
Adaptive Caching in Big SQL using the HDFS Cache

Avrilia Floratou1, Nimrod Megiddo1, Navneet Potti2, Fatma Özcan1,
Uday Kale1, Jan Schmitz-Hermes1

1IBM avrilia.floratou@gmail.com, {megiddo, fozcan, udayk}@us.ibm.com, jan.schmitz-hermes@de.ibm.com
2University of Wisconsin-Madison nav@cs.wisc.edu

Abstract
The memory and storage hierarchy in database systems is
currently undergoing a radical evolution in the context of
Big Data systems. SQL-on-Hadoop systems share data with
other applications in the Big Data ecosystem by storing their
data in HDFS, using open file formats. However, they do not
provide automatic caching mechanisms for storing data in
memory. In this paper, we describe the architecture of IBM
Big SQL and its use of the HDFS cache as an alternative
to the traditional buffer pool, allowing in-memory data to
be shared with other Big Data applications. We design novel
adaptive caching algorithms for Big SQL tailored to the chal-
lenges of such an external cache scenario. Our experimen-
tal evaluation shows that only our adaptive algorithms per-
form well for diverse workload characteristics, and are able
to adapt to evolving data access patterns. Finally, we discuss
our experiences in addressing the new challenges imposed
by external caching and summarize our insights about how
to direct ongoing architectural evolution of external caching
mechanisms.

Categories and Subject Descriptors H.2.4 [Database
management]: Parallel databases

Keywords SQL-on-Hadoop, HDFS Caching

1. Introduction
Big Data platforms such as Hadoop and YARN enable en-
terprises to centralize and share their data among multiple
data processing frameworks and applications, including re-
lational databases, machine learning, graph and streaming
analytics. The data is often stored in open HDFS data for-
mats and ownership is shared between these frameworks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987553

This democratization and need for co-existence between Big
Data platforms comes with new architectural requirements.
For example, to exploit larger memories, the current gen-
eration of Big Data platforms [4, 31] provide external, dis-
tributed caching mechanisms such as HDFS caching [6] and
Tachyon [24] to cache HDFS data in memory.

The memory-storage hierarchy in database systems is
currently undergoing a radical evolution in the context of
Big Data systems. Traditional relational databases take own-
ership of their data and store it in proprietary formats both
on-disk and in dedicated buffer pools. On the other hand,
SQL-on-Hadoop systems such as Impala and Hive [5, 22]
store data in HDFS using open file formats (e.g, Parquet,
Text), but do not provide automatic caching mechanisms. In
IBM Big SQL, as we present in this paper, we take another
step in this evolution by replacing the traditional buffer pool
with the HDFS cache [6], an external cache. External caches
allow us to retain the performance benefits of avoiding disk
I/O, not only in Big SQL but also in other data analytics
applications that share the cache with it. This solution also
avoids the fragmentation of resources that occurs when dif-
ferent applications maintain their own specialized caches or
buffer pools.

However, this design introduces new challenges. Since
data in external caches is stored in the original file format,
different applications must first convert it into their inter-
nal representations as needed. As a result, external caches
help reduce I/O costs, but not necessarily CPU costs. Fur-
ther, whereas all data access in a database system must go
through the buffer pool, external caches may be used more
selectively. Since buffer pools necessarily insert an object
(page) into the cache on a cache miss, most caching algo-
rithms, such as LRU, focus on which pages to evict from the
buffer pool. However, a cache miss is handled differently
in our setting. First, insertions into the external cache are
costlier, as they may be asynchronously executed by a sep-
arate cache management process, competing for resources
with the application that needs the data, such as the SQL
system. In fact, in our experiments, we observed that tra-
ditional caching algorithms which assume that all data ac-
cesses go through the cache, often result in worse perfor-

321

mance than simply bypassing the cache and reading the data
directly from secondary storage. Second, since applications
can bypass the cache on a cache miss, the decision of what to
insert into the cache is as important as what to evict from it.
Finally, since a shared cache attempts to ensure a high cache
hit rate for various different data processing applications the
caching algorithms must necessarily adapt to the workload
access patterns.

In this paper, we present our experiences in addressing
the aforementioned challenges using HDFS caching [6]. We
show the performance benefits from using newly-developed
caching algorithms that are both selective (decide what to in-
sert) and adaptive (improve by learning the access pattern).
However, we hope our experiences also motivate further dis-
cussion in the community on how to direct ongoing architec-
tural evolution of external caching mechanisms, particularly
HDFS caching. In that spirit, we highlight some of the short-
comings of these mechanisms and suggest some avenues for
future development and research.

While a plethora of caching algorithms have been devel-
oped in the past, much of this paper focuses on how exter-
nal caching mechanisms impose new design objectives for
caching algorithms. First, these algorithms must be selec-
tive (decide what objects to insert) and must deal with great
variance in object sizes. We present a new algorithm, SLRU-
K, which is a variant of the classic LRU-K [28] algorithm,
adapted to the external caching scenario. Second, the tra-
ditional tradeoff between caching objects based on recency
and frequency of data accesses is accentuated in this sce-
nario. To strike a better balance between recency and fre-
quency, we propose a novel algorithm, EXD, which makes
use of a single parameter that determines the weight of fre-
quency vs. recency of data accesses. This algorithm also
takes into account the cost of a cache miss, and the prob-
ability of re-access for each object. Finally, we find that per-
formance of caching algorithms is sensitive to the choice of
parameters. Since we would like to perform well on diverse
and time-varying workload access patterns, any fixed choice
of parameters leads to suboptimal performance. Therefore,
we develop parameter-free, adaptive variants of the differ-
ent algorithms that automatically tune their behavior to the
observed access pattern.

Our contributions can be summarized as follows:
• We propose selective, adaptive caching algorithms

(Adaptive SLRU-K, Adaptive EXD).
• We describe the architecture of IBM Big SQL and its use

of the HDFS cache.
• We show that our proposed algorithms outperform exist-

ing static algorithms on diverse workloads: synthetic work-
loads, batch workloads (using a TPC-DS like benchmark)
and a mix of concurrent batch and interactive queries.

• We discuss our experiences using HDFS caching for Big
SQL and provide insights for future work.

Coordinator NodeMgmt Node

Hive

Metastore

Mgmt Node

Name Node

Query

Scheduler

Big SQL

Worker Node

Data

Node
•••Big

SQL

HDFS

Worker Node

Data

Node

Big

SQL

Worker Node

Data

Node

Big

SQL

Worker Node

Data

Node

Big

SQL

Figure 1. Big SQL Architecture

2. Overview of Big SQL
We now give brief overview of Big SQL, IBM’s SQL-on-
Hadoop offering, which is part of the IBM® InfoSphere®

BigInsightsTM data platform. A full description of the Big
SQL architecture and capabilities can be found in [17]. Fig-
ure 1 presents the overall Big SQL architecture.

Big SQL leverages IBM’s state-of-the-art relational
database technology to execute SQL queries over HDFS
data, supporting all the common Hadoop file formats; text,
sequence, Parquet and ORC files. Big SQL follows the tra-
ditional shared-nothing parallel architecture. More specifi-
cally, it consists of a coordinator node and a set of worker
nodes. The incoming SQL statements are compiled and op-
timized at the coordinator node to generate a parallel execu-
tion query plan. A runtime engine then distributes the par-
allel plan to worker nodes and orchestrates the consumption
and return of the result set. Once a worker node receives a
query plan, it dispatches special processes that know how to
read and write HDFS data natively. Big SQL employs a state
of the art cost-based query optimizer that exploits several
statistics about the data to produce an efficient query plan.

