be materialized and then reused later
in the same query. In this case, the Source-aware Optimizer injects
aMaterialize operator in the physical query plan.

Operator Pushdown. When dealing with remote data sources,
it is important to reduce the amount of data movement through the
network by pushing down operations to them. The Data Source API
enables some basic selection and projection pushdown for queries
over external sources. However, Catalyst has two major limitations:
First, Catalyst is often unable to push down more complex filtering
predicates. Second, Catalyst is unable to push down more complex
operators such as joins, because the Data Source API of Spark SQL
is restricted to single-table data accesses. System-PV must thus

JDBC:
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…
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Figure 6: Join pushdown rewriting during source-aware op-
timization.

adress both limitations in a non-intrusive manner, so that it remains
compatible with “vanilla” Spark SQL.

First, the Source-aware Optimizer further simplifies filtering
predicates in order to push them down to the external data sources.
Second, System-PV performs join pushdown by adding an optimiza-
tion pass that proceeds as follows: The pass traverses the query plan
and finds the largest subtree that contains data accesses to a single
data source. If System-PV detects such a subtree, it makes a call to
the underlying source to define a temporary view representing the
subtree. By exposing the subtree as a single table, System-PV sup-
ports join pushdown without harming compatibility with the Data
Sources API of Spark SQL. Figure 6 presents an application of the
join pushdown rule over the example of Figure 1: Initially, any
selection predicates are pulled above the join operation, so that the
optimization pass has simpler tree patterns to detect. Once a join
pattern between two original relations is detected, a temporary
view V1 is created. Finally, selection pushdown is re-applied on the
final view, which can be deleted once the query terminates.

Exploiting Source Characteristics. Unlike vanilla Spark,
System-PV takes into consideration the characteristics of the dif-
ferent underlying data sources in order to further optimize the
analysis plan. Specifically, the Source-aware Optimizer rewrites
queries that are submitted to external data sources in a way that
masks the data movement costs.

Large-scale applications pay a significant cost to serialize data,
transfer it over the network, and deserialize it [33, 47]. The cost is
even more pronounced for Spark when it accesses external data
sources: In case of RDBMSs, Spark blindly submits each query
through a single JDBC connection; a single Spark task executor
is responsible for receiving the data through the network, deseri-
alizing it, and shipping results to the other executors to continue
query execution. This single task executor often becomes the bot-
tleneck. System-PV, on the other hand, masks data movement cost
by rewriting the query into a semantically equivalent union of
multiple queries that are concurrently submitted to the RDBMS
by multiple Spark task executors. Specifically, the Source-aware
Optimizer applies an optimization pass that splits an RDBMS scan
operation into a union of scan operations. The optimization pass
is triggered when the data to be scanned i) has an index, or ii) is
range-partitioned on the query’s predicate(s), which is typical in
modern deployments [37]. In these cases, the RDBMS performs
selective data accesses which further improve execution times.

System-PV performs a similar optimization when accessing key-
value stores, which by design are optimized for queries requesting a
single data item by key. The Source-aware Optimizer rewrites range
queries on the key attribute into a union of equi-predicate selections
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Figure 7: Range query rewriting during source-aware opti-
mization: Data accesses become parallelizable.

to parallelize the ingestion on the Spark side, and also better suit
the query capabilities of the key-value store. Figure 7 presents an
application of said optimization over the example of Figure 1: The
range predicate is split into a number of equi-predicate selections,
and the results of the sub-queries are unified.

Summary. System-PV uses a two-phase optimizer to cover both
SQL queries and general analysis tasks, and to reduce the com-
plexity of optimization over multiple data sources. In Phase I, an
SQL Optimizer applies SQL-centric optimizations. In Phase II, the
Source-aware Optimizer considers the properties of the underlying
data sources.

7 EXPERIMENTAL EVALUATION
We experimentally evaluate System-PV by emulating a business
intelligence scenario similar to that of Figure 1. The majority of
the data is in the data lake (HDFS), whereas the tail end of the data
is in a data warehouse (IBM DB2® DPF™) and a key-value store
(Cassandra [9]). Our key results are the following:

(1) System-PV is faster than Spark – often by more than an order
of magnitude – while masking the complexity of accessing
multiple data sources (Section 7.2) .

(2) The SQL Optimizer of System-PV produces better query plans
than Catalyst (Section 7.2.1).

(3) The Source-aware Optimizer of System-PV provides significant
performance gains by masking the data transfer costs through
better parallelization (Section 7.2.2).

