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Figure 1: Our technique allows us to establish semantically-meaningful dense correspondences between two input images A and B′. A′ and
B are the reconstructed results subsequent to transfer of visual attributes.

Abstract

We propose a new technique for visual attribute transfer across im-
ages that may have very different appearance but have perceptually
similar semantic structure. By visual attribute transfer, we mean
transfer of visual information (such as color, tone, texture, and
style) from one image to another. For example, one image could
be that of a painting or a sketch while the other is a photo of a real
scene, and both depict the same type of scene.

Our technique finds semantically-meaningful dense correspon-
dences between two input images. To accomplish this, it adapts the
notion of “image analogy” [Hertzmann et al. 2001] with features
extracted from a Deep Convolutional Neutral Network for match-
ing; we call our technique deep image analogy. A coarse-to-fine
strategy is used to compute the nearest-neighbor field for generating
the results. We validate the effectiveness of our proposed method in
a variety of cases, including style/texture transfer, color/style swap,
sketch/painting to photo, and time lapse.

1 Introduction

Many types of compelling image stylization effects have been
demonstrated over the years, including color transfer, texture trans-
fer, and style transfer. Their appeal is especially strong in the con-
text of social media, where photo sharing and entertainment are
important elements. A number of popular apps such as Prisma and
Facetune have successfully capitalized on this appeal.

∗Supplemental material: https://liaojing.github.io/
html/data/analogy_supplemental.pdf; source code:
https://github.com/msracver/Deep-Image-Analogy.
†This work was done when Yuan Yao was an intern at MSR Asia.

The applications of color transfer, texture transfer, and style transfer
share a common theme, which we characterize as visual attribute
transfer. In other words, visual attribute transfer refers to copying
visual attributes of one image such as color, texture, and style, to
another image.

In this paper, we describe a new technique for visual attribute trans-
fer for a pair of images that may be very different in appearance but
semantically similar. In the context of images, by ”semantic”, we
refer to high-level visual content involving identifiable objects. We
deem two different images to be semantically similar if both are of
the same type of scene containing objects with the same names or
classes, e.g., nature scenes featuring pandas and foliage, headshots,
or indoor scenes featuring dining rooms with tables, chairs, walls,
and ceiling. Figure 1 shows two semantically similar pairs. The im-
ages in each pair of inputs (A and B′) look dramatically different,
but have objects with similar identities.

Our technique establishes semantically-meaningful dense corre-
spondences between the input images, which allow effective vi-
sual attribute transfer. Low-level matching methods, such as op-
tical flow [Brox et al. 2004] and PatchMatch [Barnes et al. 2009],
are designed to match local intensities. Hence, they fail to match
under large visual variations. While other methods such as SIFT
flow [Liu et al. 2011] or deep match [Weinzaepfel et al. 2013] are
more reliable in matching sparse features, they are also not able to
handle extreme visual variations, such as matching across an artis-
tic painting and a real photograph. This is because these methods
are still fundamentally based on low-level features.

Methods have been proposed to match different particular domains,
such as drawings/paintings to photographs [Russell et al. 2011],
sketches to photos [Chen et al. 2009], and photos under different
illuminants [Chong et al. 2008]. However, these methods typically
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are very domain-specific and do not easily generalize. Schechtman
and Irani [2007] propose a more general solution using local self-
similarity descriptors that are invariant across visual domains, and
Shrivastava et. al. [2011] consider relative weighting between the
descriptors for cross-domain image matching. Unfortunately, these
methods do not produce dense correspondences between images of
different domains.

We handle the dense correspondence problem using ideas related
to image analogies [Hertzmann et al. 2001], which involve dense
mappings between images from different domains. An image anal-
ogy is codified as A : A′ :: B : B′, where B′ relates to B in the
same way asA′ relates toA, and additionally,A andA′ (alsoB and
B′) are in pixel-wise correspondences. In forming an image anal-
ogy, typically A, A′, and either B or B′ are given, and the goal is
to solve for the sole remaining image. In contrast, for our scenario
only a source image A and an example image B′ are given, and
both A′ and B represent latent images to be estimated, imposing a
bidirectional constraint to better match A to B′.

Solving the visual attribute transfer problem is equivalent to finding
both unknown imagesA′ andB. Instead of applying image analogy
to image pixels directly, we use a Deep Convolutional Neutral Net-
work (CNN) [Krizhevsky et al. 2012] to construct a feature space in
which to form image analogies. It has been shown that such deep
features are better representations for semantic structures [Zeiler
and Fergus 2014]. We call our new technique deep image analogy.

Our approach leverages pre-trained CNNs for object recognition
(e.g., VGG-19 [Simonyan and Zisserman 2014]) to construct such
a feature space. A nice property of CNN representations is that
they gradually encode image information from low-level details
to high-level semantic content. This provides a good decomposi-
tion of semantic structure and visual attributes for transfer. Be-
sides, the spatial correspondence between intermediate feature lay-
ers in CNN architectures is approximately maintained. Both prop-
erties facilitate a coarse-to-fine strategy for computing the nearest-
neighbor field (NNF), a core component used in reconstructing im-
ages. To speed up the required nearest-neighbor search, we adapt
PatchMatch [Barnes et al. 2009] to the CNN feature domain. Our
method uses the bidirectional constraint in the patch similarity met-
ric, which have previously been shown to work well on re-targeting
problems [Simakov et al. 2008]. In the present context, the use of
the bidirectional constraint introduces a useful symmetry and helps
to mitigate the risk of mismatches.

Our major technical contributions are:

1. We present a new method “deep image analogy”, which we
show to be effective for visual attribute transfer across images
in very different domains.

2. We extend PatchMatch and reconstruction from the im-
age domain to the feature domain, which serves to guide
semantically-meaningful visual attribute transfer.

