

Combinatorial Online Learning 组合在线学习

Wei Chen 陈卫 Microsoft Research Asia

微信公众号 微软研究院AI头条 2017.10.12 组合在线学习

理论计算机年会, Oct. 14, 2017

What is Combinatorial Online Learning?

Consider GPS routing suggestion

Or news recommendation

Are these just recommender systems?

- \bullet No.
- Traditional recommender systems
	- Relatively static
	- Offline learn user and item features, then make online recommendation
- Online learning
	- Fast feedback loop: online learning features and online optimization
	- Iterative learning and optimization

Re-optimize based on updated statistics

Online learning: the iterative feedback loop

Why combinatorial?

- The solution is not a simple item, it is a combinatorial item:
	- GPS routing: a combination of road segments
	- News recommendation: combination of different type of news a user may be interested in
- For many combinatorial optimization problems, when the input is uncertain, they may be turned into an online learning problem

Combinatorial online learning

- Iterative feedback loop between optimization and learning – Handle uncertainty in the environment
- Action to optimize is combinatorial
- (Combinatorial) online learning is the foundation of reinforcement learning (强化学习) in AI
	- Provide solid theoretical guidance to reinforcement learning
	- Theoretical treatment to the key tradeoff between exploration (探索) and exploitation (守成) in reinforcement learning

My Recent Research Effort

- ICML'13: general combinatorial multi-armed bandit (CMAB) framework, apply to non-linear rewards, approximation oracle
- ICML'14: combinatorial partial monitoring
- NIPS'14: combinatorial pure exploration
- NIPS'15: online greedy learning
- JMLR'16: CMAB with probabilistically triggered arms (CMAB-T)
- ICML'16: contextual combinatorial cascading bandits
- NIPS'16: CMAB with general reward functions
- NIPS'17: Improving the regret bound for CMAB-T

Background: Multi-armed Bandit

Multi-armed bandit: the canonical OL problem

- There are m arms (machines)
- Arm i has an unknown reward distribution on $[0,1]$ with unknown mean μ_i
	- best arm $\mu^* = \max \mu_i$
- In each round, the player selects one arm to play and observes the reward

Multi-armed bandit problem

- Performance metric: Regret:
	- Regret after playing T rounds $=T\mu^{*}-\mathbb{E}[\sum_{t=1}^{T}R_{t}(i_{t}^{A})$]
- Objective: minimize regret in T rounds
- Balancing exploration-exploitation tradeoff
	- exploration (探索): try new arms
	- exploitation (守成): keep playing the best arm so far
- Known results:
	- UCB1 (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]
		- Distribution-dependent bound $O(\log T \sum_{i:\Delta_i>0} 1/\Delta_i)$, $\Delta_i = \mu^* \mu_i$, match lower bound
		- Distribution-independent bound $O(\sqrt{mT \log T})$, tight up to a factor of $\sqrt{\log T}$

Combinatorial Multi-armed Bandit: Framework and the General Solution

Joint work with Yajun Wang (Microsoft), Yang Yuan (Cornell), Qinshi Wang (Princeton) ICML'2013, JMLR'2016

Motivating application: Display ad placement

- Bipartite graph of pages and users who are interested in certain pages
	- Each edge has a click-through probability
- Find k pages to put ads to maximize total number of users clicking through the ad
- When click-through probabilities are known, can be solved by approximation
- Question: how to learn click-through prob. while doing optimization?

Naïve application of MAB

- Every set of k webpages is treated as an arm
- Reward of an arm is the total click-through counted by the number of people
- Main issues
	- combinatorial explosion
	- ad-user click-through information is wasted
- Other possible issues
	- Offline optimization problem may already be hard
	- The reward of a combinatorial action may not be linear on its components
	- The reward may depend not only on the means of its component rewards

Combinatorial multi-armed bandit (CMAB) framework

(base) arms

- A super arm $S \in \mathcal{S}$ is a set of (base) arms, $S \subseteq [m]$
	- $-$ S is the set of possible super arms
- In round t , a super arm S_t^A is played according algo A
- When a super arm S is played, all based arms in S are played
- Outcomes of all played base arms are observed -- semi-bandit feedback
- Outcome of arm $i \in [m]$ has an unknown distribution on $[0,1]$ with unknown mean μ_i

