Microsoft



Interplay between Social Influence and Network Centrality: A Comparative Study of Shapley Centrality and Single-Node-Influence Centrality

Wei Chen Microsoft Research Asia



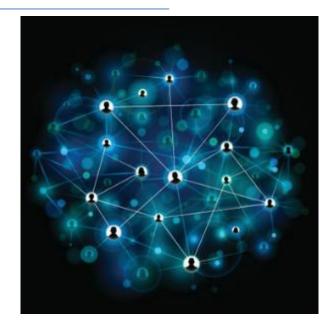
Shang-Hua Teng University of Southern California



WWW'2017, April 6, 2017

#### Network Centrality: Key Concept in Network Science

- Key question: who are at the central positions in a network?
- Classical Centrality Measures: Degree, Distance, Betweenness, Eigenvalue (PageRank)
- Issue: Only deal with static network structure, what about the effect of social interaction dynamics on network centrality?

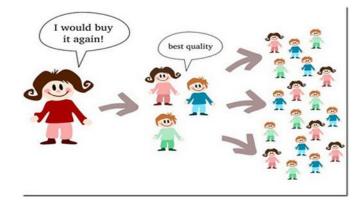




### Social Influence: Dynamics on Social Networks

- Social Influence: Social influence is everywhere
  - Adoptions if ideas, innovations, products, opinions
  - Conformity, social pressure, obedience
  - Influences are propagated in the network
- Questions:
  - How to incorporate social influence in centrality measure?
  - How to systematically study influence-based centrality measures?

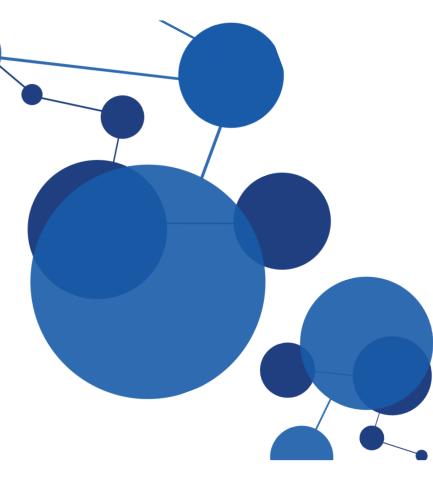




### Our Approach

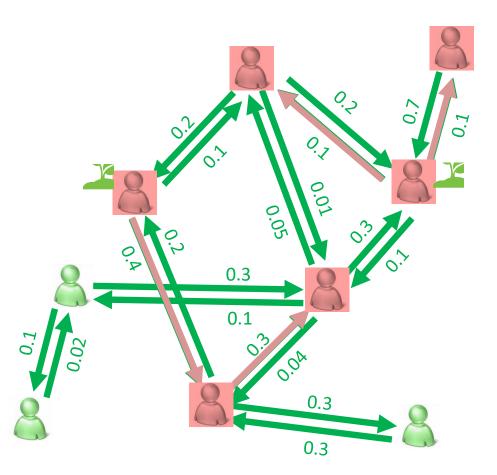
- Comparative study on two centrality measures:
  - Single-Node-Influence (SNI) centrality: since node's influence used as centrality
  - Shapley centrality: based on cooperative game theory, allocate total influence as credits/shares to nodes
- Axiomatic study: axiomatic characterization of both centralities
  Provide the precise difference of the two centralities
- Algorithmic study: efficient algorithms for both centralities

## Definitions of SNI and Shapley Centralities



#### Stochastic Influence Propagation Models

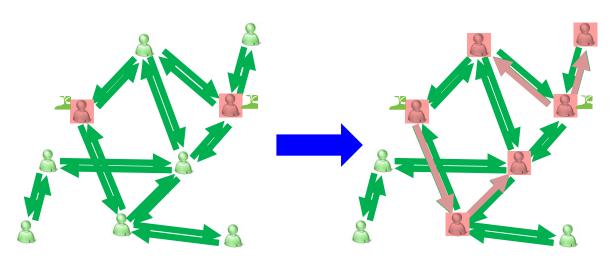
- Model how influence stochastically propagate in a network, starting from a seed set
- Classical models: Independent Cascade (IC) Model, triggering model [Kempe, Kleinberg, Tardos '03]
  - No need to understand the mechanism for this talk
- Influence spread  $\sigma(S)$ : expected number of nodes activated
  - Measure the power of set  ${\it S}$



