
Siggraph 2003 paper: papers_0259, page 1 of 10

Clustered Principal Components for Precomputed Radiance Transfer
Peter-Pike Sloan Jesse Hall John Hart John Snyder

Microsoft Corporation University of Illinois University of Illinois Microsoft Research

Abstract
We compress storage and accelerate performance of precomputed
radiance transfer (PRT), which captures the way an object shad-
ows, scatters, and reflects light. PRT records over many surface
points a transfer matrix. At run-time, this matrix transforms a
vector of spherical harmonic coefficients representing distant,
low-frequency source lighting into exiting radiance. Per-point
transfer matrices form a high-dimensional surface signal that we
compress using clustered principal component analysis (CPCA),
which partitions many samples into fewer clusters each approxi-
mating the signal as an affine subspace. CPCA thus reduces the
high-dimensional transfer signal to a low-dimensional set of per-
point weights on a per-cluster set of representative matrices.
Rather than computing a weighted sum of representatives and
applying this result to the lighting, we apply the representatives to
the lighting per-cluster (on the CPU) and weight these results per-
point (on the GPU). Since the output of the matrix is lower-
dimensional than the matrix itself, this reduces computation. We
also increase the accuracy of encoded radiance functions with a
new least-squares optimal projection of spherical harmonics onto
the hemisphere. We describe an implementation on graphics
hardware that performs real-time rendering of glossy objects with
dynamic self-shadowing and interreflection without fixing the
view or light as in previous work. Our approach also allows
significantly increased lighting frequency when rendering diffuse
objects and includes subsurface scattering.
Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques,
Rendering, Shadow Algorithms.

1. Introduction
Global illumination effects challenge real-time graphics, espe-
cially in area lighting environments that require integration over
many light source samples. We seek to illuminate an object from
a dynamic, low-frequency lighting environment in real time,
including shadowing, interreflection, subsurface scattering, and
complex (anisotropic) reflectance.
These effects can be measured as radiance passing through spheri-
cal shells about the surface point p in Figure 1. Source radiance
originates from an infinite sphere (environment map).
Transferred incident radiance passes through an infinitesimal
hemisphere, and equals the source radiance decreased by self-
shadowing and increased by interreflection. Exiting radiance
passes outward through an infinitesimal hemisphere, and results
from the BRDF times the transferred incident radiance, plus
subsurface scattering.
The spherical harmonic (SH) basis provides a compact, alias-
avoiding representation for functions of radiance over a sphere or
hemisphere [Cabral et al. 1987][Sillion et al. 1991][Westin et al.
1992][Ramamoorthi and Hanrahan 2001]. Low-frequency source
illumination, which small vectors (e.g. N=25) of SH coefficients

approximate well [Ramamoorthi and Hanrahan 2001][Sloan et al.
2002], is exactly the situation in which integration over the light
becomes the bottleneck for traditional rendering methods.
Sloan et al. [2002] precompute the radiance transfer of an object
in terms of low-order SHs. For a diffuse object, exiting radiance
results from dotting a 25-vector, representing the source radiance,
with a 25-element radiance transfer vector precomputed and stor-
ed at each sample point p. By storing this transfer vector per-
vertex, real-time self-shadowing and interreflection results from a
simple vertex shader. For a glossy object, [Sloan et al. 2002]
represents radiance transfer as a linear operator converting a 25D
source radiance vector into a 25D transferred radiance vector, via
a 625-element transfer matrix that varies for each p. This glossy
transfer matrix was too big for graphics hardware. The CPU
implementation ran at interactive rates (~4 Hz) and could achieve
real-time frame rates only for a constant view or lighting, hamper-
ing its usefulness for applications like 3D games.
Our method lifts these restrictions, rendering the same glossy
objects more than 10-20 times faster. For simpler diffuse transfer,
the method allows higher frequency lighting (i.e., higher-order SH
projections) for the same computational cost. As in [Lehtinen and
Kautz 2003], we precompute and store per-vertex the source-to-
exiting radiance transfer matrix, instead of the source-to-incident
transfer [Sloan et al. 2002]. This also allows us to include the
precomputed contribution of the object's subsurface scattering of
distant environmental light.
To get real-time performance, we treat the transfer vectors or
matrices stored at each vertex as a surface signal and partition
them into a few (128-256) clusters. Principal component analysis
(PCA) approximates the points in each cluster as a low-
dimensional affine subspace (mean plus up to n′=8 PCA vectors).
We call this approach clustered principal component analysis
(CPCA). For glossy transfer, CPCA reconstructs a good ap-
proximation of its N×N matrix at each point by storing only the
index of its cluster and a few (2n N N� �¢) scalar coordinates of

