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Abstract

One of the main challenges in reinforcement learning (RL) is generalisation. In
typical deep RL methods this is achieved by approximating the optimal value
function with a low-dimensional representation using a deep network. While
this approach works well in many domains, in domains where the optimal value
function cannot easily be reduced to a low-dimensional representation, learning can
be very slow and unstable. This paper contributes towards tackling such challenging
domains, by proposing a new method, called Hybrid Reward Architecture (HRA).
HRA takes as input a decomposed reward function and learns a separate value
function for each component reward function. Because each component typically
only depends on a subset of all features, the overall value function is much smoother
and can be easier approximated by a low-dimensional representation, enabling
more effective learning. We demonstrate HRA on a toy-problem and the Atari
game Ms. Pac-Man, where HRA achieves above-human performance.

1 Introduction

In reinforcement learning (RL) (Sutton & Barto, 1998; Szepesvári, 2009), the goal is to find a
behaviour policy that maximises the return—the discounted sum of rewards received over time—in a
data-driven way. One of the main challenges of RL is to scale methods such that they can be applied
to large, real-world problems. Because the state-space of such problems is typically massive, strong
generalisation is required to learn a good policy efficiently.

Mnih et al. (2015) achieved a big breakthrough in this area: by combining standard RL techniques
with deep neural networks, they outperformed humans on a large number of Atari 2600 games, by
learning a policy from pixels. The generalisation properties of their DeepQ-Networks (DQN) method
is performed by approximating the optimal value function. A value function plays an important
role in RL, because it predicts the expected return, conditioned on a state or state-action pair. Once
the optimal value function is known, an optimal policy can easily be derived. By modelling the
current estimate of the optimal value function with a deep neural network, DQN carries out a strong
generalisation on the value function, and hence on the policy.
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The generalisation behaviour of DQN is achieved by regularisation on the model for the optimal
value function. However, if the optimal value function is very complex, then learning an accurate
low-dimensional representation can be challenging or even impossible. Therefore, when the optimal
value function cannot easily be reduced to a low-dimensional representation, we argue to apply a
new, complementary form of regularisation on the target side. Specifically, we propose to replace the
reward function with an alternative reward function that has a smoother optimal value function, but
still yields a reasonable—but not necessarily optimal—policy, when acting greedily.

A key observation behind regularisation on the target function is the difference between the perfor-
mance objective, which specifies what type of behaviour is desired, and the training objective, which
provides the feedback signal that modifies an agent’s behaviour. In RL, a single reward function often
takes on both roles. However, the reward function that encodes the performance objective might be
awful as a training objective, resulting in slow or unstable learning. At the same time, a training
objective can differ from the performance objective, but still do well with respect to it.

Intrinsic motivation (Stout et al., 2005; Schmidhuber, 2010) uses the above observation to improve
learning in sparse-reward domains. It achieves this by adding a domain-specific intrinsic reward signal
to the reward coming from the environment. Typically, the intrinsic reward function is potential-based,
which maintains optimality of the resulting policy. In our case, we define a training objective based
on a different criterion: smoothness of the value function, such that it can easily be represented by
a low-dimensional representation. Because of this different goal, adding a potential-based reward
function to the original reward function is not a good strategy in our case, since this typically does
not reduce the complexity of the optimal value function.

Our main strategy for constructing a training objective is to decompose the reward function of the
environment into n different reward functions. Each of them is assigned to a separate reinforcement-
learning agent. Similar to the Horde architecture (Sutton et al., 2011), all these agents can learn in
parallel on the same sample sequence by using off-policy learning. For action selection, each agent
gives its values for the actions of the current state to an aggregator, which combines them into a single
action-value for each action (for example, by averaging over all agents). Based on these action-values
the current action is selected (for example, by taking the greedy action).

We test our approach on two domains: a toy-problem, where an agent has to eat 5 randomly located
fruits, and Ms. Pac-Man, a hard game from the ALE benchmark set (Bellemare et al., 2013).

2 Related Work

Horde architecture. Our HRA method builds upon the Horde architecture (Sutton et al., 2011). The
Horde architecture consists of a large number of ‘demons’ that learn in parallel via off-policy learning.
Each demon trains a separate general value function (GVF) based on its own policy and pseudo-
reward function. A pseudo-reward can be any feature-based signal that encodes useful information.
The Horde architecture is focused on building up general knowledge about the world, encoded via a
large number of GVFs. HRA focusses on training separate components of the environment-reward
function, in order to achieve a smoother value function to efficiently learn a control policy.