We show how our deep image analogy technique can be effec-
tively applied to a variety of visual attribute transfer cases, namely
style/texture transfer, color/style swap, sketch/painting to photo,
and time lapse. Our technique also has the effect of generating two
results instead of the typical one generated from a one-way trans-
fer. Such results can be seen in Figure 1. Our deep image analogy
is designed to work on images with similar content composition. It
is not effective for images which are semantically unrelated (e.g.,
a headshot and a countryside photo), and is not designed to handle
large geometric variations (including scales and rotations).

2 Related Work

In this section, we review techniques that are related to visual at-
tribute transfer (color, texture, and style transfer, as well as image
analogy). We also briefly discuss two other topics very relevant to
our work: dense image correspondence and neural style transfer.

2.1 Visual Attribute Transfer

Much work has been done on the transfer of various visual attributes
(e.g., color, tone, texture, style) from one image to another, and
we discuss only representative papers for brevity. Most of these
approaches are, however, not general, in that they are designed to
transfer a specific type of visual attribute. As we show later, our
technique is designed to handle more types of visual attributes.

Color Transfer. Early color transfer techniques tend to be global,
i.e., a global transformation is applied to a source image to match
the color statistics of a reference image [Reinhard et al. 2001; Pitie
et al. 2005]. They work well when the source and reference im-
ages are of similar scenes, even though the spatial layouts can be
dissimilar. Other methods incorporate user input [An and Pellacini
2010; Welsh et al. 2002] or a large database [Dale et al. 2009; Laf-
font et al. 2014] to guide the color transfer. Local color transfer
methods infer local color statistics in different color regions by es-
tablishing region correspondences [Tai et al. 2005]. More recently,
Claudio et al. [2012] transfer local color between regions with the
same annotated class; in a similar vein, Wu et al. [2013] transfer the
color style across the same semantic regions.

Texture Transfer. Most early texture transfer algorithms rely on
non-parametric sampling for texture synthesis while using different
ways to preserve the structure of the target image. For instance,
Efros and Freeman [2001] introduce a correspondence map that in-
cludes features of the target image such as image intensity to con-
strain the texture synthesis procedure. Ashikhmin [2003] focuses
on transferring high-frequency texture information while preserv-
ing the coarse scale of the target image. Lee et al. [2010] im-
prove this algorithm by additionally augmenting texture transfer
with edge orientation information.

Style Transfer. Style transfer is used as a means to migrate an
artistic style from an example image to a source image. The de-
composition of content and style in artistic images is bound to the
coupling between the source content and the example style. Zhang
et. al. [2013] decompose the input images into three components:
draft, paint, and edge; the style is transferred from the template im-
age to the source image through the paint and edge components.
Frigo et. al. [2016] view style transfer as the composition of local
texture transfer and global color transfer, and suggest a simple yet
efficient adaptive image partition for the decomposition of style and
content. Shih et. al. [2014] robustly transfer the local statistics of
an example portrait onto a new one using a multi-scale technique
that separates local detail from structure.

Image Analogy. Texture or style transfer can also be done in a more
supervised manner, where a pair of images A and A′ are manually
registered, and the analog of image B (similar in style with A) is
to be found (resulting in B′). This approach, called image analogy,
is first reported in [Hertzmann et al. 2001] and extended in various
ways [Cheng et al. 2008; Bénard et al. 2013; Reed et al. 2015;
Barnes et al. 2015]. In our work, we apply the concept of image
analogy as a weak supervision, in a scenario where only an example
image B′ and an original image A are given.



A A′ B′

Figure 2: Our method separates the difficult mapping A →
B′(red) into two tractable mappings: in-place mapping A → A′

(yellow) and similar-appearance mapping A′ → B′ (blue).

2.2 Dense Correspondence

Finding dense correspondences between two images is a fundamen-
tal problem in computer vision and graphics. Initial correspondence
methods were designed for stereo matching, optical flow, and im-
age alignment [Lucas and Kanade 1981]. These methods compute a
dense correspondence field, but they assume brightness consistency
and local motion, and may be hard to handle occlusion well.

The development of various local invariant features (e.g.,
SIFT [Lowe 2004]) has brought up significant progress. These
features are robust to typical appearance variations (illumination,
blur, compression), and a wide range of 2D transformations. Some
methods combine sparse features with dense matching to cope with
large-displacement optical flow [Brox et al. 2009], while others per-
form matching of visually different scenes (e.g., SIFT-flow [Liu
et al. 2011], Deep flow [Weinzaepfel et al. 2013], Daisy flow [Yang
et al. 2014], and Region foremost [Shen et al. 2016]). More re-
cently, CNN-based features such as outputs of a certain convolution
layer [Long et al. 2014]), object proposals [Ham et al. 2015]) or
end-to-end trained network [Zhou et al. 2016] have been employed
with flow algorithms, and shown potential to better align intra-class
objects than handcrafted features (e.g., SIFT [Lowe 2004]). How-
ever, these methods assume locality and smoothness of the flow and
thus may fail to align objects under large displacements or non-rigid
deformations.

PatchMatch [Barnes et al. 2009] relaxes the rigidity assumption,
and is a fast randomized algorithm for finding a dense NNF for
patches. There are two extensions to handle patch variations in ge-
ometry and appearance. The Generalized PatchMatch [Barnes et al.
2010] algorithm allows these patches to undergo translations, rota-
tions, and scale changes. NRDC [HaCohen et al. 2011] handles
consistent tonal and color changes through iterative matching and
refinement of appearance transformations. Recently, a multi-scale
patch generazation called “Needle” [Lotan and Irani 2016] has been
shown to facilitate reliable matching of degraded images. These ap-
proaches are still fundamentally based on low-level features, and as
a result, fail to match images that are visually very different but se-
mantically similar. Our proposed technique seeks to address this
problem.

2.3 Neural Style Transfer

Our matching approach uses deep features generated by Deep Con-
volutional Neural Networks (CNN) [Krizhevsky et al. 2012]. It has
been shown in high-level image recognition tasks that such deep
features are better representations for images [Zeiler and Fergus
2014]. DeepDream [Alexander Mordvintsev 2015] is a recent at-
tempt to generate artistic work using a CNN. This inspired work
on neutral style transfer [Gatys et al. 2016b], which successfully
applied CNN (pre-trained VGG-16 networks [Simonyan and Zis-
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Figure 3: The input image A (or B′) is encoded by the CNN (e.g.
VGG-19) as a set of filtered images at each layer. Here we visualize
one representative filtered image for each layer.

serman 2014]) to the problem of style transfer, or texture trans-
fer [Gatys et al. 2015].