Big SQL supports a vast range of SQL standard con-
structs, allowing existing database applications to be exe-
cuted directly on Hadoop data. More specifically, it provides
support for stored procedures, SQL-bodied functions and a
rich library of scalar, table and online analytical process-
ing (OLAP) functions among others. In this way, Big SQL
creates an opportunity to reuse and share application logic
among database platforms.

A fundamental component in Big SQL is the scheduler
service which acts as a bridge between the Big SQL workers
and HDFS. More specifically, the scheduler assigns HDFS
blocks to database workers for processing on a query by
query basis. It identifies where the HDFS blocks are, and
decides which database workers to include in the query plan,
ensuring that work is processed efficiently, as close to the
data as possible. The assignment is done dynamically at
run-time to accommodate failures: the scheduler uses the
workers that are currently available. If a new node is added to
the database cluster, it can be considered immediately by the
scheduler for the new queries. Similarly, if a node crashes or
the cluster is scaled down, the scheduler immediately detects

322

this change and chooses database workers for future queries
accordingly. In case of partitioned tables, which are common
in SQL-on-Hadoop environments, selection predicates are
pushed down to the scheduler to eliminate partitions that are
not relevant for a given query.

Big SQL operates on top of unpartitioned and parti-
tioned tables. The tables are partitioned based on the Apache
Hive [5] partitioning scheme. If a query contains predicates
on the partitioning columns, then Big SQL will only access
the relevant partitions, thus minimizing the total amount of
data read from HDFS. Each partition consists of one or more
HDFS files of different size which are all accessed when the
partition is accessed. Big SQL utilizes the Hive metastore
to maintain statistics such as table definitions, location, and
storage format among others. This means it is not restricted
to tables created and/or loaded via the Big SQL interface. As
long as the data is defined in the Hive Metastore and acces-
sible in the Hadoop cluster, Big SQL can seamlessly process
it.

3. Overview of HDFS Caching
The HDFS cache [6] is an explicit caching mechanism that
allows users to specify directories or files to be cached by
HDFS. The HDFS namenode will communicate with datan-
odes that have the corresponding blocks on disk, and instruct
them to cache the blocks in off-heap memory. The HDFS
cache implements its own algorithms to decide which replica
of a given block will be cached, and in which datanode. The
namenode is also responsible for coordinating all the datan-
ode off-heap caches in the cluster. To do so, it periodically
receives heartbeats from the datanodes that describe the state
of their cache.

The users can use the HDFS cache APIs to create, add,
and remove HDFS cache pools. Each cache pool can host a
set of HDFS directories and files1, and has Unix-like permis-
sions. The users can use the HDFS cache APIs to insert and
remove HDFS files/directories at a specific cache pool. They
also have the flexibility to choose their own cache replication
factor as well as a maximum time-to-live for each cached
file/directory.

Although most existing SQL-on-Hadoop solutions (e.g.,
Impala [1], Hive [6]) provide support for tables cached in
the HDFS cache, they require the users to manually pin the
tables in the HDFS cache. To the best of our knowledge, Big
SQL is the first system to exploit automatic caching using
the HDFS cache.

4. Big SQL Caching Framework
We now provide an overview of Big SQL’s caching frame-
work. We start by describing the Big SQL enhancements
needed to allow Big SQL to cache selected table partitions
into the HDFS cache. We then discuss the requirements that
a caching algorithm should satisfy in this setting.

1 The HDFS terminology is cache directives.

Coordinator Node Mgmt Node

Name Node

Query

Scheduler

Big SQL

Main

Caching

Desisions

HDFS Block

Assignment

to Worker

Nodes

Scheduler

Partition

elimination

Main Main Main

Worker Node

•••

HDFS

HDD

HDFS

Cache

Main

Memory

Worker Node

HDD

HDFS

Cache

Main

Memory

Worker Node

HDD

HDFS

Cache

Main

Memory

Worker Node

HDD

HDFS

Cache

Main

Memory

Figure 2. Caching in Big SQL

4.1 System Implementation

We now describe the implementation of a caching frame-
work in Big SQL using the HDFS cache. Figure 2 presents
an overview of the Big SQL caching framework.

As noted in Section 2, the scheduler component acts as
the bridge between the SQL runtime engine and Hadoop.
The scheduler maintains information about where and how
data is stored on HDFS. Moreover, it is aware of which
data objects are accessed for each query. For this reason,
we incorporated our caching algorithms in the scheduler
service.

Our caching algorithms operate at the level of table par-
titions, considering unpartitioned tables as consisting of a
single partition. While each partition may itself consist of
multiple HDFS files of different sizes, the caching algorithm
maintains metadata (see Section 5) per-partition rather than
per-file to minimize memory footprint. For every scan oper-
ation in a query, the Big SQL scheduler first eliminates un-
necessary partitions, and then invokes the caching algorithm
to decide which partitions to insert into the HDFS cache.
Note that Big SQL performs I/O elimination at the partition
level and thus our caching algorithms use partitions as the
units for caching. The scheduler uses the appropriate HDFS
APIs [6] to instruct HDFS to cache a partition. Note that the
actual cache insertions are performed by HDFS and not by
Big SQL.

During query execution, the Big SQL scheduler always
attempts to assign data to worker nodes optimizing for data
locality in a best effort fashion, giving priority to memory lo-
cality, and then disk locality. More specifically the scheduler,
gathers the locations of all the replicas of a given block that
will be accessed by the query, and attempts to first assign the
cached replicas to the workers that host them, then assigns
the local on-disk replicas, and finally incorporates accesses
to remote replicas.

Data on HDFS may occasionally change. For example,
deletion of files, file appends, or file additions in a table
or partition can be performed without going through the
Big SQL interface. For this reason, our caching algorithms

323

maintain a timestamp for each partition in the cache. The
timestamp is the time of the latest modification of all the files
that comprise the partition. When the partition is accessed
again, the algorithm checks the latest modification time for
this data to identify potential data changes since the last time
this data was accessed. In case there has been a change,
the algorithm compares the new size of the data with the
size of the previous access. If the new size is smaller than
the one stored in the metadata, then one or more deletion
operations have been performed and some files would no
longer reside in the HDFS cache. This is because, when a
cached HDFS file is deleted, HDFS automatically removes
it from the HDFS cache. In this case, the caching algorithm
only updates its metadata (latest modification time, new data
size). In case the new size is equal or greater than the one
stored in the metadata, the partition is removed from the
cache, and the algorithms attempt to re-insert it into the
cache taking into account its new data size.

4.2 Caching Algorithm Requirements

In this section, we present the properties that a caching
algorithm should have in order to be effective in the context
of Big SQL. The requirements are the following:

• Support for Online Caching: The Big SQL worklods typ-
ically consist of ad hoc, analytic queries whose access pat-
tern evolves over time. For this reason, we focus on online
caching algorithms that unlike offline algorithms, do not
assume any knowledge of the future workload. The Big
SQL caching algorithm is invoked every time a table par-
tition is accessed. Upon a cache miss, the algorithm de-
cides whether the newly-accessed partition should be in-
serted in the cache, and if there is not enough free space,
which cached partitions should be evicted in order to ac-
commodate the new partition.

• Support for Selective Cache Insertions: Typically,
caching algorithms such as LRU-K [28], are focused on
which partitions should be evicted from the cache to ac-
commodate a newly-accessed partition. These algorithms
always insert the newly-accessed partition in the cache.
However, this policy is not applicable to HDFS cache, be-
cause cache insertions are performed by an external pro-
cess, which is not part of the Big SQL query engine. This
process competes for resources (e.g., I/O bandwidth) with
the Big SQL engine and can actually slow down the pro-
cessing of the workload. In Section 6, we present experi-
mental results that highlight this problem. For this reason, a
caching algorithm for Big SQL should selectively perform
insertions in order to minimize the HDFS cache insertion
overheads.