(4) System-PV accesses the remote data tail end with small over-
head added to the case of operating solely on top of the historical
data in the data lake (Section 7.3).

7.1 Experimental Setup
We use the TPCx-BB benchmark [28, 55] data generator at scale
factor 1000 to populate the web_clickstreams table (180 GB) and
web_sales table (450 GB). To incorporate non-relational data, we
additionally generate theweb_events dataset (90 GB) that contains
sales data that has been produced by mobile devices in JSON format.
The web_clickstreams table is entirely stored in the data lake to
emulate the case in which data is directly ingested in HDFS. The
web_sales table is split between HDFS and DB2 DPF. This is be-
cause information about sales is typically inserted in an RDBMS and
periodically loaded in the data lake. Similarly, the semi-structured
web_events dataset is split between HDFS and Cassandra.

We use Spark version 1.4.0 on a 10 node cluster, DB2 DPF version
10.1.0 on a 5 node cluster, and Cassandra version 2.1.7 on a 4 node
cluster. All nodes are equipped with two 6-core Intel Xeon E5-2430

CPU @ 2.20GHz, 96GB RAM, and 11 × 2TB SATA disks. The nodes
are connected through a 10 Gbit Ethernet switch.

The experiments compare four data placement configurations: In
the first case, 90% of the Sales and Events tables reside in HDFS,
and the 10% left resides in DB2 and Cassandra, respectively (90-10).
In the second case – the closest to real-world scenarios – 99% of the
Sales and Events tables reside in HDFS, and the 1% left resides in
DB2 and Cassandra, respectively (99-1). In both cases, data is range-
partitioned based on a date attribute. Finally, the third and fourth
cases represent baseline extremes: Either all datasets are entirely
stored in HDFS (Local), or each dataset resides in a different data
store (Remote). Local represents the scenario where the users
access only the data in the data lake and thus ignore data freshness.

We use a query template that represents a scenario which is
frequent in data lake environments: combining data from all the
involved data sources. The template T (X ,Y ,Z ) – shown below –
includes a 3-way join and a number of filtering predicates with
non-fixed selectivities (X ,Y ,Z ). The template allows us to generate
various types of queries that stress different parts of a system. By
using different combinations of predicate selectivities, we affect the
amount of data to be transferred across sources, and also evaluate
the query processing and optimization capabilities of System-PV,
given that different selectivities can trigger different join orders.

SELECT AVG( s _ s a l e s _ p r i c e )
FROM web_c l i c k s t r e ams c
JOIN web_sa l e s s s ON

( c _u s e r _ sk = s _ b i l l _ c u s t ome r _ s k )
JOIN web_events e ON

( s _ b i l l _ c u s t ome r _ s k = e _ c u s t _ i d )
WHERE ( c _ c l i c k _ d a t e _ s k BETWEEN X1 AND X2 )
AND ( s _ s o l d _ d a t e _ s k BETWEEN Y1 AND Y2 )
AND ( e _ s e s s i o n _ d a t e BETWEEN Z1 AND Z2 )

Listing 4: Query template for analysis across data sources.

7.2 System-PV vs. Spark
We compare System-PV with Spark by quantifying the impact of
each of the two System-PV optimization phases.

7.2.1 System-PV SQL Optimizer vs. Spark Catalyst. The goal of
this experiment is to validate that the SQL optimizer of System-
PV produces efficient plans.We generate the instantiationT (1, 5, 10)
of the query template in Listing 4, namely Q , which selects 1% of
the Clickstreams data, 5% of the Sales data, and 10% of the Events
data using the 90-10 data placement configuration. We compare the
query plan generated by the System-PV SQL optimizer forQ (Query
Plan No.1 in Figure 9) against various other plans in the space of
all plans for queries generated from the template of Listing 4.

We choose not to pick random plans from the plan space for this
comparison because they are highly likely to exhibit dramatically
poor performance. Instead, we pick plans that are potentially close
to the optimal. One such plan is the one generated by the Cata-
lyst optimizer (Query Plan No.9). Other selected plans were the
ones generated by the System-PV SQL optimizer for various other
template instantiations. These plans are shown in gray in Figure 9.
We execute multiple runs of query Q on System-PV, each time
hand-coding a different virtual plan corresponding to one of the
selected plans, and using the same source-aware optimizations for
all of them.

116



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Karpathiotakis et al.

1188 1154 116515 50 103
1

10

100

1000

1% 5% 10%

Ex
ec

u
ti

o
n

 T
im

e 
(s

e
c.

