
Gone, But Not Forgotten: The Current State of Private Computing

Aseem Rastogi∗

University of Maryland, College Park
aseem@cs.umd.edu

Jun Yuan, Rob Johnson
Stony Brook University

{junyuan,rob}@cs.stonybrook.edu

Abstract—Private data comes in many forms: web browser
histories, chat logs, sensitive word processor documents, net-
work proxy logs, and many more. Some applications – pri-
marily web browsers – now support private modes that aim to
prevent sensitive information leaks. There are two problems
with this application-level approach. First, there are many
software engineering challenges in implementing correct and
complete private modes. More fundamentally, applications
cannot always tell which data is private – this is up to the
user. As a result, applications that do support private modes
may not implement the user’s desired policy, and many other
applications that process private data do not have a private
mode at all, because the developers did not consider that use
case.

In this paper, we present a case for private computing mode
as a system service, rather than a per-application feature.
We specify the threat model and the goals of the private
computing mode, and argue that the applications alone cannot
achieve these goals. We briefly describe our ongoing work on
developing a private computing mode service.

Keywords-WWW; Privacy; Operating Systems

I. INTRODUCTION

Private data no longer consists of just passwords and
cryptographic keys; it now includes other forms of data such
as chat transcripts, web browser history, application logs, and
word processor documents, among others. However, tradi-
tional applications and operating systems are not designed to
treat such data as sensitive. For example, chat clients often
save chat transcripts to the disk, web browsers save browsing
history and other websites data to the disk, applications
often log user activities in persistent log files, and operating
systems do not clear page caches when the pages containing
the documents contents are freed. Applications may also
send data to other processes on the system. Web browsers
pass domain names to the DNS daemon, which in turn may
store the domain-to-IP address mapping in its local cache
to serve future requests. Thus, in their traditional form,
applications and operating systems result in wide-spread
sensitive data leaks.

Some applications – primarily web browsers [2] – now
support private modes of computation. In the private mode,
the application does not save sensitive data to the disk. In
addition, once the user exits the private mode, the sensitive
data is erased from the application memory.

∗Work done while the author was at Stony Brook University.

Providing private mode as a per-application feature has
several problems. First, there are many applications which
call for a private computing mode – word processors for
editing sensitive documents, chat clients for private chat,
terminals for executing sensitive commands, Dropbox for
uploading sensitive documents to the cloud, etc. Imple-
menting private computing mode in each application would
require a lot of (possibly duplicated) effort.

Then, there are software engineering challenges involved
in retrofitting security on a large code base – developers
could easily overlook data leaks in the code. Furthermore,
applications alone cannot seal all the leaks. Sensitive data
could propagate to parts of the system that the application
can’t access, such as swap space, kernel buffers, and the
memory of other processes.

More fundamentally, the applications cannot always tell
which data is private. The precise semantics of data is
known only to the user. A user, for example, might want to
retain pdf files downloaded during a private web browsing
session but discard all the video files once he quits the
session. As a result of this uncertainty about semantics of
data, applications cannot enforce a one-size-fits-all policy.
In other cases, application developers simply do not provide
a private mode because they do not consider it central to
their application’s functionality.

Existing research systems that aim to prevent data leaks
are either incomplete, or use heavy-weight mechanisms
such as hypervisors. Non-hypervisor based solutions mostly
focus on specific, short-lived, and easily-identifiable forms
of private data, such as passwords, and do not fully address
issues such as IPC and long-term storage. Hypervisor based
solutions, although complete, incur usability and perfor-
mance cost.

In this paper, we explain why private computing mode
must be implemented as a system service and outline an
implementation that is complete, does not incur the usability
and performance costs associated with hypervisors, and is
driven by a user policy to retain or discard persistent data.

II. RELATED WORK

Aggarwal et. al. [2] provide a comprehensive analysis
of private browsing mode implementations in major web
browsers. They point out that the implementations leak a
lot of sensitive data and are inconsistent with each other.

None of the implementations handles downloaded files.
Some implementations even retain bookmarks added during
a private session. They also analyze popular Firefox plug-ins
and find that out of the 32 analyzed plug-ins, 16 undermine
the private mode implementation. As expected, none of the
implementations prevent domain names from being leaked
to a local DNS cache.