• Ability to adapt to various workload patterns: Big SQL
workloads exhibit various access patterns. For example,
one application may access a particular dimension table
in a star schema much more frequently than the other ta-
bles. On the other hand, another application may access

the same portion of the fact table frequently for a while
because the analytics works on a time window but then
this time window shifts. Hence, the most-recently-accessed
data items are not always the same as the most-frequently-
accessed ones. Some caching algorithms, such as the LFU
(Least Frequently Used) algorithm, base their caching de-
cisions on the frequency of data accesses. On the other
hand, algorithms such as the LRU (Least Recently Used),
take the recency of data accesses into account. Depending
on the characteristics of a particular workload, one type of
algorithm can be more effective than the other. Since the
Big SQL workload access patterns evolve over time, the
Big SQL algorithms must be able to adjust their behav-
ior according to the current access pattern. For this reason,
we designed adaptive caching algorithms that decide how
much weight they should give to frequency vs. recency by
observing the workload performance.

5. Big SQL Caching Algorithms
In this section, we present the caching algorithms that we
developped for Big SQL. We first briefly introduce a knap-
sack formulation of the caching problem based on which our
algorithms are designed. We, then, discuss the Big SQL al-
gorithms in more detail.

5.1 Caching Problem Foundations

We now give a high-level overview of the caching problem
and we also define notation that we will later use when
presenting the Big SQL caching algorithms.

The task of maximizing the expected performance of a
cache has been modeled in literature as a knapsack prob-
lem [18, 19]. In this well-known formulation, it is assumed
that caching an object provides certain benefit (future ac-
cesses to the object will be hits) and the cache policy has
to maximize the total expected benefit from the cache given
that the total size of the cached objects cannot exceed the
size of the cache. Most caching algorithms can be viewed as
different solutions to this knapsack problem that differentiate
based on how they estimate the probability of re-accessing
an object in the future.

Let the table partitions be denoted by i = 1, . . . ,n, denote
the size of partition i by si and let Pi(t) be the probability
that the partition i will be referenced at time t. Let us denote
by ci, the benefit from the presence in cache (or the cost of
a miss) of partition i. The benefit ci may depend on si and
possibly other characteristics of the partition including its
source (hard disk, SSD, etc.) In the context of Big SQL, we
assume that the cost of miss ci of partition i is proportional
to the partition’s size si. This is a reasonable assumption
since its partition consists of one or more files to read from
a hard disk or over the network. Moreover, assume that each
partition i has a weight which changes over time and is
defined as: Wi(t) = ciPi(t).

If the cache has a capacity C, then an optimal set M(t) of
partitions to be in cache at time t is one that maximizes the

324

total benefit of having the partitions in the cache:

∑
i∈M(t)

ci Pi(t)

subject to the capacity constraint

∑
i∈M(t)

si ≤C .

The approximate solution for this problem is well-known
and the details are ommitted in the interest of space. The so-
lution suggests that to determine which partitions should be
stored in the cache at a future time t, the caching algorithm
should maintain the partitions in a sorted list according to
the ratios Ri(t) =

ci Pi(t)
si

= Wi(t)
si

,1≤ i≤ n. Then, it should
select partitions with the highest ratio Ri(t) from the list,
and add them in the cache until it is full. This approximate
solution is the basis of our algorithms.

The knapsack solution requires knowledge of Wi(t), and
thus Pi(t), which is the probability that the partition i will
be referenced at time t. It is obvious that an online algo-
rithm cannot know a priori the value of this probability
for future point in time. The Big SQL algorithms estimate
the probability of access based on the workload history.
More specifically, at current time u, the algorithms statisti-
cally or heuristically estimate the probability based on their
knowledge of the workload history up to time u. Let’s de-
note this probability as pi(u). Our algorithms make the as-
sumption that Pi(t) ' pi(u). Thus, we can also assume that
Wi(t)'wi(u) = ci pi(u) and that Ri(t)' ri(u) =wi(u)/si. As
we will show in the following section, different algorithms
use different probability estimation formulas.

Moreover, in order to make fast caching decisions, the
Big SQL caching algorithms assume that the probability
function pi(u) has the following property:

ASSUMPTION 5.1. If pi(u)> p j(u) at a time u then pi(u+
∆u) > p j(u+∆u) for all partitions i, j that have not been
accessed during the interval (u,u + ∆u]. Thus, if ri(u) >
r j(u), then ri(u+∆u)> r j(u+∆u).

Consider a sorted list that contains information about the
partitions residing in the cache at time u. The partitions in
the list are sorted in ascending order of the ratio ri(u).
Let’s assume that we want to maintain the list sorted as
partitions are accessed over time and their probabilities of
re-access change. The next partition access happens at time
u+∆u. According to Assumption 5.1, the relative order of
those partitions in the list that were not accessed during
the time interval (u,u+∆u], does not need to change. Only
the position of the currently-accessed partition needs to be
updated. In this way, we can avoid re-sorting the whole list
after each partition access.

5.2 Caching Algorithm Template

In this section, we provide a template algorithm that is in-
voked each time a partition is accessed. Our caching algo-

rithms specialize this template by providing their own def-
initions of pi(u), and thus wi(u) and ri(u). We present the
pseudocode in Algorithm 1. The algorithm uses a global in-
teger counter Time to simulate time which is incremented
each time a partition is accessed.

Algorithm 1: Caching Algorithm Template
Data: Partition b of size sb, Used, Capacity, CacheState,

History
Result: true if b is inserted in the cache, false otherwise

1 Time++;
2 Create or retrieve info about b in History;
3 Set last access time of b to Time;
// Handle Cache Hit

4 if Partition b is in the cache then
5 Set b′s ratio to rb(Time) in the CacheState;
6 return false;

// Handle Cache Miss when b fits in cache

7 if sb + Used ≤ Capacity then
8 Insert b in the CacheState with ratio rb(Time) ;
9 Used=Used+sb;

10 Insert b into the cache;
11 return true;

// Handle Cache Miss when b does not fit in

cache

// Evaluate whether b should be inserted in the

cache using the weight heuristic.

12 Compute the weight wb(Time) of b;
13 Set total weight of partitions to be evicted sumWeights = 0;
14 Set freeSpace = Capacity - Used;
15 foreach partition next in CacheState in ascending order

of ratios do
16 if sumWeights + wnext(Time) < wb(Time) then
17 sumWeights = sumWeights + wnext(Time);
18 freeSpace = freeSpace + snext;
19 Add next to the Eviction List;
20 if freeSpace ≥ sb then
21 exit the loop;

22 if freeSpace < sb then
23 return false;

24 Evict from the cache all the partitions in Eviction List;
25 Insert b into the cache and CacheState with ratio rb(Time);
26 return true;

The algorithm maintains two data structures: the
CacheState and the History. The CacheState contains all
the information about the partitions that are currently in the
cache, including the ratio ri(u) at time u and their size. The
CacheState is implemented as a list sorted by ri(u) in as-
cending order. In practice, by making use of a probability
function that satisfies Assumption 5.1, a caching algorithm
can maintain the correct sorted order as partitions are ac-

325

cessed, without updating the ratios of all the partitions in
the cache each time.

The History contains metadata about all the partitions
that have been accessed in the past, such as their size, and
time of last access, and can be implemented as a hash table
keyed by the partitions. Since the History grows over time,
one can restrict the number of entries in this data structure, or
remove from History partitions that have not been accessed
for a long period of time.