Learning with respect to multiple reward functions is also a topic of multi-objective learning (Roijers
et al., 2013). So alternatively, HRA can also be viewed as applying multi-objective learning in order
to smooth the value function of a single reward function.

Options / Hierarchical Learning. This work is also related to options (Sutton et al., 1999; Bacon
et al., 2017), and more generally hierarchical learning (Barto & Mahadevan, 2003; Kulkarni et al.,
2016). Options are temporally-extended actions that, like HRA’s heads, can be trained in parallel
based on their own (intrinsic) reward functions. However, once an option has been trained, the role of
its intrinsic reward function is over. A higher-level agent that uses an option sees it as just another
action and evaluates it using its own reward function. This can yield great speed-ups in learning and
help substantially with better exploration, but they do not directly make the value function of the
higher-level agent less complex. The heads of HRA represent values, trained with components of the
environment reward. Even after training, these values stay relevant, because the aggregator uses the
values of all heads to select its action.

2



3 Model

Consider a Markov decision process (MDP), which models an agent interacting with an environment at
discrete time steps t. It has a state set S , action setA, environment reward functionRenv : S×A → R,
and transition probability function P : S × A × S → [0, 1]. At time step t, the agent observes
state st ∈ S and takes action at ∈ A. The agent observes the next state st+1, drawn from the the
transition probability function P (st, at), and a reward rt = Renv(st, at). The behaviour is defined
by a policy π : S × A → [0, 1], which represents the selection probabilities over actions. The
goal of an agent is to find a policy that maximises the expected return, which is the discounted sum
of rewards: Gt :=

∑∞
i=0 γ

i rt+i, where the discount factor γ ∈ [0, 1] controls the importance of
immediate rewards versus future rewards. Each policy π has a corresponding action-value function
that gives the expected return, conditioned on the state and action, when acting according to that
policy:

Qπ(s, a) = E[Gt|st = s, at = a, π] (1)
Model-free methods improve their policy by iteratively improving an estimate of the optimal action-
value function Q∗(s, a) = maxπ Q

π(s, a), using sample-based updates. By acting greedily with
respect to Q∗ (i.e., taking the action with the highest Q∗-value in every state), the optimal policy π∗
is obtained.

3.1 Hybrid Reward Architecture

Because a Q-value function is high-dimensional, it is typically approximated with a deep network
with parameters θ: Q(s, a; θ). DQN estimates the optimal Q-value function by minimising the
sequence of loss functions:

Li(θi) = Es,a,r,s′ [(yDQNi −Q(s, a; θi))
2] , (2)

with yDQNi = r + γa′Q(s′, a′; θ−i ), (3)

where θ−i are the parameters of a target network that gets frozen for a number of iterations, while the
online network Q(s, a; θi) is updated.

Let the reward function of the environment be Renv . We propose to regularise the target function of
the deep network, by splitting the reward function into n reward functions, weighted by wi:

Renv(s, a) =

n∑
k=1

wkRk(s, a) , for all s, a, s′, (4)

and training a separate reinforcement-learning agent on each of these reward functions. There are
infinitely many different decompositions of a reward function possible, but to achieve smooth optimal
value functions the decomposition should be such that each reward function is mainly affected by
only a small number of state variables.

Because each agent has its own reward function, each agent i also has its own Q-value function
associated with it: Qi(s, a; θ). To derive a policy from these multiple action-value functions, an
aggregator receives the action-values for the current state from the different agents and combines
them into a single set of action-values (i.e., a single value for each action), using the same linear
combination as used in the reward decomposition (Equation 4).