Lacuna [7] develops a notion of ephemeral channels, an
implementation technique for controlling the lifetime and
leakage of private data inside a virtual machine monitor.
While it shares design goals with our project, our design
principle is fundamentally different. Lacuna uses hypervisor
based heavy-weight mechanisms in order to achieve a high
level of assurance against multiple data copies made by
the OS. We, on the other hand, believe that OSes are
carefully designed on the zero-copy principle. Hence, we
propose to explore the feasibility of implementing a private
computing service within the OS, without the overhead and
inconvenience of virtualization.

Researchers have proposed building blocks for different
PCM components – such as data in kernel memory, appli-
cation memory, swap space, and disk – but none completely
addresses the challenges of PCM.

Viega [12] talks about how applications should handle
sensitive data in RAM. Chow et. al. [6] and Garfinkel et.
al. [8] focus on the problem of in-memory data lifetime.
They present a case for secure deallocation of in-memory
data in all the layers of software stack – application, runtime,
and all the way down to the kernel. SWIPE [9] transforms
C programs to erase sensitive data immediately after its
intended use. Chen et. al. [5] discuss residual objects in
browsers. None of these projects consider data leaks through
disk and in-memory kernel page caches, nor do they take
into account data leaks via inter-process communication.

Provos [11] describes encrypted swap and Blaze [3]
proposes an encrypted file system for Unix. However, en-
crypted file-systems, block devices, and swap, all use long-
term keys, so simply running an application on a system
with an encrypted file-system and swap will not render
the data unreadable by an attacker that later gains access
to the computer (Section III). Although some encrypted
swap specifications support re-keying, none that we know
of implement this feature.

Borders et. al. [4] consider the problem of working with
private data on a host with an untrusted OS. They solve
this problem by placing a trusted VMM below both the
untrusted OS and the privacy-sensitive application, and make
numerous other performance and functionality sacrifices to
seal various covert channels. The threat model of private
computing mode assumes that the host OS is trustworthy
while the private computation takes place.

Kannan et. al. [10] propose to remove all traces of private
data by snapshotting the system before beginning a sensitive
computation, restoring the snapshot afterwards, and then

replaying all non-sensitive inputs. Although this can give
a high level of assurance that all private state is gone, the
implementation is complex and incurs high overhead.

III. THREAT MODEL

We refer to any program that the victim runs on her
computer (system) as a computation.

Attacker capabilities. We consider a passive, local at-
tacker. Such an attacker cannot make any changes to the
victim’s computer, but may inspect every component of the
system before and after the private computing session. Thus,
the attacker cannot install key-loggers or other malware to
monitor the user’s behavior during the private computing
session, but may inspect and compare the contents of all
memory – including kernel and user-space memory and
device buffers – and all disks in the system. This is the
standard threat model assumption for PCM ([2], [7]).

The attacker has only local privileges on the system. He
cannot, for example, inspect the network packets on the wire.
However, he can scan through the kernel network buffers
(among other memory areas) on the system.

Attacker goals. The goal of the attacker is to glean any
information about the data involved in the victim’s private
computing session. For a chat client program, the data could
be the chat recipient and transcripts; for a word processor
or Dropbox, the data could be the document names and
contents; for a web browser, the data could be the URLs
visited, cookies stored by the web sites, etc.

PCM. PCM aims to hide such computation details from
the attacker. It may reveal that the computation was per-
formed, but not its details. For example, it may reveal that
the victim used the word processor but no more details about
the documents it accessed.

IV. CHALLENGES

Data can leak through multiple channels on a system. We
discuss each of these in detail.

In-memory data. Chow et. al. [6] show that application
data can linger in memory for days after the application
exits. Application data may reside in the application stack,
heap, and data segment, and also kernel buffers such as
page caches and network buffers, kernel stack and heap.
For example, if the victim edits a sensitive document with
a word processor, the kernel page cache could contain the
document contents even after the processor exits.

Many of these locations, such as kernel buffers, are
not accessible to the application. Thus applications cannot
implement private computing modes without OS assistance.

Persistent data. Data written to disk during the computa-
tion is also a challenge for the private computing mode. For
example, during a private browsing session, the user might
download and view her medical records and then would like
to get rid of those records upon exiting the session.