Let us consider a cache of size Capacity. Let Used be
the current size of the cache used to store partitions. When
a partition b is accessed, the Time counter is incremented by
1, and if the partition is contained in History then the latest
metadata about the partition is retrieved. If the partition b
is not present in History then a new entry is created for it
(Lines 1-3).

The algorithm then checks whether the partition is al-
ready in the cache (cache hit) or not (cache miss). In case
the partition b is already in the cache, the algorithm needs
to update the partition’s corresponding metadata, namely, its
latest access time as well as its ratio rb(Time). Note that
since the CacheState is implemented as a list sorted by the
ratios of the cached partitions, we need to remove parti-
tion b from the list, update its ratio, and then re-insert it to
keep the correct sorted order (Lines 4-6). We would like to
emphasize that if the probability function of the algorithm
satisfies Assumption 5.1, then we do not need to update the
ratios of the cached non-accessed partitions to reflect the
new value of the Time counter since the sort order is cor-
rectly maintained.

If the partition is not contained in the cache (cache miss),
then the algorithm checks whether there is enough free space
in the cache to accommodate the partition. If so, the partition
is inserted into the cache (Lines 8-12). Otherwise, the algo-
rithm uses the weight heuristic to identify whether the
partition should be cached.

The weight heuristic attempts to minimize insertions
in the cache, since they can negatively affect the workload
performance. The heuristic applies a greedy approach to
maximize the total weight of the cache each time a cache
insertion decision needs to be made. Following the approx-
imate knapsack solution, the heuristic traverses the parti-
tions stored in CacheState in ascending order of ratios,
attempting to identify candidates for eviction in order to ac-
commodate partition b. The heuristic maintains a list of can-
didate partitions for eviction, namely Eviction List. At
every step, the algorithm checks whether by adding the par-
tition currently under consideration to the Eviction List,
the total weight of the candidate partitions for eviction would
be less than the weight of the newly-accessed partition b.
In this case, the partition currently under consideration is
added to the Eviction List (Lines 18-23). Otherwise, the
partition currently under consideration is not added to the
Eviction List, and the algorithm proceeds with the next

partition in the sorted list. The heuristic terminates if enough
space for the newly-accessed partition is found (Lines 22-
23), or if all the partitions in the list have been examined.
If the total size of the partitions in the Eviction List is
enough, then partition b is inserted in the cache (Lines 24-
30).

5.3 Estimating the Probability of Access

We now present in detail the SLRU-K and EXD algorithms.
Both algorithms follow the template presented previously
but utilize different definitions of pi(u). Because of the
different nature of the probability functions, the two algo-
rithms maintain different types of metadata per partition.
More specifically, the EXD algorithm requires fewer meta-
data items per partition than the SLRU-K algorithm.

5.3.1 The SLRU-K algorithm

The Selective LRU-K (SLRU-K) algorithm is an exten-
sion of the LRU-K algorithm that takes into account the vari-
able size of the partitions. As opposed to LRU-K, the SLRU-K
algorithm does not insert each accessed partition into the
cache, but rather selectively places partitions in the cache
using the weight heuristic.

For each partition i, the SLRU-K algorithm maintains a
list Li = [ui1, ...,uiK] of the K most recent accesses sorted
in descending order. Thus, the time of the last access of the
partition is represented by ui1 and the time of the Kth most
recent access is represented by uiK . This list is updated when
the partition is accessed, by introducing a new value (time of
last access) in the head of the list and dropping the last value,
if needed, in order to keep the list limited to at most K values.

For a given partition i and current time u, let Ti(u) =
u−uiK +1 be the number of partition accesses since partition
i’s Kth most recent access. The SLRU-K algorithm estimates
the probability that partition i will be accessed at time u+1
as

pi(u) =
K

Ti(u)
(1)

where Ti(u) is the total number of accesses in the interval
(see above) that includes the K most recent accesses of par-
tition i until time u. This probability is estimated statistically
and the proof is ommitted in the interest of space. Note that
the estimate pi(u) is changing over time as more accesses are
happening, and the value of Ti(u) changes. The SLRU-K al-
gorithm takes into account the new values of these estimates
since the list of the last K accesses of each partition is up-
dated. Finally, it can be shown that the probability function
of the SLRU-K method has the property described in Assump-
tion 5.1. The details are ommitted in the interest of space.

5.3.2 The EXD algorithm

We now present the Exponential-Decay (EXD) caching
algorithm. The algorithm implements the template presented
in Section 5.2, and makes use of a single parameter (a)
that determines the weight of frequency vs. recency of data

326

accesses. In this section, we focus on how the EXD algorithm
approximates the probability pi(u).

DEFINITION 5.1. Denote by ui j the jth most recent access
time of partition i. For a constant parameter a > 0 define the
score Si(u) of partition i at current time u as
Si(u) = e−a(u−ui1)+ e−a(u−ui2)+ · · ·

As shown, the score of a partition depends on the value
of the parameter a. The value of this parameter essentially
determines how recency and frequency are combined into a
single score. The larger the value of a, the more emphasis on
recency versus frequency. The value of a can also be chosen
adaptively as we will describe in Section 5.4.

The EXD algorithm assumes that for a given partition i, at
the current time u, the score Si(u) is proportional to pi(u).
Notice that the algorithm does not require exact knowledge
of the values of pi(u) of the accessed partitions. It rather
needs to know the relative order of the ratios ri(u) of all
different partitions. For this reason, the algorithm substitutes
the partition’s probability function pi(u) with the partition’s
score Si(u) in Algorithm 1.

It follows that at any given point in time u, the EXD
algorithm needs to compute the score Si(u) of the partitions.
The following proposition describes how we can efficiently
compute the score of a partition at a specific point in time,
given only the time of its last access, and the corresponding
score at that time. Note that, unlike the SLRU-K algorithm
which needs to maintain the last K access times for each
partition, the EXD algorithm reduces the memory footprint
by keeping only the time of the last access of each partition.

DEFINITION 5.2. For a partition i, the score Si(ui1 +∆u)
can be calculated if we only keep the most recent time of
access ui1 and the score Si(ui1).

Proof. Obviously, if partition i is not accessed during the
interval (ui1,ui1 +∆u], then

Si(ui1 +∆u) = Si(ui1) · e−a∆u (2)

and if it is accessed at time ui1 +∆u for the first time after
time ui1, then

Si(ui1 +∆u) = Si(ui1) · e−a∆u +1 . (3)

It follows that the score Si(u) can be calculated for any
time u > ui1 before the next partition access. Furthermore,
the scores decay exponentially and can be approximated by
zero after they drop below a certain threshold. This allows
us to stop maintaining history for partitions that have not
been accessed for a long time. Finally, the scoring function
(and thus the probability function) of the EXD method has the
property described in Assumption 5.1.