#### General Influence Instance

- Influence instance  $I = (V, E, P_I)$ 
  - $-P_{I}: 2^{V} \times 2^{V} \rightarrow [0,1]$
  - $P_{I}(S,T)$ : probability that seed set S activates exact target set T
  - $-S \subseteq T$
- Influence spread:

 $-\sigma(S) = \sum_{T \subseteq V} P_{I}(S,T) \cdot |T|$ 



#### Influence-based Centrality Measure

- Influence-based centrality measure  $\psi$ 
  - $-\psi: \{I\} \to \mathbb{R}^n$
- Centrality measure as dimension reduction

Influence instance  $\approx 2^{2n}$  dimension

Influence spread  $\approx 2^n$  dimension

Centrality *n* dimension

### Single-Node-Influence (SNI) Centrality

- Node u's SNI centrality is u's influence spread

$$\psi_v^{SNI}(I) = \sigma_I(\{v\})$$

- Natural and intuitive
- Measure node's power in isolation

#### Cooperative Game Theory and Shapley Value

- Measure individual power in group settings
- Cooperative game over V = [n], with characteristic function  $\tau: 2^V \to \mathbb{R}$ -  $\tau(S)$ : cooperative utility of set S
- Shapley value  $\phi: \{\tau\} \to \mathbb{R}^n : \phi_v(\tau) = \frac{1}{n!} \sum_{\pi \in \Pi} (\tau(S_{\pi,v} \cup \{v\}) \tau(S_{\pi,v}))$ 
  - $\Pi$ : set of permutations of V
  - $-S_{\pi,\nu}$ : subset of V ordered before v in permutation  $\pi$
  - Average marginal utility on a random order
- Enjoy a unique axiomatic characterization



marginal utility

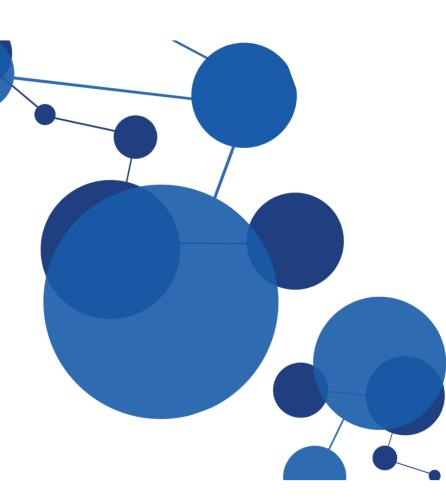
## Shapley Centrality

- Node v's Shapley Centrality is the Shapley value of the influence spread function

$$\psi_{v}^{Shapley}(I) = \phi_{v}(\sigma_{I})$$

- Treat influence spread function as a cooperative utility function
- Measure node's power in groups
- More precisely, node's marginal influence in a random order

## Axiomatic Characterizations of Shapley and SNI Centralities



### Why Axiomatization?

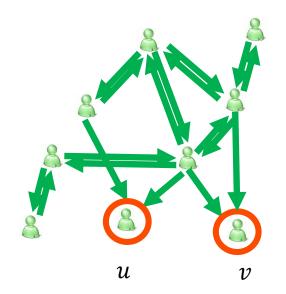
- Provide unique characterization of a centrality measure
- Know the determining factors of a centrality measure
- Axiomatic comparison among different centrality measures

#### Shapley Centrality: An Axiomatic Characterization

- Five axioms uniquely determining Shapley centrality
- Axiom 1 (Anonymity). Invariant under node id permutation
- Axiom 2 (Normalization). Sum of centrality measure is *n* 
  - For every instance  $I_{\mathcal{I}} \sum_{v \in V} \psi_v(I) = n$
  - Average centrality measure per node is 1
  - A share division of the total influence spread