None of the web browsers today handle downloaded files
in the private mode implementation. More seriously, even
if the application did delete the downloaded files, it is well
known that on-disk data can be recovered long after it has
been deleted. Simply overwriting the contents of the file
before deleting it is also not sufficient, since the filename
may still be on disk, and even its contents if the file is
stored on a log-structured file-system.

Swap area. Application data could be sent to persistent
storage when the OS swaps out the application’s memory
pages. As discussed by Garfinkel et. al. [8], even using
mlock(2) may not prevent pages from being swapped out.

Inter-process communication. Sensitive data may leak
to the memory of other processes in the system. For ex-
ample, a web browser, even in the private mode, needs to
communicate domain names to the local DNS resolver. The
DNS resolver may then store the domain name in its local
cache for serving future requests. Thus, the domains visited
by the victim could remain long stored in the memory of
another process – the DNS resolver [2].

As another example, consider a word document that the
victim opens in a word processor. Let’s say the document
contains a URL and when the victim clicks on it, the
processor launches a web browser that navigates to the
target webpage. Now the document information (the URL)
has become the part of browser memory, DNS cache etc.,
thereby leaking the data. So, even if the word processor
implemented a private mode, document contents can leak to
other processes that are not running in a private mode.

Clearly, the memory of other processes cannot be accessed
by the application and thus, it cannot clear the leaked data.

Peripheral memory. Application data may be copied
to memory in external devices, such as video, sound, and
network cards. This memory may continue to hold sensitive
information, such as the contents of the application window,
long after the application has exited. It may not be possible
for the application to clear this memory before exiting.

Plug-ins and add-ons. Third party add-ons and plug-ins
further complicate prevention of data leaks. The application
itself may implement private computing mode correctly by
not sending out sensitive data to disk or other processes.
However, it has no control over the third party add-ons and
plug-ins which usually run in the same address space as the
application, and can leak data at their will. Aggarwal, et al.,
showed that plug-ins are a major source of leaks in private
browsing modes [2] and, as a result, many browsers sacrifice
the functionality and disable plug-ins in private mode.

Variable privacy preferences. Applications cannot al-
ways tell which data is sensitive, and should be discarded
after the private computation, and which data the user would
like to retain. The semantics of data is known only to the
user and therefore, a user policy must decide what to do
with the data after the private computation.

Software engineering challenges. Finally, there are soft-

ware engineering challenges of retrofitting security onto a
large software. Since the software was probably not designed
to treat certain data as sensitive, there could be many points
where data can leak, and developers may miss some of these
points when retrofitting a private mode onto the application.

A. Private Computing as a System Service

The above discussion shows that applications cannot
prevent all data leaks on their own. Data can propagate to
parts of the system that the application cannot clean – kernel
buffers, swap space, memory of other processes, deallocated
disk blocks – but that a local attacker can access after
the private computing session has ended. Thus, a complete
private computing mode must be a system service. This
will (a) enable users to perform private computations with
applications that do not support any private mode, (b) enable
users to define their own policies, and (c) give users more
consistent private computing semantics across applications.

A system-level private computing mode can provide hooks
for applications to specify their own default policies about
retention of data from private sessions. This changes the task
of sealing data leaks from blacklisting to whitelisting, which
is much less likely to result in a bug. Since our threat model
assumes applications are benign, this does not compromise
the security goals of the private computing mode.

V. WORK IN PROGRESS

We are developing a system service that will enable users
to run any application in a private computing mode.

A. Design Goals

Correctness and completeness. We would like to cover
all the channels that can cause data leaks, as described
in Section IV. Our service should prevent data leaks via
disk, kernel buffers including page caches, inter-process
communication, and third-party add-ons.

Pay-as-you-go. Unlike the previous systems [3], [6], [11],
we would like to pay for the overheads of data hiding only
for applications in the private computing session, thereby
minimizing the performance impact. The other applications
should run normally, without paying these overheads.

Seamless integration. Applications in a PCM session
should integrate with the user’s non-private processes. For
example, a browser started in a private session should have
the same configuration options, plugins, etc., as his usual
browser. Furthermore, the PCM system should make it easy
for the user and application to specify some state that should
be preserved after the PCM session ends.

Low overhead. Processes in private sessions should not
be noticeably slower than non-private instances.

User policy driven. We would like to allow users to
drive the policy around the on-disk data. Users should decide
which data to retain or discard post-computation.