Algorithm 2: Adaptor
Data: boolean CacheHit, boolean PartitionInserted,

long partitionSize
Result: new value of algorithmic parameter newParameter

1 eventNo++;
2 Update the BHR(currentParameter) and

BIR(currentParameter) based on the values of CacheHit,
PartitionInserted, and partitionSize;

3 if (eventNo == maxEventsPerRound) then
// end of current round

4 eventNo = 0;
// Update the BHR and BIR values taking

into account all the rounds so far

5 BHR(currentParameter) =
weightedAverage(previousBHR(currentParameter),
BHR(currentParameter));

6 BIR(currentParameter) =
weightedAverage(previousBIR(currentParameter)),
BIR(currentParameter));

// Select the new value of the parameter

7 Group the parameters in CandidateValues according to
their corresponding BHR observed so far;

8 if (no time for exploration) then
9 selectedGroup = pick group with highest

representative BHR;
10 else
11 selectedGroup = pick group with probability

proportional to its BHR;

12 newParameter = pick the parameter value in
selectedGroup with the minimum BIR value;

13 return newParameter to the caching algorithm;
14 else

// not the end of current round

15 newParameter = current value of the parameter;
16 return newParameter to the caching algorithm;

5.4 Adaptive SLRU-K and EXD

Both the EXD and the SLRU-K algorithms are parameter-
ized. The behavior of the algorithms can significantly change
based on the values of a and K. As we will show in Section 6,
there is no single value of a (or K) that works well across all
possible workloads.

Figuring out the best value of the algorithmic parameter
is difficult for two reasons: (1) The optimal value of the
parameter depends on the workload access pattern, and (2)
The workload access pattern is not stable over time. In this
section, we present an adaptive algorithm (Adaptor) that
automatically adjusts the value of the algorithmic parameter
in order to improve overall performance.

The Adaptor can be used with both the SLRU-K and the
EXD methods. It operates along with the caching algorithm,
in a separate thread, and exchanges information with it. Each
partition access is treated as an event. At every event, the

327

caching algorithm informs the Adaptor whether the event
was a cache miss or a cache hit, and whether the partition
was inserted into the cache. The Adaptor uses this informa-
tion to adjust the algorithmic parameters over time.

The Adaptor takes into account two metrics when mak-
ing decisions about the value of the algorithmic parameter.
The primary metric is the byte hit ratio (BHR) which is a
standard comparative performance metric used in prior work
on caching variable-size partitions [8, 11, 29, 30]. The BHR
is the fraction of the requested bytes that was served from
the cache. The higher the BHR, the fewer I/O requests need
to be made, and the greater the overall performance. As in
previous work, our primary goal is to maximize the BHR. In
an external caching system, such as HDFS cache, cache in-
sertions compete for resources with the process that needs
to access the data, and thereby slow down the workload.
To quantify the overhead of each algorithm with respect to
cache insertions, we introduce a secondary metric, namely
the byte insertion ratio (BIR). The BIR is the fraction of the
requested bytes that the caching algorithm decided to insert
into the cache.

In our setting, it is desirable to maximize the BHR so that
the hot set is always cached while maintaining a low BIR if
possible. Our Adaptor constantly evaluates the behavior of
the caching algorithm by measuring these metrics, and its
primary goal is to maximize the BHR. From all the values
of the algorithmic parameter that maximize the BHR, the
Adaptor prefers the one that minimizes the BIR, since it
reduces the cost of insertions in the cache.

The pseudocode for the Adaptor is presented in Algo-
rithm 2. The algorithm uses a set of pre-defined parameter
values, namely CandidateValues. In case of the SLRU-K algo-
rithm, the CandidateValues set contains the following values
for the K parameter: 1,2,4,6,8. In the case of the EXD algo-
rithm, the CandidateValues set contains six a values equally-
spaced in the log space with amin = 10−12 and amax = 0.3.
These values cover a large range of potential parameter in-
stantiations that can successfully be applied in many work-
load scenarios. For each potential value of the algorithmic
parameter i ∈ CandidateValues, the Adaptor maintains the
observed BHR(i) and BIR(i) achieved with the value i so far.
Initially, the parameter is randomly assigned a value from
the set of possible values.

Caching Selective Adaptiveness
Algorithm Insertions to the Access Pattern
LRU-K No No
LFU No No
GDS No No
SLRU-K Yes No
EXD Yes No
Adaptive SLRU-K Yes Yes
Adaptive EXD Yes Yes

Table 1: Comparison of various online caching algorithms

The algorithm operates on rounds that consist of a fixed
number of events. After every event, the Adaptor updates
the BHR and BIR values observed for the current value of
the parameter (currentParameter), based on the information
received from the caching algorithm (Line 2).

When the last event of the round is processed, the BHR
and the BIR values that correspond to the current parame-
ter value are updated using a weighted average over the ob-
served BHR and BIR values across all rounds, giving more
emphasis on the observations of the last round (Lines 3-6).
The Adaptor then re-evaluates the value of the algorithmic
parameter. The re-evaluation process consists of three steps.
In the first step, the Adaptor groups the parameter values of
the CandidateValues set, according to their observed BHR
so far. Parameter values with BHR values within a certain
threshold of each other are placed in the same group (Line
7). Each group has a representative BHR value, which is
the average of the BHR of its members. In the next step,
the Adaptor picks the group with the highest representative
BHR (Lines 8,9). Occasionally, at this step, the Adaptor se-
lects a group with probability proportional to the BHR of
the group (Lines 10,11). This happens so that the parameter
space is explored by observing the behavior of the caching
algorithm for different values of the parameter. After a group
has been selected, the Adaptor selects a member of this
group by taking into account the BIR values that have been
achieved so far by the members of the group. More specif-
ically, it picks the parameter value that has resulted in the
lowest BIR so far (Line 12).

After the value of the parameter has been selected, the
Adaptor informs the caching algorithm of the new value
(Lines 13,16). The caching algorithm, then, updates the ra-
tios of the partitions in the History and the CacheState to
reflect the new value.

Table 1 compares our adaptive algorithms with various
well-known caching algorithms with respect to the proper-
ties described in Section 4.2. Note that the table presents
only online caching algorithms and compares them based
on their support for selective cache insertions, and adap-
tiveness to various workload access patterns. The GDS algo-
rithm presented in the table, is developed for web caching.
It is a parameter-free algorithm that is able to accommodate
various file sizes and has been shown to outperform vari-
ous algorithms for web caches [11]. As shown in the table,
only the Adaptive EXD and Adaptive SLRU-K algorithms
satisfy all our requirements. An experimental evaluation of
these algorithms is presented in the following section.

6. Experimental Evaluation
We now provide an experimental evaluation of our proposed
algorithms with state-of-the-art caching policies.

6.1 Experimental Setting

For our experiments, we use a cluster of 10 nodes. One of
the nodes hosts the HDFS NameNode, the Big SQL coordi-

328

0.79

0.70

0.66

0.64

0.63

EXD(1E-12)

SLRU-2

LRU-2

EXD(3E-1)

LRU-1

0.85

0.80

0.79

0.0 0.2 0.4 0.6 0.8 1.0

Prophetic (OPT)

Adaptive EXD

Adaptive SLRU-K

EXD(1E-12)

Normalized Geometric Mean

Figure 3. Comparison of various caching algorithms using
the TPC-DS like workload

nator, the scheduler, and the Hive Metastore. The remaining
9 nodes are designated as “compute” nodes. Every node in
the cluster has 2x Intel Xeon CPUs @ 2.20GHz, with 6x
physical cores each (12 physical cores total), 8x SATA disks
(2TB, 7k RPM), 1x 10 Gigabit Ethernet card, and 96GB
of RAM. Out of the eight disks, seven are used for storing
HDFS data. Each node runs 64-bit Red Hat Enterprise Linux
Server 6.5. We use the implementation of the caching frame-
work described in Section 4, using InfoSphere BigInsights
3.0.1 enterprise release, and test end-to-end system perfor-
mance. In all our experiments, we intentionally avoided us-
ing large caches so that we can stress the caching algorithms.

