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What is Combinatorial Online 

Learning?
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Consider GPS routing suggestion
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Or news recommendation
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Are these just recommender systems?

• No.

• Traditional recommender systems

– Relatively static

– Offline learn user and item features, then make online 

recommendation

• Online learning

– Fast feedback loop: online learning features and online 

optimization

– Iterative learning and optimization
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Online learning: the iterative feedback loop

理论计算机年会, Oct. 14, 2017 6

Re-optimize based on 

updated statistics

new solution (e.g. routes, 

news combinations)

observe feedback 

(road segment delay, 

news click), update 

learning statistics

updated statistics



Why combinatorial?

• The solution is not a simple item, it is a combinatorial 

item:

– GPS routing: a combination of road segments

– News recommendation: combination of different type of 

news a user may be interested in

• For many combinatorial optimization problems, 

when the input is uncertain, they may be turned into 

an online learning problem
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Combinatorial online learning

• Iterative feedback loop between optimization and learning

– Handle uncertainty in the environment

• Action to optimize is combinatorial

• (Combinatorial) online learning is the foundation of 

reinforcement learning (强化学习）in AI

– Provide solid theoretical guidance to reinforcement learning

– Theoretical treatment to the key tradeoff between exploration (探索）
and exploitation (守成）in reinforcement learning
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My Recent Research Effort

• ICML’13: general combinatorial multi-armed bandit (CMAB) 
framework, apply to non-linear rewards, approximation oracle

• ICML’14: combinatorial partial monitoring

• NIPS’14: combinatorial pure exploration

• NIPS’15: online greedy learning

• JMLR’16: CMAB with probabilistically triggered arms (CMAB-T)

• ICML’16: contextual combinatorial cascading bandits

• NIPS’16: CMAB with general reward functions

• NIPS’17: Improving the regret bound for CMAB-T
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Background: 

Multi-armed Bandit
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Multi-armed bandit: the canonical OL problem

• There are 𝑚 arms (machines)

• Arm 𝑖 has an unknown reward distribution 

on [0,1] with unknown mean 𝜇𝑖
– best arm 𝜇∗ = max 𝜇𝑖

• In each round, the player selects one arm to 

play and observes the reward
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Multi-armed bandit problem

• Performance metric: Regret:

– Regret after playing 𝑇 rounds =𝑇𝜇∗ − 𝔼[σ𝑡=1
𝑇 𝑅𝑡(𝑖𝑡

𝐴) ]

• Objective: minimize regret in 𝑇 rounds

• Balancing exploration-exploitation tradeoff

– exploration (探索): try new arms

– exploitation (守成): keep playing the best arm so far

• Known results:

– UCB1 (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]

• Distribution-dependent bound O(log 𝑇 σ𝑖:Δ𝑖>0
1/Δ𝑖), Δ𝑖 = 𝜇∗ − 𝜇𝑖 , match lower bound

• Distribution-independent bound O( 𝑚𝑇 log 𝑇), tight up to a factor of log 𝑇
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Joint work with Yajun Wang (Microsoft), Yang Yuan (Cornell), Qinshi 

Wang (Princeton)

ICML’2013, JMLR’2016

Combinatorial Multi-armed Bandit: 

Framework and the General Solution
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Motivating application: Display ad placement

• Bipartite graph of pages and users who are interested in 

certain pages

– Each edge has a click-through probability

• Find 𝑘 pages to put ads to maximize total number of users 

clicking through the ad

• When click-through probabilities are known, can be solved 

by approximation

• Question: how to learn click-through prob. while doing 

optimization?

CNCC'2016 Online Algorithm Forum, Oct. 21, 2016 14



Naïve application of MAB

• Every set of k webpages is treated as an arm

• Reward of an arm is the total click-through 
counted by the number of people

• Main issues
– combinatorial explosion

– ad-user click-through information is wasted

• Other possible issues
– Offline optimization problem may already be hard

– The reward of a combinatorial action may not be 
linear on its components 

– The reward may depend not only on the means of its 
component rewards
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Combinatorial multi-armed bandit (CMAB) framework

• A super arm 𝑆 ∈ 𝓢 is a set of (base) arms, 𝑆 ⊆ [𝑚]

– 𝓢 is the set of possible super arms

• In round 𝑡, a super arm 𝑆𝑡
𝐴 is played according algo 𝐴

• When a super arm 𝑆 is played, all based arms in 𝑆 are 

played

• Outcomes of all played base arms are observed ---

semi-bandit feedback

• Outcome of arm 𝑖 ∈ [𝑚] has an unknown distribution 

on [0,1] with unknown mean 𝜇𝑖
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(base) arms



