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Roadmap

• History of conversational speech transcription

• The Human Parity experiment

• What is human performance?

• Recognition system

• Human vs. machine error comparison

• Conclusions
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The Human Parity Experiment

• Conversational telephone speech has been a benchmark in the 
research community for 20 years

• Can we achieve human-level performance on conversational speech?

• Top-level tasks:
• Measure human performance

• Build the best possible recognition system

• Analyze results
• Inform future research

• Pick the next challenge …
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The History
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Building on accumulated knowledge of many institutions! 7

A Community Effort
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Call Home
(friends & family, unconstrained)

Switchboard
(strangers, on-topic)

30 Years of Speech Recognition Benchmarks

RM

ATIS

WSJ

For many years, DARPA drove the field by defining public benchmark tasks
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Conversational Telephone Speech (CTS):

Read and planned speech:
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Prior Work

• DARPA funding ended in 2004 – a collection of papers was published 
in IEEE Transactions on Speech Audio and Language Processing
• Best error rate ≈ 15% Switchboard, ≈ 40% for CallHome

• With the advent of DNNs, significant process on CTS was reported 
[Seide et al. 2011]

• More recent papers by IBM group, bringing WER to 6.6%, as of late 
2016 [Saon et al., Interspeech]
• IBM also quoted a 4% human error rate from the literature
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Measuring Human Performance
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An Early Estimate (1997)

• The 4% rumor

[Lippman, 1997]
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NIST Study of Transcriber Disagreement (2010)

[Glenn et al., LREC 2010]

Significant variability.

Note the bulk of the 
CTS training data was 
“quick transcribed.”
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Our Human Experiment (2015)

• Skype Translator has a weekly 
transcription contract
• For quality control, training, etc.

• Initial transcription followed by a 
second checking pass
• Two transcribers on each speech 

excerpt

• One week, we added NIST 2000 
CTS evaluation data to the pipeline
• Speech was pre-segmented as in NIST 

evaluation
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The Results
• Applied NIST scoring protocol

• Text normalized to minimize 
WER (on test set!)

• Switchboard: 5.9% error rate

• CallHome: 11.3% error rate

• SWB in the 4.1% - 9.6% range 
expected

• CH is difficult for both people 
and machines
• Machine error about 2x higher
• High ASR error not just because of 

mismatched conditions
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History of Human SWB Error Estimates
• Lippman (1997):  4%

• based on “personal communication” with NIST, no experimental data cited

• LDC LREC paper (2010):  4.1-4.5%
• Measured on a different dataset (but similar to our NIST eval set, SWB portion)

• Microsoft (2016): 5.9%
• Transcribers were blind to experiment

• 2-pass transcription, isolated utterances (no “transcriber adaptation”)

• IBM (2017): 5.1%
• Using multiple independent transcriptions, picked best transcriber

• Vendor was involved in experiment and aware of NIST transcription conventions
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Recognition System
• Acoustic modeling

• Language modeling

• System combination
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Recognition System: Highlights

• New state of the art in conversational telephone speech transcription accuracy 
using

• Multiple acoustic model architectures:
• ResNet, VGG and LACE convolutional nets (CNNs)
• Bidirectional LSTM nets
• Speaker-adaptive modeling using i-vectors
• Lattice-free sequence training

• Forward/backward LSTM-LM rescoring using multiple input representations

• Search for complementary acoustic model

• Confusion-network-based, weighted combination

• System achieves accuracy slightly better than human transcribers:  5.8% WER on 
Switchboard and 11.0% on CallHome
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State of the Art has a Long History

• The current favorites:  CNNs, LSTMs

• But building on key past innovations:
• HMM modeling

• Distributed Representations [Hinton ‘84]

• Early CNNs, RNNs, TDNNs [Lang & Hinton ‘88, Waibel 
et al. ‘89, Robinson ’91, Pineda ‘87]

• Hybrid training [Renals et al. ‘91, Bourlard & Morgan ‘94]

• Discriminative modeling

• Speaker adaptation

• System combination
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Acoustic Modeling Framework:
Hybrid HMM/DNN

[Yu et al., 2010; Dahl et al., 2011]

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach still standard
But DNN model now obsolete (!)
• Poor spatial/temporal invariance 
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1st pass decoding
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Acoustic Modeling: VGG CNN

[Simonyan & Zisserman, 2014; Frossard 2016, 
Saon et al., 2016, Krizhevsky et al., 2012]

Adapted for speech from image 
processing [Saon et al., 2016]

Robust to temporal and 
frequency shifts

20July 3, 2017 Afeka Conference for Speech Processing



Acoustic Modeling: ResNet CNNs

[He et al., 2015]

Adds a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005
See also Ghahremani & Droppo, 2016

Our best single model after rescoring
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1st pass decoding
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Acoustic Modeling: LACE CNN

[Yu et al., 2016]

Combines batch normalization,  Resnet
jumps, and attention masks into CNN
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1st pass decoding
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CNN Comparison
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Very deep
Many parameters
Small convolution patterns
Processing ~ ½ second per window
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Acoustic Modeling: Bidirectional LSTMs