Rewards in CMAB

- Reward of super arm S_t^A played in round t, $R_t(S_t^A)$, is a function of the outcomes of all played arms
- Expected reward of playing arm S , $\mathbb{E}[R_t(S)]$, only depends on S and the vector of mean outcomes of arms, $\boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_m)$, denoted $r_{\boldsymbol{\mu}}(S)$
	- e.g. linear rewards, or independent Bernoulli random variables
	- generalization to be discussed later
- Optimal reward: $opt_{\mu} = \max_{c \in S}$ $S \in S$ $r_{\mu}(S)$

Offline computation oracle -- allow approximations and failure probabilities

- (α, β) -approximation oracle:
	- Input: vector of mean outcomes of all arms $\mu =$ $(\mu_1, \mu_2, ..., \mu_m),$
	- $-$ Output: a super arm S, such that with probability at least β the expected reward of S under μ , $r_{\mu}(S)$, is at least α fraction of the optimal reward: $Pr[r_{\mu}(S) \ge \alpha \cdot opt_{\mu}] \ge \beta$

(α, β) -Approximation regret

Compare against the $\alpha\beta$ fraction of the optimal

$$
Regret = T \cdot \alpha \beta \cdot \mathsf{opt}_{\mu} - \mathbb{E}[\sum_{i=1}^{T} r_{\mu}(S_t^A)]
$$

- Oracle treatment: modular, ignore all following offline factors from the online learning part
	- combinatorial structure
	- reward function
	- how oracle computes the solution

Classical MAB as a special case

- Each super arm is a singleton
- Oracle is taking the max, $\alpha = \beta = 1$

• Each edge is an arm, outcome is the random delay on the arm from an unknown distribution

• Linear CMAB

- Each s -t path is a super arm, reward is the sum of edge delays
- Each round selects an s -t path, each edge on the path gives the delay feedback
- Offline oracle is any shortest path algorithm

Examples of CMAB instances

 $-$ s-t Shortest path (for GPS routing)

- Minimize the cumulative delay over all rounds
- Matching (e.g. for crowdsourcing platforms, wireless channel allocation)
- Spanning tree (e.g. for wireless routing planning)

Examples of CMAB instances

- Nonlinear CMAB
	- Probabilistic max cover (for ad placement)
		- Bipartite graph $G = (L, R, E)$
		- Each edge is a base arm, with Bernoulli distribution
		- Each set of edges linking k webpages is a super arm
		- Reward is the number of users a super covered
			- Nonlinear: 2 webpages covering the same user is counted as 1, not 2
		- Offline problem is NP hard, a greedy algorithm achieves $(1 - \frac{1}{e}, 1)$ -approximation

Our solution: CUCB algorithm

Handling non-linear reward functions -- two mild assumption on $r_{\mu}(S)$

- Monotonicity
	- if $\mu \leq \mu'$ (pairwise), $r_{\mu}(S) \leq r_{\mu'}(S)$, for all super arm S
- Bounded smoothness (a general Lipschitz continuity condition)
	- there exists a bounded smoothness constant B_{∞} , such that for any two expectation vectors μ and μ' ,

 $|r_{\mu}(S) - r_{\mu'}(S)| \leq B_{\infty} \cdot ||\mu_S - \mu'_S||_{\infty}$, where $||\mu_S - \mu'_S||_{\infty} = \max_{i \in S} |\mu_i - \mu'_i|$

– Small change in μ_S lead to small changes in $r_{\pmb{\mu}}(S)$

• Rewards may not be linear, a large class of functions satisfy these assumptions

Theorem 1: Distribution-dependent bound

• The (α, β) -approximation regret of the CUCB algorithm in T rounds using an (α, β) -approximation oracle is at most

$$
\sum_{i \in [m], \Delta_{\min}^i > 0} \frac{12 B_{\infty}^2 \ln T}{\Delta_{\min}^i} + \left(\frac{\pi^2}{3} + 1\right) \cdot m \cdot \Delta_{\max} = O\left(\sum_{i} \frac{1}{\Delta_{\min}^i} B_{\infty}^2 \ln T\right)
$$