Rewards in CMAB

• Reward of super arm 𝑆𝑡
𝐴 played in round 𝑡, 𝑅𝑡(𝑆𝑡

𝐴), is 
a function of the outcomes of all played arms

• Expected reward of playing arm 𝑆, 𝔼[𝑅𝑡 𝑆 ], only 

depends on 𝑆 and the vector of mean outcomes of 

arms, 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑚), denoted 𝑟𝝁 𝑆

– e.g. linear rewards, or independent Bernoulli random 

variables

– generalization to be discussed later

• Optimal reward: opt𝝁 = max
𝑆∈𝓢

𝑟𝝁(𝑆)
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Offline computation oracle ---

allow approximations and failure probabilities

• 𝛼, 𝛽 -approximation oracle:

– Input: vector of mean outcomes of all arms 𝝁 =
(𝜇1, 𝜇2, … , 𝜇𝑚), 

– Output: a super arm 𝑆, such that with probability at 

least 𝛽 the expected reward of 𝑆 under 𝝁, 𝑟𝝁 𝑆 , is 

at least 𝛼 fraction of the optimal reward:

Pr 𝑟𝝁 𝑆 ≥ 𝛼 ⋅ opt𝝁 ≥ 𝛽
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𝛼, 𝛽 -Approximation regret

• Compare against the 𝛼𝛽 fraction of the optimal

Regret = 𝑇 ⋅ 𝛼𝛽 ⋅ opt𝝁 − 𝔼[σ𝑖=1
𝑇 𝑟𝝁(𝑆𝑡

𝐴)]

• Oracle treatment: modular, ignore all following offline 

factors from the online learning part

– combinatorial structure

– reward function

– how oracle computes the solution
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Classical MAB as a special case

• Each super arm is a singleton

• Oracle is taking the max, 𝛼 = 𝛽 = 1
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Examples of CMAB instances

• Linear CMAB

– 𝑠-𝑡 Shortest path (for GPS routing)
• Each edge is an arm, outcome is the random delay on the 

arm from an unknown distribution

• Each 𝑠-𝑡 path is a super arm, reward is the sum of edge 
delays

• Each round selects an 𝑠-𝑡 path, each edge on the path gives 
the delay feedback

• Offline oracle is any shortest path algorithm

• Minimize the cumulative delay over all rounds

– Matching (e.g. for crowdsourcing platforms, wireless 
channel allocation)

– Spanning tree (e.g. for wireless routing planning) 
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Examples of CMAB instances

• Nonlinear CMAB

– Probabilistic max cover (for ad placement)

• Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)

• Each edge is a base arm, with Bernoulli distribution

• Each set of edges linking 𝑘 webpages is a super arm

• Reward is the number of users a super covered

– Nonlinear: 2 webpages covering the same user is counted as 

1, not 2

• Offline problem is NP hard, a greedy algorithm 

achieves (1 − Τ1 𝑒 , 1)-approximation 

理论计算机年会, Oct. 14, 2017 22



Our solution: CUCB algorithm
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Offline computation 
oracle

super arm 𝑆

play super 

arm 𝑆

ഥ𝝁 = ( ҧ𝜇1, ҧ𝜇2, … , ҧ𝜇𝑚)

observe arm feed 
back and update 

sample mean 
estimate

adjust sample 
mean to upper 

confidence bound

ෝ𝝁 = ( Ƹ𝜇1, Ƹ𝜇2, … , Ƹ𝜇𝑚)

ҧ𝜇𝑖 = min Ƹ𝜇𝑖 +
3 ln 𝑡

2𝑇𝑖
, 1

Ƹ𝜇𝑖 : sample mean 

outcome on arm 𝑖, 
initially 1

key tradeoff between exploration and exploitation

𝑇𝑖 : # of times arm 𝑖 is played; initially 0;

𝑡: current round number; initially 1 



Handling non-linear reward functions ---

two mild assumption on 𝑟𝝁 𝑆

• Monotonicity

– if 𝝁 ≤ 𝝁′ (pairwise), 𝑟𝝁 𝑆 ≤ 𝑟𝝁′ (𝑆), for all super arm 𝑆

• Bounded smoothness (a general Lipschitz continuity condition)