Stable form of recurrent neural net
Robust to temporal shifts

2nd best single model
[Hochreiter & Schmidhuber, 1997, 
Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly ‘14]
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Runtimes

AM Training: Forward, Backward + Update computations
AM eval: Forward probability computation only
Decoding: Mixed GPU/CPU, complete decoding time with open beams

Titan X GPU & Intel Xeon E5-2620 v3 @2.4GhZ, 12 cores
All times are xRT (fraction of real-time required) on Titan X GPU 

GPU 10 to 100x 
faster than CPU

(Multiples of real-time, smaller is better) 
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Cognitive Toolkit (CNTK) Training

• Flexible

• Multi-GPU

• Multi-Server

• 1-bit SGD

• All AM 
training

• Best LM 
training
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I-vector Adaptation

𝑌(𝑡)

H1

H2

H3

H4

LABELS

Ƹ𝑠(𝑡)

5-10% relative improvement for Switchboard
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I-vectors give a fixed-length 
representation of a speaker’s voice 
[Dehak et al. 2011; Saon et al., 2013]

• 100-dim i-vectors computed per 
conversation side

• CNN models:  i-vectors multiplied 
by weight matrix, serves as 
additional bias prior to non-
linearity

• BLSTM models: i-vectors 
appended to each input frameJuly 3, 2017 Afeka Conference for Speech Processing



Lattice-free Discriminative Training
• Simple brute force MMI (maximum mutual 

information criterion)

• Avoids need to generate lattices

• Alignments are always current

• Forward-backward computation can be 
reduced to matrix operations, run 
efficiently on GPUs
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Traditionally approximated by 
word sequences in lattice (DAG)

Instead LFMMI uses all possible 
word sequences in cyclic FSA

[Chen et al., 2006, McDermott et al., 2914, Povey et al., 2016]
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Lattice-free MMI Improvements

• Denominator LM predicts senones based on mixed senone/phone history
• Denominator graph has 52k states and 215k transitions
• GPU-side alpha-beta computation is 0.18xRT, exclusive of NN evaluation 
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8-14% relative improvement on SWB
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Language Models
• 1st pass n-gram:

• SRI-LM, 30k vocab, 16M n-grams

• Rescoring n-gram:
• SRI-LM, 145M n-grams

• RNN LM
• CUED Toolkit, two 1000 unit layers
• Relu activations, noise-contrastive estimation (NCE) training
• Two differently initialized models, plus Ngram LM, interpolated at the word 

level

• LSTM LM
• Cognitive Toolkit (CNTK), three 1000 unit layers
• Interpolated word and letter-trigram encoding models, plus Ngram LM
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Language Modeling: Results
Other tricks that help:
• Train first on in-domain and out-

of-domain (Web) data, then 
tune on in-domain (CTS) data 
only

• In rescoring,  forward and 
backward running sentence-
scores are averaged

• Words outside the NN 
vocabulary (which is smaller 
than the N-gram vocab) incur a 
penalty – magnitude estimated 
on dev data
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LSTM-LM gives 23% relative improvement over N-gram LM

WER with ResNet acoustic model
Perplexities on 1997 eval refs
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System Combination
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Lattice Generation

ResNet
LSTM rescoring,

Score reweighting*

Lattice Generation

LACE
LSTM rescoring,

Score reweighting*

Lattice Generation

BLSTM
LSTM rescoring,

Score reweighting*

Confusion 
Network 

combination
…

N-gram Rescoring
500-best Generation

N-gram Rescoring
500-best Generation

N-gram Rescoring
500-best Generation

“the cat sat”

*Log-linear combination of AM, LM, 
pronunciation, OOV penalty etc.,
optimized to minimize devset WER 

……
Word

hypotheses

Posterior
probabilities
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N-best Confusion Network Combination

-8.4 a b c
-10.4 a b d
-20.1 x e c

…        ….

System A

-103 a b d
-245 x b c

-1245 y e c
…        ….

System B

…          ….System C

0.8   a b c
0.1   a b d
0.03 x e c

…        ….

0.75 a b d
0.22 x b c
0.10 y e c

…        ….

…            ….

Score 
normalization

Weighting and
summation

x 0.4

x 0.35

x 0.25

0.78  a b c
0.13  a b d
0.05  x b c
0.03  y e c
0.01  x e c

…        …

String
Alignment

.91 a .92 b .87 c

.06 x .04 e .13 d

.03 y

… … …

Log scores Sentence posteriors

Combined sentence 
posteriors Word posteriors

System weights

[Stolcke et al., 2000]
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System Selection and Weighting

• Combining all systems is not optimal

• … and would be way to slow

• search-rover-combo:  new SRILM tool to find best subset of systems
• Forward greedy search (always add the system that gives the largest gain)

• Stop when no more gain can be had

• Reestimate system weights at each step, using EM

• Smooth weight estimates hierarchically with previous weights (shrinkage)
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Two-level System Combination

• Limited training data for system selection and weighting
• Using old eval sets, a few thousand utterances)

• Use prior knowledge that helps reduce number of free parameter

• One strategy:  two-level combination
• Search for best subset of BLSTM systems with different meta parameters (number of 

senones, NN smoothing method, choice of dictionary)
• Combine those with equal weighting
• Treat BLSTM combo as a single system in search for all-out system combination