This method is able to produce more impressive stylization results
than traditional texture transfer, since a CNN is effective in de-
composing content and style from images. This idea is further
extended to portrait painting style transfer [Selim et al. 2016] by
adding face constraints. The most related work to ours is patch-
based style transfer by combining a Markov Random Field (MRF)
and a CNN [Li and Wand 2016a]. Yang et al. [2016] futher extend
this idea to image inpainting. These two works also use patch sim-
ilarity metric based on CNN features, but it only serves as a data
term to optimize pixel values of the output image. They do not
explicitly establish the correspondence between two images as our
method does.

Another approach of neural style transfer is to directly learn a feed-
forward generator network for a specific style. For example, John-
son et al. [2016] define a perceptual loss function to help learn a
transfer network designed to produce results that match those of
Gatys et al. [Gatys et al. 2016b]. Ulyanov et al. [2016] propose
a texture network for both texture synthesis and style transfer. Li
and Wand [2016b] introduce a Markovian Generative Adversarial
Network to speed up their previous approach [Li and Wand 2016a].
Chen et al. [2017] and Dumoulin et al. [2016a] further extend the
style transfer network from a single style to multiple styles.

Despite major progress, these methods are unable to guarantee
that the transferred results are structure-preserving. In addition,
they often generate stylization results with texture that is randomly
distributed. In contrast, our technique transfers style in a more
structure-preserving manner, and this is due to semantic-based
dense correspondences.

3 Motivation

Given an image pair A and B′, which may differ in appearance but
have similar semantic structure, the goal is to find the mapping from
A toB′ (or fromB′ toA) for visual attribute transfer. It is assumed
that the image pair has different visual attributes.

Analogy with Bidirectional Constraint. It is non-trivial to directly
matchA andB′ due to their appearance differences. Our solution is
to formulate the mapping as a problem of image analogies [Hertz-
mann et al. 2001]: A : A′ :: B : B′, where A′ and B are unknown
latent variables. This analogy implies two constraints: 1) A and A′

(alsoB andB′) correspond at the same spatial position; 2)A andB
(also A′ and B′) are similar in appearance (color, lighting, texture
and etc.). As illustrated in Figure 2, the difficult mapping prob-
lem from A and B′ (red arrow) can be separated into one in-place
mapping from A to A′ (yellow arrow) and one similar-appearance



mapping from A′ to B′ (blue arrow). The mapping from B′ to A is
achieved in the same way with the help of B.

These forward and reverse mapping functions between images A
and B′ are denoted as Φa→b and Φb→a, respectively. More specif-
ically, Φa→b maps a pixel at location p from A to B′. Because of
in-place mappings A → A′ and B → B′, Φa→b is also the map-
ping from A to B, A′ to B′, and A′ to B. It is found by imposing
the constraints

A(p) = B(Φa→b(p)) and A′(p) = B′(Φa→b(p)). (1)

Φb→a is the reverse mapping. To further achieve symmetric
and consistent mappings, we consider the bidirectional constraint,
namely Φb→a(Φa→b(p)) = p and Φa→b(Φb→a(p)) = p. The
latent images A′, B and mapping functions Φa→b, Φb→a are alter-
natively optimized in our objective function described in Section 4.

Reconstruction using CNN. The recovery of latent images A′ and
B is crucial in our method. Here we discuss the reconstruction of
A′; B is recovered in the same way. The ideal A′ should com-
prise the content structure from A and corresponding visual details
from B′. We solve this problem using an image decomposition
and reconstruction hierarchy. We adopt recent CNNs trained on
an object recognition dataset, which compresses image informa-
tion progressively from precise appearance (fine) to actual content
(coarse) [Gatys et al. 2016b] (Figure 3). At the coarsest layer, A
andB′ may have very similar content information for better match-
ing as indicated by yellow rectangles. As a result, we can assume
A′ to be A at this layer of the CNN. In contrast, this assumption
fails in other image decompositions such as the Laplacian pyramid,
whereA andB′ may still differ remarkably in colors at the coarsest
layer.

At other layers of the CNN, we selectively extract content struc-
tures from features of A and detail information from features of
B′ by a weighted mask, which helps construct a linearly weighted
combination to recover features of A′. We will describe the im-
plementation details in Section 4.3. The updated latent images will
carry the fusion information to the next layer for further mapping
refinement.

Deep PatchMatch. Given latent images A′ and B, inferring Φa→b
and Φb→a is equivalent to computing a forward NNF and a reverse
NNF betweenA andB as well as betweenA′ andB′. More specifi-
cally, the forward NNF mapsA toB; this NNF also mapsA′ toB′.
The reverse NNF is similarly defined. PatchMatch [Barnes et al.
2009] is known as a randomized fast algorithm for computing ap-
proximate NNF between two images. Good patch matches can be
found through random sampling, and spatial coherence in the im-
agery allows us to propagate such matches quickly to surrounding
areas. Instead, we consider PatchMatch in a deep feature domain,
which can provide better representations for semantic-level corre-
spondences and be able to be incorporated into our CNN-based la-
tent image reconstruction.

4 Deep Image Analogy

We achieve visual attribute transfer through image analogy and
deep CNN features; an overall process we refer to as deep image
analogy. Figure 4 shows the system pipeline. We first compute
deep features for the input image pair A/B′ through pre-trained
CNN, and initialize feature maps of two latent images A′/B at the
coarsest CNN layer in the preprocessing step (in Section 4.1). Then,
at each layer, we compute a forward NNF and a reverse NNF that
establish correspondences between feature maps ofA andB as well
as between feature maps ofA′ andB′. (Section 4.2). The extracted
NNFs together with feature maps are used to reconstruct features
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Figure 4: System pipeline.

of latent images A′/B at the next CNN layer (in Section 4.3). The
NNFs obtained at the current layer are further upsampled to the next
layer as their initialization (in Section 4.4). These three steps (NNF
search, latent image reconstruction and NNF upsampling) are re-
peated at each layer, updating correspondences from coarse to fine.