QHRA(s, a; θ) =

n∑
k=1

wkQk(s, a; θ) . (5)

Because the different agents can share multiple lower-level layers of a deep Q-network, the collection
of agents can be viewed alternatively as a single agent with multiple heads, with each head producing
the action-values of the current state under a different reward function. A single vector θ can be used
for the parameters of this network. Each head is associated with a different reward function. This is
the view that we adopt in this paper. We refer to it as a Hybrid Reward Architecture (HRA). Figure 1
illustrates the architecture. The loss function for HRA is:

Li(θi) = Es,a,r,s′
[

n∑
k=1

(yk,i −Qk(s, a; θi))2
]
, (6)

with yk,i = Rk(s, a, s
′) + γmax

a′
Qk(s

′, a′; θ−i ) . (7)
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By minimising this loss function, the different heads of HRA approximate the optimal action-value
functions under the different reward functions: Q∗1, . . . , Q

∗
n. Furthermore, we define Q∗HRA as follows:

Q∗HRA(s, a) :=

n∑
k=1

wkQ
∗
k(s, a) for all s, a .

Therefore, with the update target above, the aggregator’s Q-values approximate Q∗HRA. In general,
Q∗HRA is not equal to Q∗env, the optimal value function corresponding to Renv. If HRA’s policy
performs badly with respect to Renv, a different aggregation scheme can be used, for example,
instead of the mean over heads, an aggregator action-value could be defined as the max over heads,
or a voting-based aggregation scheme could be used. Alternatively, an update target based on the
expected Sarsa update rule (van Seijen et al., 2009) can be used:

yk,i = Rk(s, a, s
′) + γ

∑
a′

π(s′, a′)Qk(s
′, a′; θ−i ) . (8)

In this case, minimisation of the loss function results in the heads approximating the action-values for
π under the different reward functions: Qπ1 , . . . , Q

π
n. We define QπHRA(s, a) :=

∑n
k=1 wkQ

π
k (s, a).

In contrast to Q∗HRA, QπHRA is equal to Qπenv , as shown in the following theorem:

Theorem 1. With an aggregator that implements Equation (5), for any reward decomposition and
stationary policy π the following holds:

QπHRA(s, a) = Qπenv(s, a) for all s, a.

Proof. Substituting (4) in (1) gives:

Qπenv(s, a) = E

[ ∞∑
i=0

γi
n∑
k=1

wkRk(st+i, at+i)|st = s, at = a, π

]
,

=

n∑
k=1

wk · E

[ ∞∑
i=0

γiRk(st+i, at+i)|st = s, at = a, π

]
,

=

n∑
k=1

wkQ
π
k (s, a) = QπHRA(s, a) .

3.2 Improving Performance further by using high-level domain knowledge.

In its basic setting, the only domain knowledge applied to HRA is in the form of the decomposed
reward function. However, one of the strengths of HRA is that it can easily exploit more domain
knowledge, if available. Domain knowledge can be exploited in one of the following ways:

1. Removing irrelevant features. Features that do not affect the received reward in any way
(directly or indirectly) only add noise to the learning process and can be removed.

2. Identifying terminal states. Terminal states are states from which no further reward can
be received; they have by definition a value of 0. Using this knowledge, HRA can refrain
from approximating this value by the value network, such that the weights can be fully used
to represent the non-terminal states.

Single-head HRA

Figure 1: Illustration of Hybrid Reward Architecture.
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3. Using pseudo-reward functions. Instead of updating a head of HRA using a component of
the environment reward, it can be updated using a pseudo-reward. In this scenario, a set of
GVFs is trained in parallel using pseudo-rewards. Each head of HRA uses (an) appropriate
GVF(s). This can often result in more efficient learning.

The first two types of domain knowledge can be used by any method, not just HRA. However, because
HRA can apply this knowledge to each head individually, it can exploit domain knowledge to a much
greater extent. We show this empirically in Section 4.1.

4 Experiments

4.1 Fruit Collection task

In our first domain, we consider an agent that has to collect fruits as quickly as possible in a 10× 10
grid. There are 10 possible fruit locations, spread out across the grid. For each episode, a fruit is
randomly placed on 5 of those 10 locations. The agent starts at a random position. The episode ends
after 300 steps or when all 5 fruits have been eaten, whichever comes first.