– there exists a bounded smoothness constant 𝐵∞, such that for any two expectation 

vectors 𝝁 and 𝝁′, 

|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝐵∞ ⋅ 𝝁𝑆 − 𝝁𝑆
′

∞, where 𝝁𝑆 − 𝝁𝑆
′

∞ = max𝑖∈𝑆|𝜇𝑖 − 𝜇𝑖
′|

– Small change in 𝝁𝑆 lead to small changes in 𝑟𝝁 𝑆

• Rewards may not be linear, a large class of functions satisfy these 

assumptions
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Theorem 1: Distribution-dependent bound

• The (𝛼, 𝛽)-approximation regret of the CUCB algorithm in 𝑇
rounds using an (𝛼, 𝛽)-approximation oracle is at most



𝑖∈ 𝑚 ,Δmin
𝑖 >0

12𝐵∞
2 ln 𝑇

Δmin
𝑖

+
𝜋2

3
+ 1 ⋅ 𝑚 ⋅ Δmax = 𝑂 

𝑖

1

Δmin
𝑖

𝐵∞
2 ln 𝑇

– Δmin
𝑖 (Δmax

𝑖 ) are defined as the minimum (maximum) gap between 𝛼 ⋅
opt𝝁 and the reward of a bad super arm containing 𝑖; Δmax = max

𝑖
Δmax
𝑖

• Here, we define the set of bad super arms as 𝓢B = 𝑆 𝑟𝝁 𝑆 < 𝛼 ⋅ opt𝝁

• Match UCB regret for the classical MAB
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Idea of regret analysis

• In each round 𝑡, if the played super 𝑆 is bad, count regret Δ𝑆 = 𝛼 ⋅ opt𝝁 − 𝑟𝝁(𝑆). 

• Blame one arm 𝑖 ∈ 𝑆 that has been played the least for this regret in round 𝑡, obtain pair (𝑖, 𝑆)

• For each (𝑖, 𝑆) pair,  separate all their occurrences in multiple rounds into two stages

– Sufficiently-sampled part: (𝑖, 𝑆) has appeared more than 
6𝐵∞

2 ln 𝑇

Δ𝑆
2 times

– Under-sampled part: (𝑖, 𝑆) has appeared at most 
6𝐵∞

2 ln 𝑇

Δ𝑆
2 times

• For sufficiently-sampled part, all arms in 𝑆 have enough samples, so

– W.h.p, all arms in 𝑆 have good estimates, i.e. 𝝁𝑆 − ෝ𝝁𝑆 ∞ and 𝝁𝑆 − ഥ𝝁𝑆 ∞ are small

– then by bounded smoothness, 𝑟ഥ𝝁 𝑆 should be close to 𝑟𝝁(𝑆), actually 0 ≤ 𝑟ഥ𝝁 𝑆 − 𝑟𝝁 𝑆 < Δ𝑆

– By monotonicity, and 𝑆 being the oracle output under ഥ𝝁 (with probability 𝛽), 𝑟ഥ𝝁 𝑆 ≥ 𝛼 ⋅ optഥ𝝁 ≥ 𝛼 ⋅ opt𝝁, since 𝝁 ≤ ഥ𝝁 w.h.p

– So 𝑆 cannot be bad, unless either sample concentration is violated or offline oracle failed to return an 𝛼 approximation --- bound regret in this 

way --- constant cumulative regret 
𝜋2

3
+ 1 ⋅ 𝑚 ⋅ Δmax

• For under-sampled part, each (𝑖, 𝑆) appearance causes 𝑖 to sampled one more time, so at most 
6𝐵∞

2 ln 𝑇

Δ𝑆
2

appearances of (𝑖, 𝑆), and each has regret Δ𝑆 --- with a careful summation, obtain cumulative regret 

𝑂 σ𝑖
1

Δmin
𝑖 𝐵∞

2 ln 𝑇
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Theorem 2: Distribution-independent bound

• Consider a CMAB problem with an (𝛼, 𝛽)-approximation oracle. The 
distribution-independent regret of CUCB in 𝑇 round is at most: 

𝐵∞ 12𝑚𝑇ln 𝑇 +
𝜋2

3
+ 1 ⋅ 𝑚 ⋅ Δmax = 𝑂 𝐵∞ 𝑚𝑇 ln 𝑇

• Revise the under-sampled part of Theorem 1: For each arm 𝑖 ∈ [𝑚],

– if Δmin
𝑖 > 𝜀𝑖 , under-sampled regret for 𝑖 is 𝑂

1

𝜀𝑖
𝐵∞
2 ln 𝑇

– if Δmin
𝑖 ≤ 𝜀, under-sampled regret is for 𝑖 is 𝑂(𝜀𝑖 ⋅ 𝑁𝑖)