B. Service Components

Encrypted storage. Our service uses an encrypted loop-
back device as the persistent storage during the computa-
tion. To support unmodified application binaries, we setup
a union-filesystem [1] such that (a) the application can
access the actual disk filesystem normally, using regular path
names, and (b) all the application writes go to the loopback
device. The private mode container (see below) destroys the
device encryption key when the computation ends.

Policy engine. The policy engine runs in user-space
and implements the user’s policy for on-disk data. Once
the computation finishes, it copies to-be-retained files from
encrypted loop device to the underlying filesystem. The
to-be-discarded files are automatically discarded once the
encryption key of the loop device is destroyed.

Encrypted swap. The swap area used for swapping out
the pages of the computation also lies on the encrypted loop
device. We modify the kernel code such that it uses the
encrypted swap for the private computation memory pages.

In-memory clearing. In-memory clearing of Chow et.
al. [6] is an important component of our design. In addition,
we take care of clearing the kernel page caches for the files
written during the computation.

Peripheral memory management. We are pursuing
lightweight solutions for peripheral memory management.
We are developing a proxy X-windows server that inserts
commands to erase client windows immediately before
forwarding the client’s window-unmap commands. Other
peripherals, such as sound cards and network cards, may not
have directly overwriteable memory, but they may have finite
buffers, so that the private computing system can erase their
buffers by writing a sufficient amount of dummy output.

Private computing container. The user starts a PCM
session by starting the private computing container, a user-
mode process, with the actual application (such as web
browser) as an argument. The container sets up the environ-
ment (like the storage, swap, etc.) for the actual application
and then starts it. The container also starts other processes
that the application needs to communicate with, in the same
environment. Thus, all IPC from the private application is
directed to other processes running in the same container.
Some services, such as display or audio servers, may be
proxied between the private container and the main instance
on the system. The set of supporting programs could be
configured statically for each application or can be inferred
dynamically when the application tries to connect to them.
Once the application exits, the container invokes the policy
engine to copy any persistent files to the base file-system (per
user policy), unmounts and destroys the encrypted loopback
device, and erases ephemeral encryption keys from memory.

C. Evaluation Criteria

We will evaluate our private computing service on the
following parameters:

Range of applications. Our service should support un-
modified applications, including web browsers, chat clients,
terminals, cloud file-systems, and word processors.

Effectiveness. Our service should leave no private data in
the entire machine state once the computation ends.

Performance. Finally, for the private computing mode to
be usable, we will evaluate that the performance costs for
the application and the overall system are acceptable.

VI. CONCLUSION

In this paper, we have considered the problem of private
computing mode. We enumerated the challenges to imple-
menting a complete and efficient private computing mode,
and argued that private computing mode must be a system
service rather than a per-application feature. Finally, we
discussed our ongoing work on developing such a service.

ACKNOWLEDGMENTS

Don Porter provided invaluable feedback and advice dur-
ing numerous conversations.

REFERENCES

[1] http://aufs.sourceforge.net/aufs2/man.html.

[2] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An
analysis of private browsing modes in modern browsers. In
USENIX, 2010.

[3] M. Blaze. A cryptographic file system for unix. In CCS,
1993.

[4] K. Borders, E. V. Weele, B. Lau, and A. Prakash. Protecting
confidential data on personal computers with storage capsules.
In USENIX, 2009.

[5] S. Chen, H. Chen, and M. Caballero. Residue objects: a
challenge to web browser security. In EuroSys, 2010.

[6] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: reducing data lifetime through secure deallo-
cation. In USENIX, 2005.

[7] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel. Eternal sunshine
of the spotless machine: protecting privacy with ephemeral
channels. In OSDI, 2012.

[8] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data
lifetime is a systems problem. In ACM SIGOPS European
workshop, 2004.

[9] K. Gondi, P. Bisht, P. Venkatachari, A. P. Sistla, and V. N.
Venkatakrishnan. Swipe: eager erasure of sensitive data in
large scale systems software. In ACM CODASPY, 2012.

[10] J. Kannan, G. Altekar, P. Maniatis, and B.-G. Chun. Making
programs forget: enforcing lifetime for sensitive data. In
HotOS, 2011.

[11] N. Provos. Encrypting virtual memory. In USENIX, 2000.

[12] J. Viega. Protecting sensitive data in memory.
http://www.ibm.com/developerworks/library/s-data.html?n-s-
311.