- $-\Delta^i_{\text{min}}$ (Δ^i_{max}) are defined as the minimum (maximum) gap between α · opt_µ and the reward of a bad super arm containing i ; $\Delta_{\text{max}} = \text{max}_{i}$ \boldsymbol{i} Δ_max^i
	- Here, we define the set of bad super arms as $S_B = \{S | r_u(S) < \alpha \cdot \text{opt}_u\}$
- Match UCB regret for the classical MAB

Idea of regret analysis

- In each round t, if the played super S is bad, count regret $\Delta_S = \alpha \cdot \text{opt}_{\mu} r_{\mu}(S)$.
- Blame one arm $i \in S$ that has been played the least for this regret in round t , obtain pair (i, S)
- For each (i, S) pair, separate all their occurrences in multiple rounds into two stages
	- Sufficiently-sampled part: (i, S) has appeared more than $\frac{6B_\infty^2 \ln T}{\Delta^2}$ $\frac{\Delta S}{\Delta_S^2}$ times
	- Under-sampled part: (i, S) has appeared at most $\frac{6B_\infty^2 \ln T}{\Delta^2}$ $\frac{\infty}{\Delta_S^2}$ times
- For sufficiently-sampled part, all arms in S have enough samples, so
	- W.h.p, all arms in S have good estimates, i.e. $\|\mu_S \hat{\mu}_S\|_{\infty}$ and $\|\mu_S \overline{\mu}_S\|_{\infty}$ are small
	- then by bounded smoothness, $r_{\overline{\mu}}(S)$ should be close to $r_{\mu}(S)$, actually $0 \le r_{\overline{\mu}}(S) r_{\mu}(S) < \Delta_S$
	- By monotonicity, and S being the oracle output under $\bar{\mu}$ (with probability β), $r_{\bar{\mu}}(S) \ge \alpha \cdot \text{opt}_{\bar{\mu}} \ge \alpha \cdot \text{opt}_{\mu}$, since $\mu \le \bar{\mu}$ w.h.p
	- So S cannot be bad, unless either sample concentration is violated or offline oracle failed to return an α approximation --- bound regret in this way --- constant cumulative regret $\left(\frac{\pi^2}{2}\right)$ $\frac{1}{3}+1$ $\cdot m \cdot \Delta_{\text{max}}$
- For under-sampled part, each (i, S) appearance causes i to sampled one more time, so at most $\frac{6B_\infty^2 \ln T}{\Lambda^2}$ $\overline{\Delta_S^2}$ appearances of (i, S) , and each has regret Δ_S --- with a careful summation, obtain cumulative regret $O\left(\sum_i \frac{1}{\Lambda^i}\right)$ Δ_{min}^l $\frac{1}{i}$ $B_{\infty}^2 \ln T$

Theorem 2: Distribution-independent bound

• Consider a CMAB problem with an (α, β) -approximation oracle. The distribution-independent regret of CUCB in T round is at most:

$$
B_{\infty}\sqrt{12mT\ln T} + \left(\frac{\pi^2}{3} + 1\right) \cdot m \cdot \Delta_{\max} = O\left(B_{\infty}\sqrt{mT\ln T}\right)
$$

- Revise the under-sampled part of Theorem 1: For each arm $i \in [m]$,
	- $-$ if $\Delta^i_{\text{min}} > \varepsilon_i$, under-sampled regret for i is $O\left(\frac{1}{\varepsilon_i}\right)$ ε_i B_∞^2 ln T
	- if $\Delta_{\min}^i \leq \varepsilon$, under-sampled regret is for *i* is $O(\varepsilon_i \cdot N_i)$
		- N_i is the number of times i is blamed
	- The best ε_i is to make the two terms equal, so under-sampled regret is for i $O\left(B_{\infty}\sqrt{N_i\ln T}\right)$
	- Overall, under-sampled regret is $O\left(B_\infty\sqrt{\ln T}\sum_i\sqrt{N_i}\right)=O\left(B_\infty\sqrt{mT\ln T}\right)$, by Jensen's Inequality and the fact that $\sum_i N_i = T$