4.1 Preprocessing

Our algorithm starts with precomputing feature maps by a VGG-
19 network [Simonyan and Zisserman 2014] that is trained on the
ImageNet database [Russakovsky et al. 2015] for object recogni-
tion. We obtain the pyramid of feature maps {FLA} and {FLB′}
(L = 1...5) for the input images A and B′. The feature map of
each layer is extracted from the reluL 1 layer. It is a 3D tensor with
width × heights × channel, and its spatial resolution increases
from L = 5 to 1, as shown on Figure 4(left).

The features of A′ and B are unknown. We estimate them in
a coarse-to-fine manner, which needs a good initialization at the
coarsest layer (L = 5). Here, we let F 5

A′ = F 5
A and F 5

B = F 5
B′

initially, that is, we view A and A′ (also B and B′) to be very sim-
ilar at the top layer where the images have been transformed by the
CNN into representations with the actual content, but being invari-
ant to precise appearance (as shown in Figure 3).

4.2 Nearest-neighbor Field Search

At layer L, we estimate a forward NNF and a reverse NNF; they are
represented by mapping functions φLa→b and φLb→a, respectively.
φLa→b maps a point in feature map FLA to another in feature map
FLB . Note that φLa→b also maps FLA′ to FLB′ . φLb→a is similarly
defined in the reverse direction. φLa→b is computed by minimizing
the following energy function:

φLa→b(p) = arg min
q

∑
x∈N(p),y∈N(q)

(||FLA(x)− FLB(y)||2

+||FLA′(x)− FLB′(y)||2),

(2)

whereN(p) is the patch around p. We set the patch size to be 3×3
when L = 5, 4, 3, and 5×5 when L = 2, 1. For each patch around
pixel p in the source A (or A′), we find its nearest neighbor posi-
tion q = φLa→b(p) in the target B (or B′). The mapping function
φLb→a(p) is similarly computed.

F (x) in Equation (2) is a vector that represents all channels of
the L-th feature layer at position x. We use normalized features



(a) (b) (c) (d)

Figure 5: Benefits of bidirectional constraint and deconvolu-
tion. (a)input images (b) bidirectional + deconvolution (c) single-
direction + deconvolution (d) bidirectional + resampling.

F
L

(x) = FL(x)

|FL(x)| in our patch similarity metric, because relative
values are more meaningful than absolute values in networks.

Equation (2) does not require a regularization term because local
smoothness is implicitly achieved through aggregation of overlap-
ping patches. Such a unary-only energy formulation can be effi-
ciently optimized with the PatchMatch method [Barnes et al. 2009].
We adapt this approach of random search and propagation to sup-
port two pairs of multi-channel feature maps.

Our NNF search considers the constraints imposed by forward and
reverse NNFs in the following manner. As indicated in Equa-
tion (2), the estimation of φLa→b relies on four feature maps. Among
them, the reconstruction of FLB depends on the reverse mapping at
previous layer φL+1

b→a which will be described in Section 4.3. In
other words, φLa→b is constrained by φL+1

b→a through FLB ; symmetri-
cally φLb→a is constrained by φL+1

a→b through FLA′ . With these con-
straints, φLa→b and φLb→a usually will agree, and thus discourages
ambiguous 1-to-n mapping. In contrast, if we consider only single-
direction mapping, Equation (2) becomes:

φLa→b(p) = arg min
q

∑
x∈N(p),y∈N(q)

||FLA′(x)− FLB′(y)||2 (3)

for optimizing the mapping φLa→b. Unfortunately, it is prone to
misalignment. We show a comparison in Figure 5(b)(c).

At every layer, we have to recover features ofA′ andB before NNF
search. In this section, we will mainly discuss the reconstruction of
A′; B can be estimated likewise. As mentioned in Section 3, the
reconstruction of FL−1

A′ at layer L− 1 is the fusion of content from
FL−1
A and details from FL−1

B′ . Let us define the feature map RL−1
B′

to be the modified version of FL−1
B′ to fit the structure of A. FL−1

A′

is computed using a weighted sum:

FL−1
A′ = FL−1

A ◦WL−1
A +RL−1

B′ ◦ (1−WL−1
A ), (4)

where ◦ is element-wise multiplication on each channel of feature
map, and WL−1

A is a 2D weight map (with the elements ranging
from 0 to 1) used to separate content structures from details. As
mentioned in Section 4.1, FL−1

A is pre-computed. Next, we will
introduce how to compute RL−1

B′ and WL−1
A respectively.

Ideally, the RL−1
B′ should be equal to the warped FL−1

B′ with φL−1
a→b:

RL−1
B′ = FL−1

B′ (φL−1
a→b). However, φL−1

a→b is initially unknown at
layer L − 1. A naı̈ve method is to directly upscale φLa→b to the
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Figure 6: Recovering features of latent imageA′ by weighted com-
bination of the structures from A and the visual details sampled
from B′.

Inputs +0.2 +0.1 +0.0 −0.1

Figure 7: Effect of different global offsets for weights {αL}4L=1.

dimension at layer L − 1, and then warp FL−1
B′ with it. Unfortu-

nately, this method cannot preserve mapped structures from previ-
ous layers (in Figure 5(d)). This is because spatial correspondence
between two adjacent layers cannot be exactly maintained due to
non-linear modules in CNNs (i.e., ReLU, Max-Pooling).