)

Events Selectivity

Spark PV: Remote

(a) Clicks and Sales Selectivities kept at 0.1%.

42 212 40810 12 24
1

10

100

1000

1% 5% 10%

Ex
ec

u
ti

o
n

 T
im

e 
(s

e
c.

)

Sales Selectivity

Spark PV: Remote

(b) Clicks & Events Selectivities kept at 0.1%.

Figure 8: Spark is unable to keep up with System-PV even for very selective queries.
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Figure 9: The SQL Optimizer of System-PV picks the best
candidate plan (No. 1), whereas Spark’s Catalyst optimizer
picks plan No. 9.

Different plans lead to different execution times – a fact that fur-
ther highlights the need for a cost-based optimizer. System-PV picks
plan No.1 ((Sales ▷◁ Events) ▷◁ Clicks), which builds hash tables on
the Clickstreams and Events datasets (i.e., the right operands of
each join) and probes them using records from the Sales dataset
(i.e., the left operand). This plan ends up being the best choice be-
cause the Clickstreams dataset is stored in the data lake and thus
System PV builds a hash table over each node’s local data in par-
allel. The Catalyst optimizer, on the other hand, picks plan No.9
((Clicks ▷◁ Sales) ▷◁ Events) – the second worst from the plans tested.
Plan No.9 builds hashtables over the Sales and the Events datasets,
which it then probes using the records of the Clickstreams dataset.
Both Sales and Events, however, have a significant portion of data
stored in remote sources and thus require additional effort to build
the hashtables. In addition, their corresponding predicates are less
selective than the predicate on the Clickstreams dataset.

Our results show that unlike Catalyst, the System-PV SQL op-
timizer considers the predicate selectivities and the location of a
dataset over which a hashtable is built to produce an efficient plan.
We repeated this analysis using the same protocol but starting with
different instantiations of the templateT using other selectivity val-
ues and data placement configurations as well: We obtained similar
results which we omit for brevity.

7.2.2 Impact of Source-aware Optimizer. We now quantify the
performance gains that System-PV has over Spark due to the Source-
aware Optimizer. We make sure that both System-PV and Spark use
the same optimal virtual plan by hand-coding the plan produced
by the System-PV SQL optimizer. As shown in Section 7.2.1, in
many cases Spark picks a suboptimal plan, and thus the Spark
performance results presented here are conservatively optimistic.

We test the Remote data placement configuration – the most
challenging of the ones examined – by instantiating the templateT
with different selectivity values for the predicates; we generate 6
queries in total. The predicates touching two of the three datasets
are kept very selective. Less selective configurations stressed Spark
even more; we omit them in the interest of space. We vary the
selectivity of the predicate over the third dataset, so that the amount
of data fetched from the remote source varies too.

Figure 8a presents the case in which only 0.1% of the HDFS-
resident clickstreams and the DB2-resident Sales are selected. The
selection predicate for the Cassandra-resident Events ranges from
1% to 10%. In this case, System-PV is 11× to 79× faster than Spark.
Note that the execution time of System-PV increases as the query
becomes less selective, and more data has to be fetched from Cas-
sandra. Spark, on the other hand, shows little variation in execution
time regardless of the amount of data to be fetched. The reason is
that Spark attempts to push a range (sub-)query down to Cassandra,
which Cassandra is unable to process. Thus, Cassandra ships the
entire dataset to Spark through a single-threaded connection, and
Spark then applies locally the range predicate. On the contrary,
System-PV rewrites the range query into a union of equi-predicate
selections that it concurrently submits to Cassandra. These stan-
dalone sub-queries are served in parallel, thus resulting in fast data
ingestion rates.

Figure 8b presents the case in which 0.1% of the HDFS-resident
Clickstreams and the Cassandra-resident Events are selected. The
selection predicate for the DB2-resident Sales ranges from 1% to
10%. Note that for this experiment, we incorporated the System-
PV optimizations targeted for key-value stores into Spark SQL.
These optimizations were enabled in both Spark SQL and System-
PV in order to quantify the performance benefits attributed to
the database-related rewrites of System-PV in isolation. System-
PV is again 4× to 17× faster than Spark because it parallelizes
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0

100

200

300

400

500

600

1% 5% 10%

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c.

)

Events Selectivity

Remote 90-10 99-1 Local

(b) Clicks: 10%. Sales: 5%.

0

100

200

300

400

500

600

1% 5% 10%

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c.

)

Events Selectivity

Remote 90-10 99-1 Local

(c) Clicks: 10%. Sales: 10%.