• 𝑁𝑖 is the number of times 𝑖 is blamed

– The best 𝜀𝑖 is to make the two terms equal, so under-sampled regret is for 𝑖 𝑂 𝐵∞ 𝑁𝑖ln 𝑇

– Overall, under-sampled regret is 𝑂 𝐵∞ ln 𝑇 σ𝑖 𝑁𝑖 = 𝑂 𝐵∞ 𝑚𝑇 ln 𝑇 , by Jensen’s 

Inequality and the fact that σ𝑖𝑁𝑖 = 𝑇.
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Application to ad placement

• Bounded smoothness constant 𝐵∞ = 𝐸

• (1 − Τ1 𝑒 , 1)-approximation regret



𝑖∈𝐸,Δmin
𝑖 >0

12 𝐸 2 ln 𝑇

Δmin
𝑖

+
𝜋2

3
+ 1 ⋅ |𝐸| ⋅ Δmax

• improvement based on clustered arms is 

available
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Application to linear bandit problems

• Linear bandits: shortest path, matching, spanning tree (in 

networking literature)

– Linear expected reward: 𝑟𝝁 𝑆 = σ𝑖∈𝑆 𝜇𝑖

• Our result significantly improves the previous regret bound on 

linear rewards [Gai et al. 2012]

– Also provide distribution-independent bound

– When using 1-norm bounded smoothness condition, tight regret bound 

matching the lower bound
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Joint work with Yajun Wang (Microsoft), Yang Yuan (Cornell), Qinshi Wang 

(Princeton)

JMLR’2016, NIPS’2017

CMAB with Probabilistically 

Triggered Arms
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Motivation example: influence maximization

• Optimization problem:

– Given influence parameters on edges
• Diffusion follows independent cascade 

model

– Find 𝑘 nodes that generated the largest 
expected influence

• The online learning version:

– Influence parameters are unknown

– Repeatedly select 𝑘 seed nodes, observe 
the cascade, update edge probability 
estimate, then iterate again
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New challenge

• When treating every edge as an arm

– Probabilistic triggering of arms: The play of some arms may trigger 

more arms to be played

– The triggered arms affect the reward

• New dilemma:

– We need to explore probabilistically triggered arms, since they affect the 

optimal solution

– These arms are probabilistically triggered, need more time to learn
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CMAB-T framework

• Super arms 𝑆 are abstracted to actions

• Each action 𝑆 may probabilistically trigger arms

– 𝑝𝑖
𝝁,𝑆

: probability of action 𝑆 triggering arm 𝑖

– 𝑝∗ = min{𝑝𝑖
𝝁,𝑆
: 𝑖 ∈ 𝑚 , 𝑆 ∈ 𝓢, 𝑝𝑖

𝝁,𝑆
> 0}, minimum positive triggering 

probability

– ሚ𝑆 = {𝑖 ∈ 𝑚 : 𝑝𝑖
𝝁,𝑆

> 0}, all arms that can be possibly triggered by 𝑆

• Bounded smoothness: there exists a bounded smoothness constant 𝐵∞, 
such that for any two expectation vectors 𝝁 and 𝝁′, 
|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝐵∞ ⋅ 𝝁 ሚ𝑆 − 𝝁 ሚ𝑆

′

∞
, where 𝝁 ሚ𝑆 − 𝝁 ሚ𝑆

′

∞
= max𝑖∈ ሚ𝑆|𝜇𝑖 − 𝜇𝑖

′|

– All arms that may be triggered by 𝑆 should be considered
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Result on CMAB-T [Chen et al. JMLR’2016]

• Use the same CUCB algorithm

• Distribution-dependent regret: 𝑂 σ𝑖
1

𝑝∗⋅Δmin
𝑖 𝐵∞

2 ln 𝑇

• Distribution-independent regret: 𝑂 𝐵∞
𝑚𝑇ln 𝑇

𝑝∗

• Issue: 1/𝑝∗ could be exponentially large

理论计算机年会, Oct. 14, 2017 34



Improving CMAB-T [Wang and Chen, NIPS’2017]

• Introducing a new triggering-probability modulated (TPM) 

bounded smoothness condition

• Show that with the TPM condition, 1/𝑝∗ term in the regret bound 

is eliminated

• Show that influence maximization bandit and combinatorial 

cascading bandit satisfy the TPM condition

• Provide a lower bound showing that 1/𝑝∗ is unavoidable in 

general CMAB-T instances
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TPM condition