Application to ad placement

- Bounded smoothness constant $B_{\infty} = |E|$
- $(1 \frac{1}{e}, 1)$ -approximation regret $\left\langle \right\rangle$ $i \in E$, $\Delta_{\min}^i > 0$ $12|E|^2 \ln T$ $\Delta_{\text{min}}^{\dot{l}}$ $+$ π^2 3 $+ 1 \cdot |E| \cdot \Delta_{\text{max}}$
- improvement based on clustered arms is available

Application to linear bandit problems

• Linear bandits: shortest path, matching, spanning tree (in networking literature)

– Linear expected reward: $r_{\mu}(S) = \sum_{i \in S} \mu_i$

- Our result significantly improves the previous regret bound on linear rewards [Gai et al. 2012]
	- Also provide distribution-independent bound
	- When using 1-norm bounded smoothness condition, tight regret bound matching the lower bound

CMAB with Probabilistically Triggered Arms

Joint work with Yajun Wang (Microsoft), Yang Yuan (Cornell), Qinshi Wang (Princeton) JMLR'2016, NIPS'2017

Motivation example: influence maximization

- Optimization problem:
	- Given influence parameters on edges
		- Diffusion follows independent cascade model
	- $-$ Find k nodes that generated the largest expected influence
- The online learning version:
	- Influence parameters are unknown
	- Repeatedly select k seed nodes, observe the cascade, update edge probability estimate, then iterate again

New challenge

- When treating every edge as an arm
	- Probabilistic triggering of arms: The play of some arms may trigger more arms to be played
	- The triggered arms affect the reward
- New dilemma:
	- We need to explore probabilistically triggered arms, since they affect the optimal solution
	- These arms are probabilistically triggered, need more time to learn

CMAB-T framework

- Super arms S are abstracted to actions
- Each action S may probabilistically trigger arms $-p^{\boldsymbol{\mu}, S}_{\boldsymbol{t}}$: probability of action S triggering arm \boldsymbol{i} μ ,S
	- $-p^* = \min\{p_i^{\prime\prime}\}$: $i \in [m]$, $S \in S$, $p_i^{\mu,S} > 0$ }, minimum positive triggering probability
	- $-\tilde{S}=\{i\in[m]; p^{\boldsymbol{\mu},S}_i>0\}$, all arms that can be possibly triggered by S
- Bounded smoothness: there exists a bounded smoothness constant B_{∞} , such that for any two expectation vectors μ and μ' , $|r_{\mu}(S) - r_{\mu'}(S)| \leq B_{\infty} \cdot ||\mu_{\tilde{S}} - \mu'_{\tilde{S}}$ $_{\infty}$, where $\|\boldsymbol{\mu}_{\tilde{S}} - \boldsymbol{\mu}_{\tilde{S}}'\|$ $\omega = \max_{i \in \tilde{S}} |\mu_i - \mu'_i|$
	- $-$ All arms that may be triggered by S should be considered

Result on CMAB-T [Chen et al. JMLR'2016]

- Use the same CUCB algorithm
- Distribution-dependent regret: $O\left(\sum_i \frac{1}{n^*.N^i}\right)$ $p^*\!\cdot\!\Delta^l_{\mathsf{min}}$ $\frac{1}{i}$ B_{∞}^2 ln T
- Distribution-independent regret: $O \bigm | B_\infty \bigm |$ mT ln T p^{\ast}
- Issue: $1/p^*$ could be exponentially large

Improving CMAB-T [Wang and Chen, NIPS'2017]

- Introducing a new triggering-probability modulated (TPM) bounded smoothness condition
- Show that with the TPM condition, $1/p^*$ term in the regret bound is eliminated
- Show that influence maximization bandit and combinatorial cascading bandit satisfy the TPM condition
- Provide a lower bound showing that $1/p^*$ is unavoidable in general CMAB-T instances

TPM condition

- 1-norm TPM bounded smoothness
	- there exists a bounded smoothness constant B_1 , such that for any two expectation vectors μ and μ' , $|r_{\mu}(S) - r_{\mu'}(S)| \leq B_1 \sum_{i \in [m]} p_i^{\mu, S} |\mu_i - \mu'_i|$
- Intuition: when i is less likely to be triggered by S ($p_i^{\mu,S}$ is small), i 's change in its mean has less impact to the change in the expected reward