Figure 10: System-PV performance for various data placement configurations and query selectivities.

data transfer from DB2. Note that Spark SQL does successfully
pushdown the selection predicate to DB2, but retrieves the data
through a single-threaded connection, which ends up being the
bottleneck for the entire query.

7.3 System-PV Performance
We now evaluate System-PV using all four data placement con-
figurations and varying the amount of fresh data transferred over
the network. Our aim is to verify that System-PV performance for
split data scenarios is comparable to the scenario of solely oper-
ating on top of the historical, stale data. We exclude Spark from
this discussion because its running time always exceeded 1000 sec-
onds; as Section 7.2.2 showed, Spark is unable to keep up with
System-PV even for selective queries that require small network
data transfers. The results show that System-PV uses the optimiza-
tions of Section 6.2 to mask the cost of remote data accesses, and
thus provides similar performance to solely operating on top of the
data lake.

Figure 10 presents 9 instantiations of the query template. All of
them select 10% of the HDFS-resident Clickstreams. The queries
select either 1% of the Sales dataset (Figure 10a), 5% (Figure 10b),
or 10% (Figure 10c). We vary selectivity over the Events dataset in
every query to gauge the effect of accessing the slowest data source
(i.e., Cassandra).

As seen in Figure 10a, all the data placement configurations have
similar performance, with Remote being slightly slower than the
others. The performance gap opens in the case of 10% selectiv-
ity; even then, however, the performance observed with the 99-1
configuration is almost identical to the best-case scenario where
remote data access does not occur (Local). The reason is that the
source-aware optimizations mask the remote data access cost by
overlapping data transfer with query execution.

The queries shown in Figure 10b are more expensive than the
ones of Figure 10a because a bigger subset of the Sales dataset
participates in the join. Still, the 90-10 and 99-1 configurations
exhibit execution times similar to the Local configuration. Even in
the case of 10% selectivity, the execution times corresponding to
the 99-1 and Local configurations are only 4 seconds apart, thus
denoting that System-PV is again able to mask remote data accesses.

Figure 10c presents the least selective version of the experiment.
When selectivity over the Events dataset is 1%, all data placement

configurations except Remote have almost identical execution
time. Note that although the sub-query pushed down to DB2 is
non-selective, System-PV splits and parallelizes the sub-query, thus
hiding the increased data transfer cost. When selectivity over the
Events dataset reaches 10%, the gap betweenRemote and Local in-
creases. Note, however, that the Local configuration misses the
latest fresh data. The performance difference stems from the simul-
taneous increase of i) remote data accesses, ii) the amount of data
shuffled due to the distributed hash join, and iii) the size of inter-
mediate results, all of which stress the network bandwidth. Finally,
the performance of System-PV in the common split-dataset config-
urations (99-1, 90-10) is similar to that observed when accessing
all the data locally (Local).

Summary. System-PV significantly outperforms Spark, even for
the worst-performant scenario of accessing federated data sources
(Remote). In addition, when testing System-PV under different data
placement configurations, the response times for the two extreme
cases (fully local vs. fully remote) start to diverge; still, for the split-
dataset cases that System-PV targets, response times are comparable
to that of the best-performant, fully local scenario (Local), without
compromising data freshness.

8 PERSPECTIVES
Our experience with Spark and other similar frameworks has shown
us that although they support various types of data analysis over
historical data in a data lake, they lack the necessary abstractions to
query data sets spread across multiple data sources, thus rendering
the overall analysis complex for the user. At the same time, their
performance is suboptimal when accessing external sources.

System-PV introduces a high-level abstraction in the form of a
global virtual schema, which hides source complexity from users
and allows them to seamlessly access both the historical as well as
the latest data. System-PV also optimizes both SQL and procedural
analysis tasks through a unique two-phase query optimization
approach. System-PV thus supports a broad spectrum of data usage
patterns: an individual dataset can be accessed in the remote source
completely, can be split between the data lake and the remote
source, or can be accessed locally in the lake (if the application can
tolerate data staleness). In addition, splits of a dataset can overlap;
System-PV chooses from which source to retrieve the overlapping
part depending on the user’s data freshness requirements.

118



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Karpathiotakis et al.

Using System-PV in practice has led us to a number of observa-
tions that allow reaching its full potential, and that can be useful
as guidelines to system designers working on split-data scenarios.

8.1 System-PV for enterprise workloads
Enteprise data management architectures typically model data us-
ing a variation of the star or the snowflake schema, which involve
few large fact tables and numerous smaller dimension tables [35].