We compare the performance of DQN with HRA using the same network. The training objective
for DQN gives +1 reward for each fruit and uses γ = 0.95. For HRA, we decompose this reward
function into 10 different reward functions, one per possible fruit location. The network consists of a
binary input layer of length 110, encoding the agent’s position and whether there is a fruit on each
location. This is followed by a fully connected hidden layer of length 250. This layer is connected
to 10 heads consisting of 4 linear nodes each, representing the action-values of the 4 actions under
the different reward functions. Finally, the mean of all nodes across heads is computed using a final
linear layer of length 4 that connects the output of corresponding nodes in each head. This layer has
fixed weights with value 1/10 (i.e., it implements Equation 5). The difference between HRA and
DQN is that DQN updates the network from the fourth layer using loss function (2), whereas HRA
updates the network from the third layer using loss function (6).

HRA with pseudo-rewardsHRADQN

Figure 2: The different network architectures used.

Figure 3: Results on the fruit collection domain, in which an agent has to eat 5 randomly placed fruits.
An episode ends after all 5 fruits are eaten or after 300 steps, whichever comes first.
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Besides the full network, we test using different levels of domain knowledge, as outlined in Section
3.2: 1) removing the irrelevant features for each head (providing only the position of the agent + the
corresponding fruit feature); 2) the above plus identifying terminal states; 3) the above plus using
pseudo rewards for learning GVFs to go to each of the 10 locations (instead of learning a value
function associated to the fruit at each location). The advantage is that these GVFs can be trained
even if there is no fruit (anymore) at a location. The head for a particular fruit copies the Q-values
of the GVF corresponding to the fruit’s location, or outputs 0s if there is currently no fruit at the
location. We refer to these as HRA+1, HRA+2 and HRA+3, respectively. For DQN, we also tested a
version that was applied to the same network as HRA+1; we refer to this version as DQN+1.

We performed experiments with update targets that estimate an optimal policy (Equation 7) and
update targets that evaluate a uniformly random policy (using Equation 8). Acting greedily with
respect to the Q-values of a uniformly random policy evaluated under reward function Renv, can in
some domains yields a very good performance with respect to Renv. We optimise the step-size for
each method separately.

The results are shown in Figure 3 for the best settings. Interestingly, for DQN estimating the optimal
policy performed better, while for HRA estimating the random policy performed better. Overall,
HRA shows a clear performance boost over DQN, even though the network is identical. Furthermore,
adding different forms of domain knowledge causes further large improvements. Whereas using a
network structure enhanced by domain knowledge causes large improvements for HRA, using that
same network for DQN results in not learning anything at all. The big boost in performance that
occurs when the the terminal states are identified is due to the representation becoming a one-hot
vector. Hence, we removed the hidden layer and directly fed this one-hot vector into the different
heads. Because the heads are linear, this representation reduces to an exact, tabular representation.
For the tabular representation, we used the same step-size as the optimal step-size for the deep
network version.

4.2 ATARI game: Ms. Pac-Man

Figure 4: The game Ms. Pac-Man.

Our second domain is the Atari 2600 game Ms. Pac-Man
(see Figure 4). Points are obtained by eating pellets, while
avoiding ghosts (contact with one causes Ms. Pac-Man to
lose a life). Eating one of the special power pellets turns
the ghosts blue for a small duration, allowing them to be
eaten for extra points. Bonus fruits can be eaten for further
points, twice per level. When all pellets have been eaten,
a new level is started. There are a total of 4 different maps
and 7 different fruit types, each with a different point value.
We provide full details on the domain in the supplementary
material.

Baselines. While our version of Ms. Pac-Man is the
same as used in literature, we use different preprocessing. Hence, to test the effect of our pre-
processing, we implement the A3C method (Mnih et al., 2016) and run it with our preprocessing.
We refer to the version with our preprocessing as ‘A3C(channels)’, the version with the standard
preprocessing ‘A3C(pixels)’, and A3C’s score reported in literature ‘A3C(reported)’.