Regret bounds

- Use the same CUCB algorithm
- Distribution-dependent regret: $O\left(\sum_i \frac{1}{\lambda^i}\right)$ Δ_{min}^l $\frac{1}{i}$ B₁²Kln T
	- $-K = \max$ $S \in \mathcal{S}$ $\tilde{S}|$, the maximum number of arms any action can trigger
- Distribution-independent regret: $O(B_1\sqrt{mKT\ln T})$
- Regret analysis is involved, need decomposition of triggering probabilities into geometrically separated bins
	- Also use a reverse amortization trick to improve the 1-norm based regret bound

dications

- Influence maximization bandit
	- TPM condition constant: $B_1 = \tilde{C}$
		- $\cdot \tilde{c}$ is the largest number of nodes any node can reach
	- Analysis involves influence tree decomposition to handle loops in the graph, and then use a bottomup modification technique
- Combinatorial cascading bandit

– TPM condition constant: $B_1 = 1$

Other CMAB Extensions

What if estimating means of arms is not enough?

Motivating example: graph routing

- Expected Utility Maximization (EUM) Model
	- Each edge i has a random delay X_i
	- $-$ Each routing path is a subset of edges, S
	- utility of a routing path $S: u(\sum_{i \in S} X_i)$
		- $u(\cdot)$ is nonlinear, modeling risk-averse or risk-prone behavior
	- Goal: maximize $\mathbb{E}[u(\sum_{i\in S}X_i)]$
- Issue for online learning (when distributions of X_i 's are unknown)
	- only estimating the mean of X_i is not enough
- Solution: estimating the entire CDF distribution with DKW inequality

See NIPS'16: Combinatorial Multi-Armed Bandit with General Reward Functions

Joint work with Wei Hu (Princeton), Fu Li, (UT Austin), Jian Li (Tsinghua), Yu Liu (Tsinghua), Pinyan Lu (SUFE)

How to test base arms efficiently to find the best super arm?

Motivating example: Crowdsourcing

- Matching workers with tasks in a bipartite graph
	- Initial test period: adaptively test workertask pair performance
	- Goal: at the end of test period, find the best worker-task matching

See NIPS'14: Combinatorial Pure Exploration in Multi-Armed Bandits

joint work with Shouyuan Chen (Microsoft), Tian Lin (Google), Irwin King (CUHK), Michael R. Lyu (CUHK)

Other of my studies

• ICML'14 [with Tian Lin (Google), Bruno Abraohao (Stanford), Robert Kleinberg (Cornell), John Lui (CUHK)]: combinatorial partial monitoring

– Handling limited feedback

• NIPS'15 [with Tian Lin (Google), Jian Li (Tsinghua)]: online greedy learning

– How to utilize offline greedy algorithm for online learning

- ICML'16 [with Shuai Li (CUHK), Baoxiang Wang (CUHK), Shengyu Zhang (CUHK)]: contextual combinatorial cascading bandits
	- How to incorporate contextual information

Summary and Future Directions

Overall summary

- Central theme
	- Iterative combinatorial optimization and combinatorial learning
	- modular approach: separate offline optimization with online learning
		- learning part does not need domain knowledge on optimization

Ongoing and Future Work

- Ongoing:
	- Thompson sampling for CMAB
	- Combinatorial pure exploration for nonlinear reward functions
- Possible future directions
	- Many other variants of combinatorial optimizations problems --- as long as it has unknown inputs need to be learned
	- What about adversarial CMAB?
	- More practical and more efficient solutions for particular problems
	- How to generalize CMAB to reinforcement learning tasks?

Acknowledgments to my collaborators

袁洋 Cornell

王亚军 Microsoft

林添 Google

Bruno Abraohao Stanford

Robert Kleinberg Cornell

John C.S. Lui CUHK

陈首元 Microsoft

Michael Lyu CUHK

李建 **Tsinghua**

王钦石 Princeton

李帅 CUHK

王趵翔 CUHK

张胜誉 CUHK

胡威 Princeton

李孚 UT Austin

刘宇 Tsinghua

陆品燕 SUFE

Irwin King CUHK

Questions?

Search Wei Chen **Microsoft**

微信公众号 微软研究院AI头条 2017.10.12 组合在线学习