• 1-norm TPM bounded smoothness

– there exists a bounded smoothness constant 𝐵1, such that for any two expectation 

vectors 𝝁 and 𝝁′, 

|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝐵1σ𝑖∈[𝑚]𝑝𝑖
𝝁,𝑆

𝜇𝑖 − 𝜇𝑖
′

• Intuition: when 𝑖 is less likely to be triggered by 𝑆 (𝑝𝑖
𝝁,𝑆

is small), 

𝑖’s change in its mean has less impact to the change in the 

expected reward
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Regret bounds

• Use the same CUCB algorithm

• Distribution-dependent regret: 𝑂 σ𝑖
1

Δmin
𝑖 𝐵1

2𝐾ln 𝑇

– 𝐾 = max
𝑆∈𝓢

ሚ𝑆 , the maximum number of arms any action can trigger

• Distribution-independent regret: 𝑂 𝐵1 𝑚𝐾𝑇ln 𝑇

• Regret analysis is involved, need decomposition of triggering 

probabilities into geometrically separated bins

– Also use a reverse amortization trick to improve the 1-norm based 

regret bound
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Applications

• Influence maximization bandit

– TPM condition constant: 𝐵1 = ሚ𝐶

• ሚ𝐶 is the largest number of nodes any node can reach

– Analysis involves influence tree decomposition to 

handle loops in the graph, and then use a bottom-

up modification technique

• Combinatorial cascading bandit

– TPM condition constant: 𝐵1 = 1
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Other CMAB Extensions
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What if estimating means of 

arms is not enough?
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Motivating example: graph routing

• Expected Utility Maximization (EUM) Model

– Each edge 𝑖 has a random delay 𝑋𝑖
– Each routing  path is a subset of edges, 𝑆

– utility of a routing path 𝑆: 𝑢 σ𝑖∈𝑆𝑋𝑖
• 𝑢(⋅) is nonlinear, modeling risk-averse or risk-prone behavior

– Goal: maximize 𝔼[𝑢 σ𝑖∈𝑆𝑋𝑖 ]

• Issue for online learning (when distributions of 
𝑋𝑖 ’s are unknown)
– only estimating the mean of 𝑋𝑖 is not enough

• Solution: estimating the entire CDF distribution 
with DKW inequality
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Joint work with Wei Hu (Princeton), Fu Li, (UT Austin), Jian Li 

(Tsinghua), Yu Liu (Tsinghua), Pinyan Lu (SUFE)

See NIPS’16: Combinatorial Multi-Armed 

Bandit with General Reward Functions
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How to test base arms efficiently 

to find the best super arm?
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Motivating example: Crowdsourcing

• Matching workers with tasks in a 

bipartite graph

– Initial test period: adaptively test worker-

task pair performance 

– Goal: at the end of test period, find the 

best worker-task matching

Workers Tasks

1

2

3

1

2

3

44
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joint work with Shouyuan Chen (Microsoft), Tian Lin (Google), 

Irwin King (CUHK), Michael R. Lyu (CUHK)

See NIPS’14: Combinatorial Pure 

Exploration in Multi-Armed Bandits
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Other of my studies

• ICML’14 [with Tian Lin (Google), Bruno Abraohao (Stanford), 
Robert Kleinberg (Cornell), John Lui (CUHK)]: combinatorial 
partial monitoring

– Handling limited feedback

• NIPS’15 [with Tian Lin (Google), Jian Li (Tsinghua)]: online greedy 
learning

– How to utilize offline greedy algorithm for online learning

• ICML’16 [with Shuai Li (CUHK), Baoxiang Wang (CUHK), Shengyu 
Zhang (CUHK)]: contextual combinatorial cascading bandits

– How to incorporate contextual information
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Summary and Future 

Directions
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Overall summary

• Central theme

– Iterative combinatorial optimization and combinatorial learning

– modular approach: separate offline optimization with online learning

• learning part does not need domain knowledge on optimization
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Ongoing and Future Work

• Ongoing:

– Thompson sampling for CMAB

– Combinatorial pure exploration for nonlinear reward functions

• Possible future directions

– Many other variants of combinatorial optimizations problems --- as 

long as it has unknown inputs need to be learned

– What about adversarial CMAB?

– More practical and more efficient solutions for particular problems

– How to generalize CMAB to reinforcement learning tasks?
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