• First-level system selection picks systems that differ along all dimensions
BLSTM(1) - Baseline (no smoothing, 9k senones)
BLSTM(2) - With spatial smoothing [Droppo, Interspeech 2017], 9 senones
BLSTM(3) - With spatial smoothing, 27k senones
BLSTM(4) - With spatial smoothing, 27k senones, alternate dictionary
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Data

• AM training: 2000h (Fisher, Switchboard, but not CallHome)
• One system uses 300h (Switchboard only), for diversity

• LM training: Fisher, Switchboard, CallHome, UW Web data, Broadcast 
News

• Dev-testing, combination tuning:  NIST 2002 Switchboard-1 eval set

• Evaluation: NIST 2000 (Switchboard and CallHome portions)
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Overall System Results

37

• LSTM-LM gives 15-20% gain 
over N-gram LM

• BLSTM combination alone is 
almost as good as the best 
system!

• System combination 12% 
relative gain over best single 
subsystem

• Overall, we edge just past 
measured human error on 
the same dataset

ICASSP 2017 paper 

Senone-level acoustic model combination
(not used in combined system)
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Human/Machine: Analysis
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How do human and machine transcripts 
differ?
• Transcripts are very close quantitatively, by overall WER

• Research questions:

• What makes transcription easy or hard for human vs. machine?

• Does the machine make errors that are qualitatively different from humans?

• Can humans tell the difference?
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Error Correlation by Speaker
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𝜌 = 0.65 𝜌 = 0.73

Each data point is a conversation side, N = 40
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Error Correlation (without outliers)
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𝜌 = 0.65 𝜌 = 0.80

Two CallHome conversations have multiple speakers on the same side, resulting in very high WER!
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Seen vs. Unseen Switchboard Speakers

• It has been suggested that the 2000 Switchboard test set is so “easy” 
because most of the speakers also occur in the training set (a NIST 
blunder!)

• The filled dots are the unseen speakers

• This doesn’t seem to be the case:
• Machine WER on unseen speakers is within

the normal range

• For the most part (3 of 4), machine WER

predicts the human WER
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Qualitative differences:  Top Error Types
Substitutions (≈ 21k words in each test set)

Overall similar patterns:   short function words get confused
One outlier:  machine falsely recognizes backchannel “uh-huh” for filled pause “uh”
• These words are acoustically confusable, have opposite pragmatic functions in conversation
• Humans can disambiguate by prosody and context

43July 3, 2017 Afeka Conference for Speech Processing



Top Insertion and Deletion Errors

Deletions Insertions

Both humans and machines insert “I” and “and” a lot.
Short function words dominate the list for both.
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“Spot the Bot”
• Can people tell which transcripts are by machine?

• We ran an informal experiment at the last ICASSP conference

• Inspired by Turing test

45July 3, 2017 Afeka Conference for Speech Processing



Experiment: Informal results

• Subjects guessed correctly 188 / 353 times (53% accuracy)

• Not different from chance (p ≈ 0.12, one-tailed)

• Obviously, this was not a rigorous experiment …

• … but it gave us a first-hand idea of how difficult it is to tell human 
from machine transcription
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Wrap-up
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We’ve come a long way

5.8% ≈ Human performance
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…  2016
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Conclusions

• Human transcription performance is around 5-6%, but also varies 
greatly with the function of the amount of effort!
• Multiple independent transcription passes with reconciliation would lower 

this further, as done by NIST for their reference transcriptions

• State-of-the-art ASR technology based on neural net acoustic and 
language models has reached commercial-level accuracy

• Humans and machine transcription performance is highly correlated
• “Hard” versus “easy”  speakers
• Word types involved in most frequent errors 
• Humans are better at recognizing pragmatically relevant words  

(“uh” vs. “uh-huh”)
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Where to go from here

• Pick harder tasks!

• Current focus (again!) = Meeting speech
• Multiple speakers

• Overlapping speech

• Distant microphone capture (background noise, reverberation)
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Thank You!

http://www.microsoft.com/en-us/research/project/human-parity-speech-recognition/
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More Technical Details

52July 3, 2017 Afeka Conference for Speech Processing



BLSTM Spatial Regularization 

- =

2-D Unrolling Smoothed 2D Hi-Freq

Regularize with L2 norm of Hi-frequency residual

5-10% relative improvement for BLSTM

[Droppo, Interspeech 2017]
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MMI Denominator GPU computation

• Represent FSA of all possible state 
sequences as a sparse transition matrix A

• Implement exact alpha beta computations

• Execute in straight “for” loops on GPU with 
cusparseDcsrmv and cublasDdgmm

• Beautifully simple
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LM Training Trick: Self-stabilization

• Learn an overall scaling function for each layer

xWy

Wxy

)(

:becomes     





[Ghahremani & Droppo, 2016]

Applied to the LSTM networks, between layers.
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Language Model Perplexities

Perplexities on the 1997 eval set

LSTM beats RNN

Letter trigram input slightly
better than word input
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Note both forward and 
backward running models
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