Preprocessing. Each frame from ALE is 210× 160 pixels. We cut the bottom part and the top part
of the screen to end up with 160 × 160 pixels. From this, we extract the position of the different
objects and create for each object a separate input channel, encoding its location with an accuracy of
4 pixels. This results in 11 binary channels of size 40× 40. Specifically, there is a channel for: Ms.
Pac-Man, each of the four ghosts, each of the four blue ghosts (these are treated as different objects),
the fruit plus one channel with all the pellets (including power pellets). For A3C, we combine the 4
channels of the ghosts into a single channel, to allow it to generalise better across ghosts. We do the
same with the 4 channels of the blue ghosts. Instead of giving the history of the last 4 frames as done
in literature, we give the orientation of Ms. Pac-Man as a 1-hot vector of length 4 (representing the 4
compass directions).
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HRA architecture. We use a HRA architecture with one head for each pellet, one head for each
ghost, one head for each blue ghost and one head for the fruit. Similar to the fruit collection task,
HRA uses GVFs that learn the Q-values for getting to a particular location in the map (it learns
separate GVFs for each of the four maps). The agent learns part of its representation during training:
it starts of with 0 GVFs and 0 heads for the pellets. By wandering around the maze, it discovers new
map locations it can reach, resulting in new GVFs being created. Whenever the agent finds a pellet at
a new location it creates a new head corresponding to the pellet.

The Q-values of the head of an object (pellet/fruit/ghost/blue ghost) are simply the Q-values of the
GVF that corresponds with the object’s location (i.e., moving objects use a different GVF each time).
If an object is not on the screen, all its Q-values are 0. Each head i is assigned a weight wi, which can
be positive or negative. For the head of a pellet/blue ghost/fruit the weight corresponds to the reward
received when the object is eaten. For the regular ghosts (contact with one causes Ms. Pac-Man to
lose a life), the weights are set to -1,000.

We test two aggregator types. The first one is a linear one that sums the Q-values of all heads
multiplied with the weights (see Equation 5). For the second one, we take the weighted sum of all the
heads that produce points, and normalise the resulting Q-values; then, we add the weighted Q-values
of the heads of the regular ghosts.

For exploration, we test two complementary types of exploration. Each type adds an extra exploration
head to the architecture. The first type, which we call diversification, produces random Q-values,
drawn from a uniform distribution over [0, 20]. We find that it is only necessary during the first 50
steps, to ensure starting each episode randomly. The second type, which we call count-based, adds
a bonus for state-action pairs that have not been explored a lot. It is inspired by upper confidence
bounds (Auer et al., 2002). Full details can be found in the supplementary material.

For our final experiment, we implement a special head inspired by executive-memory literature (Fuster,
2003; Gluck et al., 2013). When a human game player reaches the maximum of his cognitive and
physical ability, he starts to look for favourable situations or even glitches and memorises them.
This cognitive process is indeed memorising a sequence of actions (also called habit), and is not
necessarily optimal. Our executive-memory head records every sequence of actions that led to pass
a level without any kill. Then, when facing the same level, the head gives a very high value to the
recorded action, in order to force the aggregator’s selection. Note that our simplified version of
executive memory does not generalise.

Evaluation metrics. There are two different evaluation methods used across literature which result
in very different scores. Because ALE is ultimately a deterministic environment (it implements
pseudo-randomness using a random number generator that always starts with the same seed), both
evaluation metrics aim to create randomness in the evaluation in order to rate methods with more
generalising behaviour higher. The first metric introduces a mild form of randomness by taking a
random number of no-op actions before control is handed over to the learning algorithm. In the case
of Ms. Pac-Man, however, the game starts with a certain inactive period that exceeds the maximum
number of no-op steps, resulting in the game having a fixed start after all. The second metric selects
random starting points along a human trajectory and results in much stronger randomness, and does
result in the intended random start evaluation. We refer to these metrics as ‘fixed start’ and ‘random
start’.

Table 1: Final scores.
fixed random

method start start
best reported 6,673 2,251

human 15,693 15,375
A3C (reported) — 654

A3C (pixels) 2,168 626
A3C (channels) 2,423 589

HRA 25,304 23,770

Results. Figure 5 shows the training curves; Table 1 the
final score after training. The best reported fixed start
score comes from STRAW (Vezhnevets et al., 2016); the
best reported random start score comes from the Dueling
network architecture (Wang et al., 2016). The human fixed
start score comes from Mnih et al. (2015); the human
random start score comes from Nair et al. (2015). We train
A3C for 800 million frames. Because HRA learns fast,
we train it only for 5,000 episodes, corresponding with
about 150 million frames (note that better policies result
in more frames per episode). The score shown for HRA uses normalisation and both exploration
types. We try different combinations (with/without normalisation and with/without each type of
exploration) for HRA. The score shown for HRA uses the best combination: with normalisation and
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with both exploration types. All of the combinations achieved over 10,000 points in training, except
the combination with no exploration at all, which performed very poorly. With the best combination,
HRA not only outperforms the state-of-the-art on both metrics, it also significantly outperforms the
human score, convincingly demonstrating the strength of HRA.