To address this problem, we present a new approach, which first
warps the feature maps at the previous layer before deconvolv-
ing the warped features for the current layer. Specifically, we
warp FLB′ by using φLa→b, getting FLB′(φ

L
a→b). Let the sub-net of

CNN including all computing units between layer L − 1 and L
be denoted as CNNL

L−1(·). Our objective is to make the output
of CNNL

L−1(RL−1
B′ ) be as close as possible to the target features

FLB′(φ
L
a→b). Hence, RL−1

B′ , which is randomized initially, can be
solved by minimizing the following loss function:

L
RL−1

B′
= ||CNNL

L−1(RL−1
B′ )− FLB′(φLa→b)||2. (5)

The gradient with respect to the feature values ∂L
RL−1

B′
/∂RL−1

B′

can be used as input for some numerical optimization strategy. Here
we use gradient descent (L-BFGS) [Zhu et al. 1994]. The optimiza-
tion for feature deconvolution is similar to update the stylization
result by pre-trained CNN, described in [Gatys et al. 2016b].

4.3 Latent Image Reconstruction

The role of the 2D weight map WL−1
A is to separate content struc-

tures from details. Multiplying FL−1
A (or RL−1

B′ ) with WL−1
A (or

1 −WL−1
A ) helps extract content information from FL−1

A (or de-
tails from RL−1

B′ ). All feature channels share the same 2D weight
map, which can be further be represented by

WL−1
A = αL−1M

L−1
A , (6)

where ML−1
A is a function that specifies the magnitudes of neu-

ron responses at layer L-1, in order to preserve content structures
from A when they are present. We apply a sigmoid function to
get ML−1

A (x) = 1

1+exp(−κ×(|FL−1
A

(x)|2−τ))
, with κ = 300, τ =



L = 5 L = 4 L = 3 L = 2 L = 1

φLa→b

B′(φLa→b)

B′(φLa→b)
(layer inde-
pendent)

φLb→a

A(φLb→a)

A(φLb→a)
(layer inde-
pendent)

Figure 8: Visualization of NNFs (top row), reconstructed results
with NNFs (middle row) and reconstructed results based on layer-
independent NNFs (bottom row) of each layer.

0.05, and |FL−1
A (x)|2 being normalized to [0, 1]. In the reverse

direction, ML−1
B′ is computed using FL−1

B′ instead of FL−1
A .

The scalar αL−1 (in Equation (6)) controls the trade-off between
content and attribute such as style, which is similar to [Gatys et al.
2016b]. When αL−1 → 1, it means that A′ should be exactly con-
sistent with A in structure. Reducing αL−1 would lead to structure
variations in A′ compared to A. The coarse layer represents more
structure information than the fine layer due to higher-level ab-
straction, so we gradually decrease αL−1 from coarse to fine layer.
For all of our visual attribute transfer results, the default setting is
{αL}L=4,3,2,1 = {0.8, 0.7, 0.6, 0.1}. We only vary the default
settings using two global offsets, namely {αL}4L=1± 0.1. Figure 7
shows the effect of changing the global offset. Larger weights tend
to produce results with more similar structure to inputs (A or B′).

In summary, latent image reconstruction involves feature map warp
at the current layer, deconvolution for the next layer, and fusion, as
illustrated in Fig 6.

4.4 Nearest-neighbor Field Upsampling

Our NNFs are computed in a coarse-to-fine manner. At the coarsest
layer, the mappings φ5

a→b and φ5
b→a are randomly initialized (L =

5). For other layers, as an initial guess, we upsample φLa→b, φ
L
b→a,

to layer L − 1. Since the NNF obtained by PatchMatch is only
piece-wise smooth, we use nearest-neighbor interpolation instead
of linear interpolation.

The upscaled NNFs only serve as initial guesses, and they are fur-
ther refined by NNF search (described in Section 4.2). Addition-
ally, the initial guess serves as guidance to limit the random search
space at every layer. A similar scheme is adopted in the extension
of PatchMatch algorithm [Hu et al. 2016]. In our work, the search

space is limited to be the receptive field of the network at each
layer. For VGG-19, the random search radii of layers {4, 3, 2, 1}
are {6, 6, 4, 4}, respectively. Figure 8(top rows) shows how our
mappings are gradually optimized from coarse to fine. Compared
with the layer-independent matching results (bottom rows of Fig-
ure 8), our hierarchical matching scheme successfully propagates
the correspondences from coarse levels to fine levels where matches
are ambiguous, as shown in Figure 8(middle rows).

4.5 Output

After we obtain the final NNFs φ1
a→b (also φ1

b→a) at the lowest
feature layer, we let the pixel-location mapping functions Φa→b
and Φb→a equal to φ1

a→b and φ1
b→a respectively, since the features

at the lowest layer have the same spatial dimension as the input
images. We then reconstruct A′ by patch aggregation in the pixel
layer of image: A′(p) = 1

n

∑
x∈N(p)

(B′(Φa→b(x)), where n = 5×5

is the size of patch N(p). B is reconstructed in a similar way.

ALGORITHM 1: Deep Analogy algorithm

Input : Two RGB images A and B′.
Output: Two pixel-location mapping functions: Φa→b, Φb→a;

and two RGB images A′, B.

Preprocessing (Section 4.1):
{FLA}5L=1, {FLB′}5L=1 ← feed A,B′ to VGG-19 and get

features.
F 5
A′ = F 5

A, F 5
B = F 5

B′ , and randomize mapping function φ5
a→b,

φ5
b→a.

for L = 5 to 1 do
NNF search (Section 4.2):
φLa→b ← map FLA to FLB , FLA′ to FLB′ .
φLb→a ← map FLB to FLA , FLB′ to FLA′ .

if L > 1 then
Reconstruction (Section 4.3):

Warp FLB′ with φLa→b to FLB′(φ
L
a→b).

Deconvolve RL−1
B′ with FLB′(φ

L
a→b) and CNNL

L−1(·).
FL−1
A′ ← weighted blend FL−1

A and RL−1
B′ .

Warp FLA with φLb→a to FLA (φLb→a)

Deconvolve RL−1
A with FLA (φLb→a) and CNNL

L−1(·).
FL−1
B ← weighted blend FL−1

B′ and RL−1
A .