6.1.1 TPC-DS Like Workload

We now present cluster experiments using a workload in-
spired by the TPC-DS benchmark2. This workload is pub-
lished by Impala developers3, and has previously been used
to compare the performance of various SQL-on-Hadoop sys-
tems (e.g., [2], [16]). The workload consists of 20 queries
that include multi-way joins, aggregations, and nested sub-
queries. The fact table is partitioned, whereas the small di-
mension tables are not partitioned. We use a 3TB TPC-DS
database, and a 300GB HDFS cache.

We compare the different caching algorithms with a
theoretically optimal reference algorithm, which we call
the Prophetic prefetcher. Before running each query,
this algorithm uses prior knowledge of the entire workload
trace to prefetch as much of the data accessed by the next
query as fits in the cache. As a result, all but 2 of the 20
queries ran entirely in memory. Further, the evaluation of
Prophetic prefetcher only measures the execution time
of the queries, ignoring the time to prefetch the data into
memory4. We also compare with the well-known LRU-K
method. The LRU-K algorithm extended to accommodate
variable-size objects has been evaluated in the context of
web caching [11] only when K = 1. We further evaluate the
extended LRU-K algorithm for multiple values of K. We note
that, the main difference between the LRU-K and the SLRU-K

2 http://www.tpc.org/tpcds/
3 https://github.com/cloudera/impala-tpcds-kit
4 Recall that reading the data into the cache incurs additional cost that needs
to be paid by the HDFS cache

algorithms is that the former inserts every accessed partition
into the cache whereas the latter performs selective cache
insertions. the performance of the GDS algorithm is similar
to that of the LRU algorithm and is ommitted. For each algo-
rithm, we performed the experiment 3 times using a warm
HDFS cache, and report the average over the 3 runs.

Figure 3 shows the geometric mean of the query run-
times for various caching algorithms relative to the query
runtimes produced by the offline Prophetic Prefetcher.
As shown, the adaptive algorithms achieve the best perfor-
mance. The Prophetic prefetcher was only about 15%
faster than the Adaptive EXD algorithm even though it had
a priori knowledge of the entire workload. The remain-
ing algorithms were not as efficient as the adaptive algo-
rithms. For example, the LRU-1 algorithm achieved 63% of
the Prophetic Prefetcher’s performance.

Figure 4 shows the runtime of each query relative to the
the runtime produced by the Prophetic Prefetcher. Ide-
ally, a caching algorithm should produce query runtimes
close to the ones produced by the Prophetic Prefetcher.
As shown in the figure, the adaptive algorithms generally re-
sulted in query runtimes close to those observed when the
Prophetic Prefetcher was used. The LRU-1 algorithm,
on the other hand, did not perform as well as the adaptive
methods. When comparing the best performing online al-
gorithm (Adaptive EXD) with the LRU-1 algorithm, we ob-
serve that all but one of the queries experienced speedups
ranging from 1.03X to 2.3X , and the geometric mean of the
speedups was 1.34X .

Finally, if we consider the workload’s total elapsed time,
this was 2713 seconds when using the LRU-1 method and
2556 seconds with the LRU-2 method. The total elapsed time
using the Adaptive EXD algorithm was 1711 seconds. This
is an important difference, especially if we consider that the
best possible performance that can be achieved by an offline
algorithm is 1544 seconds (Prophetic Prefetcher).

We also performed experiments with other values of the
parameter K. The behavior was similar to the LRU-2 and
SLRU-2 methods and these results are omitted in the interest
of space. Our results show that: (1) the adaptive algorithms
gracefully adapt over time to produce the best performance
results, and (2) the performance achieved is close to the one
achieved by a hypothetical offline algorithm that prefetches
the data needed by each query.

6.2 Hotset experiment

The goal of this experiment is to show which algorithms
can correctly identify the workload’s hotset, and how per-
formance is affected. Our evaluation compares the various
caching algorithms with the HotSet Prefetcher, an algo-
rithm that has a priori knowledge of the entire workload,
prefetches and caches the hotset of partitions.

The TPC-DS like queries that we used in the previous
experiment access a wide range of data that keeps evolv-
ing over time making it difficult to identify the workload’s

329

Figure 4. Normalized Query Runtime for the TPC-DS like
workload

hotset, and use the HotSet Prefetcher to upper-bound the
performance. 5 For this reason, we created a workload that
operates on the 1TB store sales TPC-DS fact table, and
has a clear hotset. In this way, we can evaluate which caching
algorithms are able to identify this hotset.

Our workload consists of 50 queries that contain selec-
tions, projections and aggregations. We have observed that
corporate users of Big SQL tend to frequently access their
recent data, and more rarely their older/historical data, while
creating summaries for reports. Thus, the workload’s hot-
set consists of the 250 most recently created partitions. Each
query in our workload accesses a subset of the table’s parti-
tions. A partition is accessed either from the most recent 250
partitions uniformly at random with probability 0.5 (hotset),
or uniformly from the set of the remaining 1550 older parti-
tions (coldset). The total size of the 250 most frequently ac-
cessed partitions is approximately 170GB. We used a 170GB
HDFS cache so that the hotset fits entirely in the cache.

Figure 5 shows the performance of the algorithms that
we tested. The chart plots the geometric mean of the query
runtimes for each algorithm relative to the runtimes pro-
duced by the HotSet Prefetcher. As shown in the figure,
the EXD(10−12) algorithm provided almost the same perfor-
mance as the HotSet Prefetcher. This is expected as this
workload is essentially the best use-case for this algorithm,
which gives emphasis on the frequency of the data accesses
as presented in our simulation study. However, other values
of a produce different (worse) performance (e.g, EXD(0.3)).
The parameter-free, adaptive methods were able to achieve
about 95% of the performance of the HotSet Prefetcher.
When comparing the Adaptive EXD algorithm with the
LRU-1 algorithm, we observe that all but seven of the indi-
vidual queries experienced speedups ranging from 1.08X to
6.02X , and the geometric mean of the speedups was 1.44X .
This result highlights the need for adaptive caching algo-
rithms.

The total elapsed time of the workload with the Adaptive
EXD method was about 615 seconds, while the total elapsed
time with the offline HotSet Prefetcher was 549 seconds.

5 This is the reason we use the the per-query Prophetic Prefetcher to
upper-bound performance of the TPC-DS like workload.

0.94

0.83

0.80

0.58

0.56

Adaptive EXD

SLRU-2

LRU-2

EXD(3E-1)

LRU-1

0.99

0.95

0.94

0.0 0.2 0.4 0.6 0.8 1.0

HotSet

EXD (1E-12)

Adaptive SLRU-K

Adaptive EXD

Normalized Geometric Mean

Figure 5. Comparison of various caching algorithms using
the synthetic workload

Note that the adaptive algorithms occasionally re-evaluate
the parameter space, and thus, pay some exploration cost.
Nevertheless, they are able to perform very well under vari-
ous workload patterns.

Another interesting point is the LRU-1 and EXD(0.3) algo-
rithms resulted in higher total elapsed time for this workload
(934 seconds and 885 seconds respectively) than a system
that does not use the HDFS cache at all (837 seconds). The
reason is that these algorithms perform multiple cache in-
sertions that compete for resources with the query engine,
essentially slowing down the workload. Setting an algorith-
mic parameter incorrectly can result in unexpected system
behavior.

6.3 Concurrent Workload

In this experiment, we evaluate our algorithms using a com-
plex workload with a diverse mix of concurrent batch and
interactive queries. Our goal is to investigate how the per-
formance of interactive workloads that have low response
time requirements gets affected by long running analytics
workloads, such as batch queries used for reporting, run-
ning concurrently for various caching algorithms. In partic-
ular, we run batch analytics queries (the TPC-DS like work-
load described in Section 6.1.1) concurrently with parallel
streams of interactive queries. The interactive queries are
continuously executed using three parallel streams until the
TPC-DS like workload finishes. We, then, evaluate how the
average response time of the interactive queries gets affected
by the batch queries and how the total elapsed time of the
TPC-DS like workload varies with the caching method.