Comparing A3C(pixels) and A3C(channels) in Table 1 reveals a surprising result: while we use
advanced preprocessing by separating the screen image into relevant object channels, this did not
significantly change the performance of A3C.

In our final experiment, we test how well HRA does if it exploits the weakness of the fixed-start
evaluation metric by using a simplified version of executive memory. Using this version, we not
only surpass the human high-score,1, we achieve the maximum possible score of 999,990 points in
less than 3,000 episodes. The curve is slow in the first stages because the model has to be trained,
but even though the further levels get more and more difficult, the level passing speeds up by taking
advantage of already knowing the maps. Obtaining more points is impossible, not because the game
ends, but because the score overflows to 0 when reaching a million points. 2

5 Discussion

One of the strengths of HRA is that it can exploit domain knowledge to a much greater extent than
single-head methods. This is clearly shown by the fruit collection task: while removing irrelevant
features causes a large improvement in performance for HRA, for DQN no effective learning occurred
when provided with the same network architecture. Furthermore, separating the pixel image into
multiple binary channels only makes a small improvement in the performance of A3C over learning
directly from pixels. This demonstrates that the reason that modern deep RL struggle with Ms.
Pac-Man is not related to learning from pixels; the underlying issue is that the optimal value function
for Ms. Pac-Man cannot easily be mapped to a low-dimensional representation.

HRA solves Ms. Pac-Man by learning close to 1,800 general value functions. This results in an
exponential breakdown of the problem size: whereas the input state-space corresponding with the
binary channels is in the order of 1077, each GVF has a state-space in the order of 103 states, small
enough to be represented without any function approximation. While we could have used a deep
network for representing each GVF, using a deep network for such small problems hurts more than it
helps, as evidenced by the experiments on the fruit collection domain.

We argue that many real-world tasks allow for reward decomposition. Even if the reward function can
only be decomposed in two or three components, this can already help a lot, due to the exponential
decrease of the problem size that decomposition might cause.

1highscore.com reports oyamafamily as the world record holder with 266,330 points.
2For a video of HRA’s final trajectory reaching this point, see: https://youtu.be/VeXNw0Owf0Y
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A Ms. Pac-Man - experimental details

A.1 General information about Atari 2600 Ms. Pac-Man

The second domain is the Atari 2600 game Ms. Pac-Man. Points are obtained by eating pellets, while
avoiding ghosts (contact with one causes Ms. Pac-Man to lose a life). Eating one of the special power
pellets turns the ghost blue for a small duration, allowing them to be eaten for extra points. Bonus
fruits can be eaten for further increasing points, twice per level. When all pellets have been eaten, a
new level is started. There are a total of 4 different maps (see Figure 7 and Table 2) and 7 different
fruit types, each with a different point value (see Table 3).

Ms. Pac-Man is considered one of the hard games from the ALE benchmark set. When comparing
performance, it is important to realise that there are two different evaluation methods for ALE games
used across literature which result in hugely different scores (see Table 4). Because ALE is ultimately
a deterministic environment (it implements pseudo-randomness using a random number generator that
always starts with the same seed), both evaluation metrics aim to create randomness in the evaluation
in order to discourage methods from exploiting this deterministic property and rate methods with
more generalising behaviour higher. The first metric introduces a mild form of randomness by taking
a random number of no-op actions before control is handed over to the learning algorithm. In the case
of Ms. Pac-Man, however, the game starts with a certain inactive period that exceeds the maximum
number of random no-op steps, resulting in the game having a fixed start after all. The second metric
selects random starting points along a human trajectory and results in much stronger randomness,
and does result in the intended random start evaluation.

The best method with fixed start evaluation is STRAW with 6,673 points (Vezhnevets et al., 2016);
the best with random start evaluation is the dueling network architecture with 2,251 points (Wang
et al., 2016). The human baseline, as reported by Mnih et al. (2015), is 15,693 points. The highest
reported score by a human is 266,330.3 All reported scores are shown in Table 4.

3See highscore.com: ‘Ms. Pac-Man (Atari 2600 Emulated)’.