NNF upsampling (Section 4.4):
Upsample φLa→b to φL−1

a→b
Upsample φLb→a to φL−1

b→a
end

end
Φa→b= φ1

a→b, Φb→a= φ1
b→a

A′(p) = 1
n

∑
x∈N(p)

(B′(Φa→b(x)),

B(p) = 1
n

∑
x∈N(p)

(A(Φb→a(x))

4.6 Algorithm and Performance

The pseudo code of our implementation is listed in Algorithm 1.
Our core algorithm is developed in CUDA. All our experiments are
conducted on a PC with an Intel E5 2.6GHz CPU and an NVIDIA
Tesla K40m GPU. The runtime of each module is based on the in-
put image with resolution 448 × 448. There are two bottlenecks.
One is deep PatchMatch (∼ 40 seconds), which needs to compute
patch similarities on hundreds of feature channels. Another is fea-
ture deconvolution (∼ 120 seconds), which may require hundreds
of iterations to converge for Equation (5).



(a) Input (src) (b) Input (ref) (c) SIFT flow (d) DeepFlow2 (e) PatchMatch (f) Ours

Figure 9: Comparison of different dense correspondences methods on input pairs with the same scene but slightly different views or motions.
Some reconstruction errors are indicated by the red arrows.

(a) Input (src) (b) Input (ref) (c) SIFT flow (d) DeepFlow2 (e) PatchMatch (f) NRDC (g) RFM (h) Ours

Figure 10: Comparison of different dense correspondence methods on input pairs with the same scene but large variations in view, color,
and tone. (For the first example, both public result and implementation of RFM are unavailable, so we have to make the result empty here.)

(a) Input (src) (b) Input (ref) (c) SIFT flow (d) DeepFlow2 (e) PatchMatch (f) Daisy flow (g) Halfway (h) Ours

Figure 11: Comparison of different dense correspondence methods on input pairs semantically-related but with vastly different styles.

5 Evaluations on Matching

We evaluate the matching quality of our approach and state-of-the-
art methods on three different categories of data: (I) the same scene,
with very similar appearance and slight camera/object motions
(e.g., neighboring frames in video); (II) the same scene, with varia-
tions in view, color, and tone (e.g., two photos from different cam-
eras or illumination); (III) semantically-related scene with vastly
different styles (e.g., photograph and painting) or appearances. Our
default parameter ranges are designed for images with very differ-
ent appearance like those in category (II) and (III). So for the special
case (I) which always requires two views to be perfectly aligned in
structures, we specially set {αL}L=4,3,2,1 = {1.0, 1.0, 1.0, 1.0} to
achieve comparable quality to other methods. For category (II) we
use default weights plus offset +0.1, and for category (III) we use
the default weights. We keep automatic weights selection based on
inputs in future work. All other approaches are based on author-
provided implementations with the default settings.

SIFT Flow DeepFlow2 PatchMatch ours

PSNR 27.97 30.04 35.18 34.16
Endpoint err. 0.91 0.34 22.40 3.21

Table 1: Reconstruction accuracy and flow endpoint error of dif-
ferent dense correspondence estimation methods.

Category (I) is tested on the Middlebury optical flow benchmark
dataset, total 23 color image pairs. We compared with Patch-
Match [Barnes et al. 2009], SIFT Flow [Liu et al. 2011] and Deep-
Flow2 [Weinzaepfel et al. 2013]. We evaluate the matching ac-
curacy by both flow endpoint error and reconstruction errors (i.e.,
PSNR metric). Similar to Patchmatch, our method does not assume
any flow continuity, so it performs better than the flow methods (i.e.,
Sift Flow and DeepFlow2) in reconstruction error but worse in flow
endpoint error, as shown on Table 1. Since the task of this paper is
image reconstruction rather than pure motion estimation, the recon-



aero bike boat bottle bus car chair table mbike sofa train tv mean

PatchMatch [Barnes et al. 2009] 6.5 6.3 2.6 2.9 2.3 4.7 3.3 12.5 2.0 0.0 4.2 2.6 4.2
SIFT Flow [Liu et al. 2011] 8.1 14.3 5.1 26.1 25 20.9 13.3 6.3 14.3 15.4 4.2 44.7 16.5
Cycle consistency [Zhou et al. 2016] 12.9 6.3 10.3 39.1 27.3 23.3 13.3 12.5 6.1 19.2 12.5 36.8 18.3
Ours 19.4 7.9 15.4 27.5 47.7 11.6 20.0 6.3 18.4 15.4 12.5 50.0 21.0

Table 2: Correspondence accuracy measured in PCK. The test is conducted on randomly selected 20 pairs of each category of the PASCAL
3D+ dataset. Overall, our method outperforms the three baselines.

Source

PatchMatch

SIFT Flow

Cycle
consistency

Ours

Reference

Figure 12: Visual comparison of keypoint transfer performance for different methods on representative examples of the PASCAL 3D+ dataset.

struction error makes more sense in our applications. Note that our
reconstructed results look slightly worse than PatchMatch. This is
because our approach does not consider color similarity as well as
Patchmatch, which causes inconsistent color matches in our results.
Figure 9 shows a visual comparison of the three methods and ours.

For category (II), we collect public data from [Yang et al. 2007;
HaCohen et al. 2011; Shen et al. 2016]; we show some examples
in Figure 10. The input pair of images differ significantly in object
pose, illumination, and season. Since PatchMatch [Barnes et al.
2009] is based on color similarity, it may fail to match similar struc-
tures with different colors, leading to a result with appearance that
is close to the source image (see Figure 10(e)). In contrast, SIFT
flow [Liu et al. 2011] and Deepflow [Weinzaepfel et al. 2013] are
better in matching structures (see Figure 10(c)(d)) because sparse
features are matched instead of color. However, there are notice-
able mismatches in areas without feature points. Regional fore-
most matching (RFM) [Shen et al. 2016] and NRDC [HaCohen
et al. 2011] work well on these regions where matches are found.
However, RFM fails for large non-rigid motion (Figure 10(g))) and
NRDC can reliably match only a small fraction of the image in
some cases (Figure 10(f)). Our results (Figure 10(h)) look visually
comparable with either NRDC or RFM at regions with high confi-
dence, and provide a better guess elsewhere.