The interactive queries are aggregations over a single par-
tition of a large, 1T B table. The table is a copy of the TPC-
DS fact table used in the previous experiments (Section 6.2).
We created a separate table for the interactive queries in or-
der to force the batch and interactive queries to access dif-
ferent data sets, and thus compete more aggressively for the
cache space. We used the same access pattern for the parti-
tions of the table as in the previous experiment. More specifi-
cally, the interactive queries access a partition either from the
most recent 250 partitions uniformly at random with proba-
bility 0.5, or uniformly from the set of the 1550 older par-

330

Figure 6. Comparison of various caching algorithms using
the concurrent workload
titions. Our total database size is 4T B and our HDFS cache
size is 470GB.

To evaluate our results, we collect performance metrics
for both the batch queries and the interactive queries. Fig-
ure 6 shows the total elapsed time in seconds for the TPC-DS
like workload (left y-axis) as well as the average response
time in seconds of the interactive queries across the three
concurrent streams (right y-axis) for different caching algo-
rithms. As shown in the figure, the adaptive, parameter-free
algorithms resulted in the lowest elapsed time for the TPC-
DS like workload. The TPC-DS like workload ran for 3468
seconds with LRU-1 algorithm, and it completed in just 2145
seconds with the Adaptive EXD algorithm (1.6X speedup).
In fact, all but two of the individual queries experienced
speedups ranging from 1.06X to 2.21X , and the geometric
mean of the speedups was 1.47X . Moreover, it is remarkable
that the higher performance for the TPC-DS workload did
not come at a cost of performance for the interactive queries.
On the contrary, while the interactive queries ran for an aver-
age of 12.15 seconds using the LRU-1 algorithm, they ran in
about 6.8 seconds using the Adaptive EXD algorithm, an ef-
fective performance gain of 1.78X . A similar trend was also
observed for the Adaptive SLRU-K algorithm.

Our results show that the parameter-free, adaptive algo-
rithms, especially the Adaptive EXD algorithm, can provide
the best performance for both the batch queries and the in-
teractive queries.

6.4 Simulation Study

While the proposed algorithms do improve the performance
of Big SQL, the performance gain does not match that from
traditional buffer pools in relational databases. Simulation
studies have been used in prior work [11, 20, 21, 23, 26,
28, 29, 32] to isolate and compare the performance of the
algorithms without being clouded by incidental system im-
plementation or hardware details such as CPU efficiency,
I/O and network bandwidth. Based on a detailed simula-
tion study [15] on various cache sizes, we concluded that
the the proposed algorithms are nearly optimal, and the lim-
ited performance gain we observed must be attributed to
other factors. More specifically, we observed that the ba-
sic SLRU-K and EXD algorithms achieve high BHR and low
BIR for different workloads, but none of them individually

performs well on all of them. However, the adaptive algo-
rithms, especially the Adaptive EXD algorithm, achieve the
best balance between BHR and BIR, effectively producing
the lowest BIR without negatively affecting the BHR. Fi-
nally, none of the traditional algorithms can consistently out-
perform Adaptive EXD across different workload patterns.

7. Perspectives
Our comprehensive analysis revealed two major perfor-
mance bottlenecks related to the design and implementation
of the HDFS cache. First, the HDFS process responsible for
caching the requested HDFS blocks in the off-heap caches
of the specified datanodes is significantly slow. More specif-
ically, the process utilizes only 30MB/sec of the available
disk bandwidth per compute node. This behavior signifi-
cantly affects workloads whose hotset depends on the re-
cency of data accesses. As we briefly discussed in our sim-
ulation study, such workloads produce a large number of
cache insertions because of their evolving hotset. In such
cases, Big SQL cannot benefit from HDFS caching at all.
This is because due to the slow cache insertions there is a
high chance that the recently requested data would not reside
in the HDFS cache and have to be fetched from secondary
storage. For these workloads, performing selective cache
insertions cannot solve the problem as the insertions must
happen in order to keep up with the evolving hotset. On the
other hand, the slow cache insertions do not affect work-
loads whose hotset depends on the frequency of data ac-
cesses. Although, initially these workloads may slow down
due to the external caching process, once the HDFS cache
is warm, our weight heuristic will minimize the number of
cache insertions, and the overall performance will improve.
The second performance bottleneck is related to the high
deserialization and decompression cost while reading HDFS
data. Note that the HDFS cache hosts data in the on-disk
data format (e.g., Text, Parquet). As a result, the data must
be deserialized and decompressed before consumed by the
database workers. The deserialization process creates addi-
tional CPU overheads that can negatively affect the overall
performance.

Another approach to exploit the large available mem-
ory of typical clusters in the context of SQL-on-Hadoop
systems, is to implement a traditional buffer pool. Buffer
pools have different characteristics than external caches.
First, buffer pools store the data in the internal format of
the database, and thus, avoid the extra overheads of deseri-
alization and decompression. Second, in a database system
all data accesses are typically carried out through the buffer
pool. Hence, if a page (or an object) is not in the buffer
pool, it is first brought there. Unlike external caches, this de-
sign avoids interference between the database workers that
process the data and the process that performs the cache
insertions. However, despite these benefits, buffer pools do
not fit well with the Big Data platforms that contain many

331

frameworks, not just SQL engines. This is because unlike
external caches, they do not allow data sharing across dif-
ferent frameworks, and they tend to fragment resources in
environments where multiple processing frameworks oper-
ate on the same cluster.

Given the co-existence of many data processing frame-
works on the same cluster, we believe that external caching
mechanisms can provide a significant performance improve-
ment across multiple applications, and at the same time can
avoid resource fragmentation. However, our analysis demon-
strates that these external caches must be able to accom-
modate deserialized data stored in efficient main-memory
formats (e.g, columnar formats), and must also provide ef-
ficient cache insertion mechanisms. Designing, and imple-
menting such external caches, and integrating them with var-
ious data processing frameworks can have a significant im-
pact in the next generation Big Data processing stack. We
believe that the combination of two emerging technologies,
Apache Arrow [3] and Tachyon [24], can provide a solution
to the problems we observed with HDFS caching and ex-
ternal caches in general. Arrow is an open-source initiative
that provides an in-memory columnar data layout that can be
shared by many processing frameworks, without deserializa-
tion. Tachyon is an in-memory file system that can be shared
by all the frameworks running in the cluster. The main chal-
lenge for this combination is finding efficient caching algo-
rithms that can adapt to different workloads, and can sup-
port the multi-tenancy inherent in the system. We believe
our adaptive algorithms provide a promising solution for the
former problem, and we plan to extend this work to take
multi-tenancy into account. Another interesting avenue for
future work is to develop caching algorithms that can exploit
deeper storage hierarchies that include not only memory and
HDD disks, but also non-volatile memory (NVRAM) and
SDDs.

8. Related Work
There is a lot of work in cache replacement policies devel-
oped in various contexts. For brevity, we point the reader
to [11, 26] for a more comprehensive survey of the ex-
isting literature. Instead, we highlight the most closely re-
lated work to place our current work in the proper context.
In the context of relational databases and storage systems,
there is extensive work on page replacement policies such
as the LRU-K [28], DBMIN [13], ARC [26], LIRS [20],
LRFU [23], MQ [32] and 2Q [21] policies. There is also
recent work on SLA-aware buffer pool algorithms for multi-
tenant settings [27]. Unlike our proposed algorithms, these
policies operate on fixed size pages since they mainly tar-
get traditional buffer pool settings. Moreover, these policies
assume that every accessed page has to be inserted into the
buffer pool, thus selective cache insertions lie beyond their
remit. We also note that our algorithms focus on caching raw
data, unlike approaches like semantic caching [14].