Small datasets. System-PV masks the cost of accessing remote
datasets of small size, such as dimension tables of a star schema.
Given that dimension tables receive frequent updates, and that
different parts of an organization often join their own versions
of dimension tables against a fact table [35], we propose storing
dimension tables only in the original, external data sources; there
is no need to store them in the data lake as well, since accessing
them with System-PV has minimal overhead.

Fact tables. Large fact tables receive append-like updates, and
users typically set up an ETL process to archive the data appends
in the data lake. System-PV by default accesses both the local and
the remote part of a fact table. If possible, we suggest running ETL
frequently, so that running analysis with System-PV over both parts
of the fact table has comparable performance to accessing only the
local part. In addition, more data accumulates in the lake over time,
whereas the size of the remote delta remains stable, therefore the
cost of remote accesses appears small due to the order-of-magnitude
difference in local and remote data sizes.

Minimizing data transfers. The source-aware optimizations
of System-PV that generate sub-queries to parallelize external data
retrieval provide their maximum benefit when the external sources
offer a way to reduce the amount of data that each sub-query ac-
cesses. For key-value stores, a query on the key of each object
naturally accesses a small amount of data. For RDBMS, populating
indexes on fields that are popular query predicates, or partitioning
the data, is helpful. Given that primary and foreign keys are typi-
cally coupled with indexes, enterprise star and snowflake schemata
already have useful indexes in place. Therefore, System-PV applies
its rewriting optimizations without requiring an additional indexing
storage overhead.

8.2 Optimizing SQL-on-Hadoop performance
over multiple sources

Apart from the user-friendly virtual schema that System-PV em-
ploys, it also makes use of multiple performance optimizations that
improve the performance of Spark scripts over dispersed datasets. It
is worth examining whether these optimizations can also be applied
to existing systems even if said systems currently lack first-class
support for data virtualization. There is a number of ways in which
existing SQL-on-Hadoop systems can be adjusted to improve their
performance over diverse data stores. We use Spark SQL as an
example, and consider its architecture in a top-down fashion.

Starting from the query optimizer, Catalyst is a significant effort
towards performing optimization across multiple types of analysis.
However, it is currently not as mature as several traditional, special-
ized database optimizers that have been refined over multiple years.
Thus, we believe that Catalyst must also introduce interfaces that
allow users to “plug” their optimizer of choice based on the type of

analysis they intend to launch3. Users can choose among optimizer
modules such as the one of System-PV, Orca [52], Calcite [8], etc.

Our experience building System-PV showed us that integrating
the Source Optimizer’s rewrite rules into Catalyst is straightfor-
ward and would be a valuable addition to Spark. Still, applying
the source-aware rewrites of System-PV requires examining care-
fully the properties of the underlying systems, and triggering the
rewrites judiciously. For example, triggering the query rewrite for
range predicates that access non-key fields in a key-value store, or
for arbitrary, non-partitioning / non-indexed fields in a DBMS table,
can significantly penalize performance. Therefore, Spark must be
able to acquire and store information/statistics from the underlying
data stores in order to make educated rewriting decisions.

Instead of applying some of the source-aware optimizations in
Catalyst, one could extend/rewrite the data connectors of Spark to
reduce the cost of accessing and transferring remote data into the
data lake. As shown by this work, one way to reduce the cost is by
parallelizing the sub-query that accesses a remote store. In addition,
data connectors can perform data exchange using a portable, binary
wire format such as Arrow [6]; Arrow has the same in-memory
and on-wire representation, and thus reduces the effort spent in
data (de)serialization, which is a major cost in data-center-scale
analytics [33, 47].
Summary. System-PV provides a spectrum of choices for data
freshness and where to access the data in complex enterprise data
ecosystems. Combined with the guidelines above, System-PV forms
a comprehensive solution for ad-hoc data analysis in enterprise
settings, which can also influence the design of state-of-the-art
SQL-on-Hadoop systems.

9 CONCLUSIONS
We present System-PV, a system that supports various types of
analysis over multiple data sources. System-PV addresses the short-
comings of state-of-the-art systems by extending Spark with a data
virtualization module that masks data source complexity. System-
PV uses a location-aware compiler and a sophisticated two-phase
optimizer to optimize user scripts over a global virtual schema.
Our results show that System-PV is significantly faster than Spark
when querying dispersed datasets, and introduces small overhead
for accessing the remote tail end of the data compared to operating
solely on top of the data lake.
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