For category (III), we collect pairs of photo and painting online by
searching generic words such as “bird”, “girl”, and “portrait”. Two
examples are shown in Figure 11. The task would be intractable for

existing matching work [Liu et al. 2011; Weinzaepfel et al. 2013;
Barnes et al. 2009; Yang et al. 2014], and we can see noticeable
artifacts in their results (Figure 11(c)(d)(e)(f)). The Halfway mor-
phing [Liao et al. 2014] addresses this kind of problem. However,
their method relies on a modified SSIM term to find low-level fea-
ture correspondences, and needs user interaction to provide high-
level matching. Without user input, they may fail as well on these
cases (Figure 11(g)). By contrast, our approach is automatic and
can produce visually acceptable results (Figure 11(h)).

We further evaluate on the Pascal 3D+ dataset [Xiang et al. 2014],
which provides annotated sparse correspondences for semantically-
related objects with remarkably different appearances. For each
category in the Pascal 3D+ dataset, we randomly sample 20 image
pairs from the training and validation datasets. Cycle consistency
[Zhou et al. 2016] is a representative work considering high-level
semantic information for dense matching. We conduct the same
evaluation as that of Zhou et al. [Zhou et al. 2016] for all compet-
ing methods. The quality of correspondences is measured by the
percentage of correct keypoint transfer (PCK) over all pairs sug-
gested by Zhou et al. [Zhou et al. 2016]. The quantitative com-
parisons between different methods are shown in Table 2 and the
visual comparisons on representative pairs are shown in Figure 12.
Both our method and cycle consistency obtain better performance
than methods based on low-level feature, e.g. SIFT Flow and Patch-
Match. Overall, our method performs better than cycle consistency,
even though the features we used are not trained on the Pascal 3D+



Figure 13: Our photo-to-style transfer results. For each group, two images in the upper row are reference styles. The leftmost one in the
lower row is the input photo, other two images are our results.

dataset.

6 Applications

In this section, we show how our approach can be effectively used
for four different tasks of visual attribute transfer: photo to style,
style to style, style to photo, and photo to photo. For comparison
with other methods, we again ran author-released implementations
with default settings, or submit our images to their services or apps.
More comparisons and results can be found in our supplemental
material. All results are better viewed in electronic form.

6.1 Photo to Style

One key application of our approach is to transfer a photo to a refer-
ence artistic style. Users can easily borrow specific artwork styliza-
tion (possibly by famous or professional artists) to render their own
photos for sharing and entertainment. A few examples are shown
in Figure 13. The recent technique of neural style transfer [Alexan-
der Mordvintsev 2015; Gatys et al. 2016b; Johnson et al. 2016; Li
and Wand 2016a; Selim et al. 2016] generated very impressive styl-

ization results, and some apps or services (e.g., Prisma1, Google
Deep Style2, Ostagram3) based on CNN are also very popular.

In comparison to these approaches, ours is capable of higher quality
content-specific stylization that better preserves structures. Neural
style [Gatys et al. 2016b] and perceptual loss methods [Johnson
et al. 2016] rely on global statistics matching, and as a result, do
not guarantee local structure-to-structure transfer. For example, the
face in their results (top row of Figure 14) contains flower textures.
If two inputs are totally unrelated as shown on top row of Figure 15,
both ours and theirs are visually different but acceptable. Google
Deep Style and Ostagram are two online consumer services. They
also do not appear to transfer structures effectively in Figure 14.
The portrait style approach [Selim et al. 2016] enforces constraints
of face alignment to maintain the face structure. Ghosting artifacts
on non-face regions are evident, as shown in bottom row of Fig-
ure 14. CNNMRF [Li and Wand 2016a] uses a non-parametric
model, but different from ours, it is independent at each layer. In
both methods, artifacts occur at misaligned regions. This can be

1http://prisma-ai.com/
2http://www.deepstylegenerator.com/
3https://ostagram.ru/



Input (src) Input (ref) Neural style Deep style Ostagram Prisma Ours

Input (src) Input (ref) Neural style Perceptual loss CNNMRF Deep style Ours

Input (src) Input (ref) Neural style Perceptual loss CNNMRF Portrait style Ours

Figure 14: Comparison with other style-transfer methods and apps based on neural network.

Inputs Neural style Ours

Input (A) CNNMRF (A′) Ours (A′)

Input (B′) CNNMRF (B) Ours (B)

Figure 15: Comparison with Neural style and CNNMRF on their
examples.

seen at the boundary between neck and shirt on ours and the left
eye on theirs (Figure 15(bottom row)).

The other methods optimize for the pixel color using a loss func-
tion that combines content and style information, while ours di-
rectly samples reference patches using our estimated NNF. This

is the primary difference between ours and other methods. Al-
though our results less faithfully capture the content at times, they
are able to better reproduce the style. As an example, while the
Neural Style method has captured the appearance of the woman’s
face more faithfully than ours in Figure 14(bottom row), our version
is a better reproduction of the style.

6.2 Style to Style

When input pairs of images are two content-related artworks but
with vastly different styles, our method is able to swap the styles.
To our knowledge, this is a new and fun effect, which has not been
demonstrated before. For example, we are able to re-factor the
“Pharaoh status” to the style of “Peking Opera facial makeup”, as
shown in Figure 16(second row). Our approach surprisingly works
well for this application. Some results are shown in Figure 16.

6.3 Style to Photo

This can be seen as the inverse problem of photo to style. Unfor-
tunately, this task is much more difficult than style transfer. One
reason is that artworks tend to lack detail in favor of creativity. An-
other reason is that humans are very sensitive to slight structure
misalignments; the quality bar for photorealism is known to be very
high. Generally, our approach is less successful on this task com-
pared with the photo-to-style application. However, our approach is
still able to transfer sketches or paintings to real photographs, with
more plausible results when both images are very related. Figure 17
show some example results.