Many caching policies have been developed for web
caches that operate on variable size objects. The most
well-known algorithms in the space are the SIZE [8],
LRU-Threshold [7], Log(Size) + LRU [7], Hyper-G [8],
Lowest-Latency-First [30], Greedy-Dual-Size [11],
Pitkow/Recker [8], Hybrid [30], PSS [9] and Lowest
Relative Value (LRV) [29]. The work in [11] has extensively
compared various web caching algorithms, and has shown
that the GDS algorithm outperforms them. In our experi-
ments, we found that unlike our adaptive algorithms, GDS
is not able to adjust its behavior to various access patterns.

Self-tuning and self-managing database systems have
been studied in various contexts [12, 25]. In the context of
caching, the ARC method [26] adapts its behavior based on
the data access pattern. Unlike our algorithms, ARC operates
only on fixed size objects and its adaptive design strongly
depends on this assumption.

Exponential functions have been used before to model
different types of behavior. For example, the work in [10]
uses a power law with an exponential cuttoff to model con-
sumer behavior. Our Adaptive EXD algorithm makes use of
a parameterized exponential function to predict object re-
accesses but adapts the function based on the workload ac-
cess pattern. To the best of our knowledge, this is the first
time that a caching algorithm makes use of an adaptive ex-
ponential function.

In the context of Hadoop systems, Cloudera [1] and Hor-
tonworks [6], two major Hadoop distribution vendors allow
the users to manually pin HDFS files, partitions or tables
in the HDFS cache in order to speedup their workloads.
The Impala [22] developers claim that the usage of HDFS
cache can provide a 3X speedup on SQL-on-Hadoop work-
loads [1]. In the Spark ecosystem [31], Spark RDDs can be
cached in Tachyon [24], a distributed in-memory file system.
To the best of our knowledge, these systems do not use au-
tomatic algorithms but rather rely on the user to manually
cache the data.

9. Conclusions

In this work we propose online, adaptive algorithms in the
context of Big SQL. We experimentally show that our meth-
ods are able to adjust to various workload patterns, and out-
perform a variety of existing static algorithms. Our exper-
imental results show that it is essential to use an adaptive
algorithm that can automatically adjust its behavior based
on the workload characteristics. This is because it is almost
impossible to know the global system workload a priori, to
identify the hotset over time, to pick the correct algorithm,
and its corresponding parameter value. Finally, we also dis-
cuss our experiences in using external caches to improve
SQL-on-Hadoop performance and we provide insights for
future research and development in the context of caching in
Big Data systems.

332

References
[1] HDFS Read Caching in Impala. http://blog.cloudera.

com/blog/2014/08/new-in-cdh-5-1-hdfs-read-
caching/, 2014. Accessed: 08.25.2016.

[2] TPC-DS like Workload on Impala. http://blog.cloudera.
com/blog/2014/09/new-benchmarks-for-sql-on-
hadoop-impala-1-4-widens-the-performance-gap/,
2014. Accessed: 08.25.2016.

[3] Apache Arrow. https://arrow.apache.org/, 2016. Ac-
cessed: 08.25.2016.

[4] Hadoop 2.0. http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html, 2016. Ac-
cessed: 08.25.2016.

[5] Apache Hive. https://hive.apache.org/, 2016. Ac-
cessed: 08.25.2016.

[6] Hortonworks: Centralized Cache Management in HDFS.
https://docs.hortonworks.com/HDPDocuments/HDP2/
HDP-2.3.2/bk_hdfs_admin_tools/content/ch03.html,
2016. Accessed: 08.25.2016.

[7] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and
E. A. Fox. Caching Proxies: Limitations and Potentials. Tech-
nical report, 1995.

[8] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and
S. Williams. Removal Policies in Network Caches for World-
Wide Web Documents. SIGCOMM Comput. Commun. Rev.,
26(4), 1996.

[9] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. IEEE Trans. on Knowl. and Data Eng., 11(1),
1999.

[10] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. The
dynamics of repeat consumption. WWW ’14, 2014.

[11] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algo-
rithms. In USENIX, 1997.

[12] S. Chaudhuri and V. Narasayya. Self-Tuning Database Sys-
tems: A Decade of Progress. In VLDB, 2007.

[13] H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer
Management Strategies for Relational Database Systems. In
VLDB, 1985.

[14] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic Data Caching and Replacement. VLDB,
1996.

[15] A. Floratou, N. Megiddo, N. Potti, F. Özcan,
U. Kale, and J.-S. Hermes. Technical Report: Adap-
tive Caching Algorithms for Big Data Systems.
http://domino.research.ibm.com/library/cyberdig.
nsf/papers/B7CCB65324B57D7E85257ED700505AAC/
$File/RJ10531.pdf.

[16] A. Floratou, U. F. Minhas, and F. Özcan. SQL-on-Hadoop:
Full Circle Back to Shared-nothing Database Architectures.
PVLDB, 7(12), 2014.

[17] S. Gray, F. Özcan, H. Pereyra, B. van der Linden, and
A. Zubiri. Big SQL 3.0: SQL-on-Hadoop without com-
promise. http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=SA&subtype=WH&htmlfid=
SWW14019USEN#loaded.

[18] O. H. Ibarra and C. E. Kim. Fast Approximation Algorithms
for the Knapsack and Sum of Subset Problems. J. ACM, 22
(4), 1975.

[19] K. Iwama and S. Taketomi. Removable Online Knapsack
Problems. 2380:293–305, 2002.

[20] S. Jiang and X. Zhang. LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance. In ACM SIGMETRICS, 2002.

[21] T. Johnson and D. Shasha. 2Q: A Low Overhead High Per-
formance Buffer Management Replacement Algorithm. In
VLDB, 1994.

[22] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi,
L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,
D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-
Milne, and M. Yoder. Impala: A Modern, Open-Source SQL
Engine for Hadoop. In CIDR, 2015.

[23] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim. LRFU: A Spectrum of Policies That Subsumes
the Least Recently Used and Least Frequently Used Policies.
IEEE Trans. Comput., 50(12), 2001.

[24] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Tachyon: Reliable, Memory Speed Storage for Cluster Com-
puting Frameworks. In SOCC, 2014.

[25] S. Lightstone, M. Surendra, Y. Diao, S. S. Parekh, J. L. Heller-
stein, K. Rose, A. J. Storm, and C. Garcia-Arellano. Con-
trol Theory: a Foundational Technique for Self Managing
Databases. In ICDE Workshops, 2007.

[26] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In FAST, 2003.

[27] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and
S. Chaudhuri. Sharing Buffer Pool Memory in Multi-tenant
Relational Database-as-a-service. PVLDB, 8(7), 2015.

[28] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page
Replacement Algorithm for Database Disk Buffering. In ACM
SIGMOD, 1993.

[29] L. Rizzo and L. Vicisano. Replacement Policies for a Proxy
Cache. IEEE/ACM Trans. Netw., 8(2), 2000.

[30] R. P. Wooster and M. Abrams. Proxy Caching That Estimates
Page Load Delays. Computer Networks, 29(8-13), 1997.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. NSDI, 2012.

[32] Y. Zhou, J. Philbin, and K. Li. The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches. In USENIX, 2001.

333