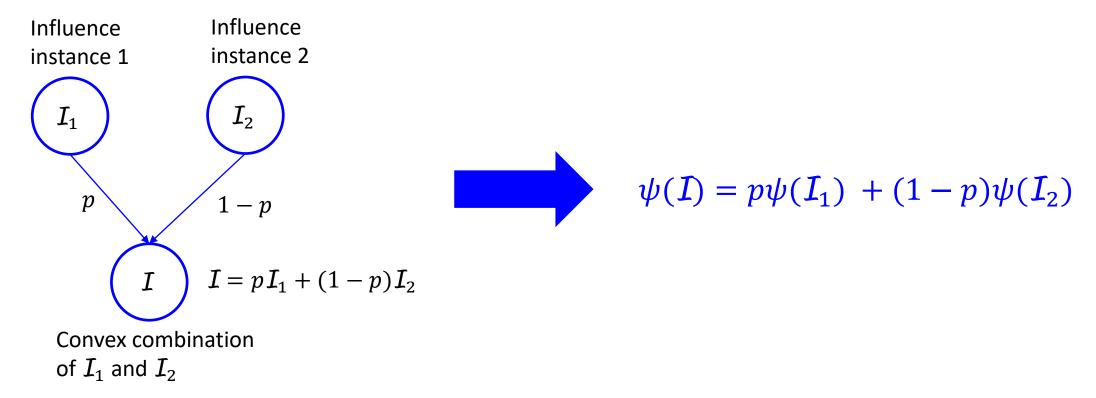
#### Axiom 3 (Independence of Sink Nodes)

- Axiom 3: Sink node projection preserves the centrality of other sink nodes
- Sink node
  - $v \text{ is a sink node in } I, \text{ if } \forall S, T \subseteq V \setminus \{v\} \\ P_{I}(S \cup \{v\}, T \cup \{v\}) = P_{I}(S, T) + P_{I}(S, T \cup \{v\})$
  - Sink nodes have no influence to others, but others may influence sink nodes.
- Sink node projection:  $I \setminus \{v\} = (V \setminus \{v\}, E \setminus \{v\}, P_{I \setminus \{v\}})$  $P_{I \setminus \{v\}}(S, T) = P_{I}(S, T) + P_{I}(S, T \cup \{v\})$ 
  - Equivalent to removing the sink node and its incident links in the triggering model



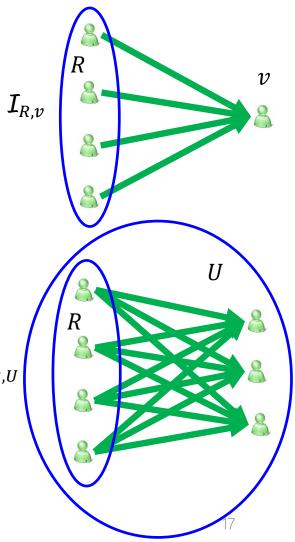
#### Axiom 4 (Bayesian)

• Bayesian combination (convex combination) of influence instances gives convex combination of centrality measures.



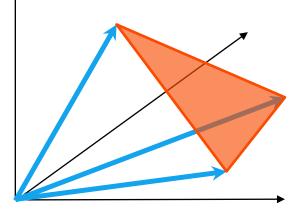
#### Axiom 5 (Bargaining with Critical Sets)

- r-vs-1 critical set instance  $I_{R,v}$ 
  - Bipartite graph: set R vs. a sink node v; |R| = r
  - Set R together activates all nodes
  - Missing any one in R, generates no further influence
- The sink node in the *r*-vs-1 critical set instance  $I_{R,v}$  has centrality  $\frac{r}{r+1}$ 
  - Smaller than 1, because others can influence v
  - When R gets larger, getting close to 1, because coalition in R gets weaker  $I_{R,U}$
- Can be explained by Nash bargaining solution
- Extend to general critical set instance  $\mathcal{I}_{R,U}$



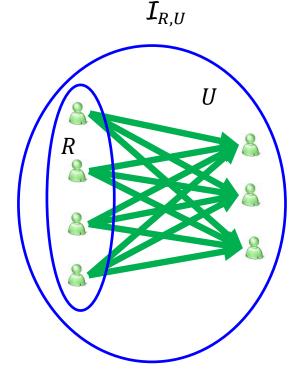
#### Characterization Theorem for Shapley Centrality

- Characterization Theorem: Shapley centrality is the unique centrality measure satisfying Axioms 1-5, and these axioms are independent.
- Proof sketch:
  - Use vector representation of influence instances
  - Find a set of instances (critical instances  $\{I_{R,U}\}$ ) as a set of basis for the vector space
  - Centrality of basis instances are uniquely determined by the axioms
  - Linearity of convex combination preserves uniqueness