We further compare our methods with the CG2Real [Johnson et al.
2011] on their provided examples, shown in Figure 18. They re-
trieve a small number of photos with similar global structure of the
input CG, identify the corresponding regions by co-segmentation
and transfer the regions to CG. In contrast to their region-to-region
transfer, our approach builds a pixel-to-pixel mapping, which can
better maintain the structures of the input CG image, shown in Fig-
ure 18(first row). Moreover, our results are visually comparable to
theirs, even though we use only one reference photo while CG2Real
uses multiple photos.
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A (input) A′ (output) B (output) B′ (input)

Figure 16: Style-swap results.

6.4 Photo to Photo

Photo to photo mapping can be in the form of color or tone trans-
fer. Our approach enables local transfer in corresponding regions.
Generally, only color or tone are borrowed from the reference, not
allowing details. For this goal, we slightly modify our algorithm
by applying a refinement on the reconstructed result. Specifically,
we use weighted least squares filter (WLS) [Farbman et al. 2008]
to smooth both input image A and reconstructed result A′ with the
guidance A. The final result Ã′ is obtained by:

Ã′ = WLS(A′, A) +A−WLS(A,A), (7)

which implies that we only need to maintain colors of A′ while
discarding details ofA′, and filling in with details ofA. It is similar
for B. Without the refinement, the details from the reference will
introduce distortion to the fine-grained structures of objects in the
source image, for example, the eyes and nose in the comparison
with and without the refinement (Figure 19).

We further show two examples compared with NRDC [HaCohen
et al. 2011] in Figure 21(a). NRDC uses a global color mapping
curve based on a small potion of matches. By contrast, our transfer

is local, which may produce better region-to-region transfer than
NRDC, as shown in the grass region of Figure 21(a) (second row).
Such local transfer is sometimes sensitive to the quality of match-
ing. For instance, we observe some inaccurate color mappings,
like saturated sky region in Figure 21(a) (first row), caused by mis-
matched regions. Beyond the capability of NRDC, our approach
can also transfer color across images with different scenes, such as
the time-lapse example shown in Figure 20, due to the identified
semantic correspondences, e.g., tree to tree, mountain to mountain.

Compared with other local color transfer methods, e.g. shih et
al.[Shih et al. 2013] and Luan et al.[Luan et al. 2017] in Fig-
ure 21(c), our method can produce visually comparable results to
theirs. However, our algorithm takes a single image as reference,
while their methods require either a full time-lapse video [Shih et al.
2013] or optional precomputed segmentation masks [Luan et al.
2017]. When compared with Luan et al.[Luan et al. 2017] carefully,
we can find some undesired posterization effects (e.g., forehead in
Figure 21(b) and buildings in Figure 21(c)), which do not occur in
ours. Compared with Shih et al. [Shih et al. 2014], both ours and
Luan et al. [Luan et al. 2017] fail to transfer some details (e.g., eye
highlights) as shown in Figure 21(b).



Input (src) Input (ref) Output Input(src) Input (ref) Output

Figure 17: Results of converting a sketch or a painting to a photo.

Input (src) Input (ref) Ours CG2Real

Figure 18: Comparisons of our CG-to-photo results with CG2Real method on their examples. For the inputs in each group, the source CG is
used by both ours and theirs, but the reference photo is only for ours. Their multiple reference photos are not given in their paper.

Inputs Â′ (with) A′ (without)

Figure 19: Comparisons of transfer color with (middle column)
and without (right column) WLS refinement.

7 Discussion

Semantic-level matching is not fool-proof, since our deep match
approach relies on a pre-trained VGG network that has limited ca-
pability in representing all objects or fine-grained structures. A
possible improvement would be to train our network on a domain-
specific dataset for better image representation. If an object is found

in one image but not the other, it is not clear how semantic matching
can be done. We show a failure case in Figure 22(top-left), which
shows the mismatched hat region.

For the scenes which are semantically related but vary a lot in
scales and view points, our method still fails to build correct cor-
respondences as shown in Figure 22(top-right). Addressing these
cases would require either pre-scaling images or allowing patches
to be rotated and scaled in our NNF search like Generalized Patch-
Match. However adding rotation or scale is nontrivial since geo-
metric transformations in the image domain are not well preserved
with those in feature domain because of non-linear modules (e.g.,
ReLU).

Moreover, our method may fail to find correspondences in texture-
less regions that have very low neural activation, like the back-
ground in Figure 22(bottom-right). This problem may be ad-
dressed by either analyzing pixel intensity or by explicitly enforcing
smoothness in our energy function.

Our photo-to-style transfer application is unable to produce geome-
try style transfer, like the case shown in Figure 22(bottom-left). The
assumption in our work is to maximally preserve content structure.



Input (ref 1) Input (ref 2) Input (ref 3) Input (ref 4)

Input (src) Output 1 Output 2 Output 3 Output 4

Figure 20: Results of generating time-lapse sequences with references of another semantic-related scene.

(b)(a)

(c)

Inputs HaCohen et al. (2011) Ours Inputs Shih et al. (2014) OursLuan et al. (2017)

Inputs Shih et al. (2013) OursLuan et al. (2017)

Figure 21: Comparison of our photo-to-photo results with other state-of-art methods on their examples. For the inputs in each group, the
upper one is the source photo and the lower one is the reference photo.

We may relax the assumption in future work.

8 Concluding Remarks

We have demonstrated a new technique for transferring visual at-
tributes across semantically-related images. We adapted the notion
of image analogy to a deep feature space for finding semantically-
meaningful dense correspondences. We show that our method
outperforms previous methods where image pairs exhibit signifi-
cant variance in their appearance including lighting, color, texture,

and style. We have shown that our approach is widely applicable
for visual attribute transfer in real-world images, as well as addi-
tional transfer challenges such as content-specific stylization, style
to photo, and style to style. We believe this method may also be
proven useful for a variety of computer graphics and vision appli-
cations that rely on semantic-level correspondences.



Figure 22: Some examples of failure cases.
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