Figure 7: The four different maps of Ms. Pac-Man.
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Table 2: Map type and fruit type per level.

level map fruit
1 red cherry
2 red strawberry
3 blue orange
4 blue pretzel
5 white apple
6 white pear
7 green banana
8 green 〈random〉
9 white 〈random〉

10 green 〈random〉
11 white 〈random〉
12 green 〈random〉
...

...
...

Table 3: Points breakdown of edible objects.

object points
pellet 10

power pellet 50
1st blue ghost 200
2nd blue ghost 400
3th blue ghost 800
4th blue ghost 1,600

cherry 100
strawberry 200

orange 500
pretzel 700
apple 1,000
pear 2,000

banana 5,000

Table 4: Reported scores on Ms. Pac-Man for fixed start evaluation (called ‘random no-ops’ in
literature) and random start evaluation (‘human starts’ in literature).

algorithm fixed start source rand start source
Human 15,693 Mnih et al. (2015) 15,375 Nair et al. (2015)
Random 308 Mnih et al. (2015) 198 Nair et al. (2015)

DQN 2,311 Mnih et al. (2015) 764 Nair et al. (2015)
DDQN 3,210 van Hasselt et al. (2016b) 1,241 van Hasselt et al. (2016b)

Prio. Exp. Rep 6,519 Schaul et al. (2016) 1,825 Schaul et al. (2016)
Dueling 6,284 Wang et al. (2016) 2,251 Wang et al. (2016)

A3C — — 654 Mnih et al. (2016)
Gorila 3,234 Nair et al. (2015) 1,263 Nair et al. (2015)

Pop-Art 4,964 van Hasselt et al. (2016a) — —
STRAW 6,673 Vezhnevets et al. (2016) — —

A.2 HRA architecture

GVF heads. Ms. Pac-Man state is defined as its position on the map and its direction (heading
North, East, South or West). Depending on the map, there are about 400 positions and 950 states
(not all directions are possible for each position). A GVF is created online for each visited Ms.
Pac-Man position. Each GVF is then in charge of determining the value of the random policy of Ms.
Pac-Man state for getting the pseudo-reward placed on the GVF’s associated position. The GVFs are
trained online with off-policy 1-step bootstrapping with α = 1 and γ = 0.99. Thus, the full tabular
representation of the GVF grid contains nbmaps×nbpositions×nbstates×nbactions ≈ 14M entries.

Aggregator. For each object of the game: pellets, ghosts and fruits, the GVF corresponding to its
position is activated with a multiplier depending on the object type. Edible objects’ multipliers are
consistent with the number of points they grant: pellets’ multiplier is 10, power pellets’ 50, fruits’
200, and blue and blue (edible) ghosts’ 1,000. Initial tests showed that a ghosts’ multiplier of -1,000
is a fair balance between gaining points and not being killed. Finally, the aggregator sums up all the
activated and multiplied GVFs to compute a global score for each of the nine actions and chooses the
action that maximises it.

Diversification head. The blue curve on Figure 8 reveals that this naïve setting performs badly
because it tends to deterministically repeat a bad trajectory like a robot hitting a wall continuously.
In order to avoid this pitfall, we need to add an exploratory mechanism. An ε-greedy exploration is
not suitable for this problem since it might unnecessarily put Ms. Pac-Man in danger. A Boltzmann
distributed exploration is more suitable because it favours exploring the safe actions. It would be
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Figure 8: Training curves for incrementally head additions to the HRA architecture.

possible to apply this on top of the aggregator, but we chose here to instead add a diversification head
that generates for each action a random value. This random value is drawn according to a uniform
distribution in [0,20]. We found that it is only necessary during the 50 first steps, to ensure each
episode starts randomly.

Score heads normalisation. The orange curve on Figure 8 shows that the diversification head
solves the determinism issue. The so-built architecture progresses fast, up to 10,000 points, but then
starts regressing. The analysis of the generated trajectories reveals that the system has difficulty
in finishing levels: indeed, when only a few pellets remain on the screen, the aggregator gets
overwhelmed by the ghost avoider values. The regression in score is explained by the fact that the
more the system learns the more it gets easily scared by the ghosts, and therefore the more difficult
it is for it to finish the levels. We solve this issue by modifying the additive aggregator with a
normalisation over the score heads between 0 and 1. To fit this new value scale, the ghost multiplier
is modified to -10.