#### Axiomatic Characterization of SNI Centrality

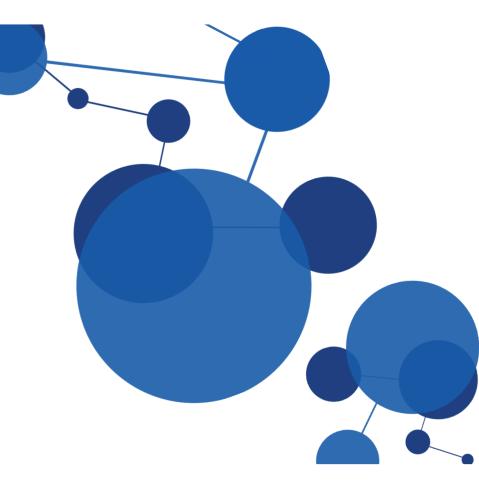
- Axiom 4 (Bayesian). Centrality measure of Bayesian influence instance respects the linearity-of-expectation principle
- Axiom 6 (Uniform Sink Nodes). Every sink node has centrality 1.
- Axiom 7 (Critical Nodes). In any critical instance  $I_{R,U}$ , the centrality of a node in R is 1 if |R| > 1, and is |U| if |R| = 1.
- Theorem: SNI centrality is the unique one satisfying Axioms 4, 6, 7, and these axioms are independent.



## Comparison of Shapley and SNI Centrality

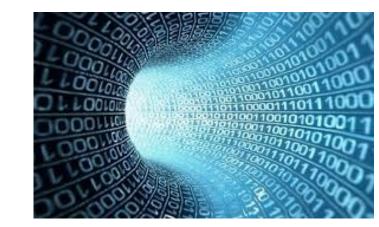
|                   | SNI Centrality                                                               | Shapley Centrality                                                                                                                 |
|-------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| From definition   | Focus on single node<br>influence                                            | Focus on influence in groups                                                                                                       |
| On normalization  | NO                                                                           | YES, consider share division                                                                                                       |
| On sink nodes     | Treat them the same, only consider outgoing influence                        | Not the same, consider incoming influence                                                                                          |
| On critical nodes | Always 1 when $ R  > 1$ , not<br>good for threshold-like<br>influence models | Always greater than 1,<br>decreasing when <b> </b> <i>R</i> <b> </b> increases,<br>consider individual power in a<br>group setting |
| Summary           | Node influence power in isolation                                            | Node irreplaceable power in group setting                                                                                          |

## Scalable Algorithm



## Algorithmic Challenge

- Influence spread computation is #P-hard
- Shapley value definition involves factorial



## Our Approach

- Based on the reverse reachable set (RR-set) approach for influence maximization [Borges et al'14, Tang et al'14, '15]
  - RR set **R**: randomly select a node  $\boldsymbol{v}$ , reserve simulate diffusion (in the triggering model), the set of nodes reversely reachable from  $\boldsymbol{v}$  is **R**

- Key property:  $\sigma(S) = n \cdot \mathbb{E}_{\mathbb{R}}[\mathbb{I}\{S \cap \mathbb{R} \neq \emptyset\}]$ 

- For SNI: repeatedly sample RR sets, estimate influence spread of all nodes together  $--\psi_u^{SNI} = \sigma(\{u\}) = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}]$
- What about Shapley?
  - Key property for Shapley:  $\psi_u^{Shapley} = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}/|R|]$
  - Almost the same algorithmic structure as SNI

#### Our Result

- SNI and Shapley centrality share the same algorithmic structure
- Can approximate SNI and Shapley centralities with arepsilon multiplicative error, with probability  $1-1/n^\ell$  k-th largest centrality

$$\begin{cases} |\hat{\boldsymbol{\psi}}_{v} - \psi_{v}| \leq \varepsilon \psi_{v} & \forall v \in V \text{ with } \psi_{v} > \psi^{(k)}, \\ |\hat{\boldsymbol{\psi}}_{v} - \psi_{v}| \leq \varepsilon \psi^{(k)} & \forall v \in V \text{ with } \psi_{v} \leq \psi^{(k)}. \end{cases}$$

• Running time: 
$$O\left(\frac{1}{\varepsilon^2} \cdot \ell(m+n)\log n \cdot \frac{\mathbb{E}[\sigma(\tilde{v})]}{\psi^{(k)}}\right)$$

Near linear time Constant in many graphs

### Conclusion and Future Work

- We provide dual axiomatic and algorithmic characterization
  - Axiomatically, exact characterization of SNI and Shapley centrality
  - Algorithmically, efficient computation for both using the same algorithmic structure
- Future work
  - SNI and Shapley centrality can be viewed as two end points in a spectrum, from node based centrality to group based centrality, what about others in the middle?
  - Extending traditional degree, distance, betweenness centralities etc. to influence based centralities?
  - More efficient algorithms?

# Thank you, and questions?