Targeted exploration head. The green curve on Figure 8 grows over time as expected. It might
be surprising at first look that the orange curve grows faster, but it is because the episodes without
normalisation tend to last much longer, which allows more GVF updates per episode. In order to
speed up the learning, we decide to use a targeted exploration head (teh), that is motivated by trying
out the less explored state-action couples. The value of this agent is computed as follows:

valueteh(s, a) = κ

√
4
√
N

n(s, a)
, (9)

where N is the number of actions taken until now and n(s, a) the number of times action a has
been performed in state s. This formula is inspired from upper confidence bounds (Auer et al.,
2002), but replacing the stochastically motivated logarithmic function by a less drastic one is more
compliant with our need for bootstrapping propagation. Note that this targeted exploration head is
not a replacement for the diversification head. They are complementary: diversification for making
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each trajectory unique, and targeted exploration for prioritised exploration. The red curve on Figure 8
reveals that the new targeted exploration head helps exploration and makes the learning faster. This
setting constitutes the HRA architecture that is used in every experiment.

Executive memory head. When human game players reach the maximum of their cognitive and
physical ability, they start to look for favourable situations or even glitches and memorise them. This
cognitive process is referred as executive memory in cognitive science literature (Fuster, 2003; Gluck
et al., 2013). The executive memory head records every sequence of actions that led to passing a level
without losing any life. Then, when facing the same level, the head gives a high value to the recorded
action, in order to force the aggregator’s selection. Nota bene: since it does not allow generalisation,
this head is only employed for the level-passing experiment.

A.3 A3C baselines

Since we use low-level features for the HRA architecture, we implement A3C and evaluate it both on
the pixel-based environment and on the low-level features. The implementation is performed in a
way to reproduce the results of Mnih et al. (2015).

They are both trained similarly as in Mnih et al. (2016) on 8× 108 frames, with γ = 0.99, entropy
regularisation of 0.01, n-step return of 5, 16 threads, gradient clipping of 40, and α is set to take the
maximum performance over the following values: [0.0001, 0.00025, 0.0005, 0.00075, 0.001]. The
pixel-based environment is a reproduction of the preprocessing and the network, except we only use
a history of 2, because our steps are twice as long.

With the low features, five channels of a 40 × 40 map are used embedding the positions of Ms.
Pac-Man, the pellets, the ghosts, the blue ghosts, and the special fruit. The input space is therefore
5× 40× 40 plus the direction appended after convolutions: 2 of them with 16 (respectively 32) filters
of size 6× 6 (respectively 4× 4) and subsampling of 2× 2 and ReLU activation (for both). Then, the
network uses a hidden layer of 256 fully connected units with ReLU activation. Finally, the policy

0 1000 2000 3000 4000 5000
0

5000

10000

15000

20000

25000

HRA with                = 0.95,                = 0.95

HRA with                = 0.95,                = 0.97

HRA with                = 0.95,                = 0.99

HRA with                = 0.97,                = 0.95

HRA with                = 0.97,                = 0.97

HRA with                = 0.97,                = 0.99

HRA with                = 0.99,                = 0.95

HRA with                = 0.99,                = 0.97

HRA with                = 0.99,                = 0.99

S
co

re

Episodes

Figure 9: Gridsearch on γ values without executive memory smoothed over 500 episodes.
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Figure 10: Gridsearch on γ values with executive memory.

head has nbactions = 9 fully connected units with softmax activation, and the value head has 1 unit
with a linear activation. All weights are uniformly initialised He et al. (2015).

A.4 Results

Training curves. Most of the results are already presented in the main document. For more
completeness, we present here the results of the gridsearch over γ values for both with and without
the executive memory. Values [0.95, 0.97, 0.99] have been tried independently for γscore and γghosts.

Figure 9 compares the training curves without executive memory. We can notice the following:

• all γ values turn out to yield very good results,
• those good results generalise over random human starts,
• high γ values for the ghosts tend to be better,
• and the γ value for the score is less impactful.

Figure 10 compares the training curves with executive memory. We can notice the following:

• the comments on Figure 9 are still holding,
• and it looks like that there is a bit more randomness in the level passing efficiency.
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