Figure 1: Radiance transfer at p from source to transferred incident to
exit.

Siggraph 2003 paper: papers_0259, page 2 of 10

projection onto the cluster’s PCA vectors. CPCA reduces not only
signal storage (n′ rather than N2 scalars per point) but also the run-
time computation. Instead of multiplying an N×N transfer matrix
by an N-dimensional light vector at each p, we precompute this
multiplication in each cluster for each of its PCA vectors and
accumulate weighted versions of the n′ resulting N-vectors.
CPCA on diffuse transfer provides a similar savings in storage
and computation.
We describe two technical contributions which may have wider
applicability. The first is a very general signal approximation
method using CPCA. Though used before in machine learning
applications [Kambhatla and Leen 1994][Kambhatla and Leen
1997][Tipping and Bishop 1999], it is new to computer graphics.
To increase spatial coherence, we augment the method by redis-
tributing points to clusters according to an “overdraw” metric.
The second contribution is the use of the optimal least-squares
projection of the SH basis onto the hemisphere, which signifi-
cantly reduces error compared to approaches used in the past
[Sloan et al. 2002][Westin et al. 1992].

2. Related Work
Various representations encapsulate precomputed or acquired
global illumination. Light fields [Gortler et al. 1996][Levoy and
Hanrahan 1996] record radiance samples as they pass through a
pair of viewing planes whereas surface light fields [Chen et al.
2002][Miller et al. 1998][Nishino et al. 1999][Wood et al. 2000]
record 4D exiting radiance sampled over an object’s surface.
Both techniques support arbitrary views but fix lighting relative to
the object.
Precomputed radiance transfer (PRT) [Sloan et al. 2002] param-
eterizes transferred incident radiance in terms of low-frequency
source lighting, allowing changes to lighting as well as view-
point. We build on PRT and its generalization to anisotropic
BRDFs [Kautz et al. 2002], but speed up performance and reduce
error in three ways: we record exiting radiance instead of trans-
ferred incident, use least-squares optimal projection of
hemispherical functions, and compress using CPCA. We also
extend PRT to include subsurface scattering. In parallel work,
Lehtinen and Kautz [2003] approximate PRT using PCA. Our
CPCA decoding reduces approximation error and maps well to the
GPU, resulting in 2-3 times better performance.
Other illumination precomputation methods also support dynamic
lighting. Matusik et al. [2002] handle limited, non-real-time
lighting change with a surface reflectance field measured over a
sparsely sampled directional light basis, stored on the visual hull
of an acquired object. Hakura et al. [2000] support real-time
lighting change with parameterized textures, but constrain view-
ing and lighting changes to a 2D subspace (e.g. a 1D circle of
viewpoints × 1D swing angle of a hanging light source). [Sloan et
al. 2002] compares PRT to many other precomputed approaches
for global illumination.
Precomputed illumination datasets are huge, motivating compres-
sion. Light fields were compressed using vector quantization
(VQ) and entropy coding [Levoy and Hanrahan 1996], and reflec-
tance fields using block-based PCA [Matusik et al. 2002].
Surface light fields have been compressed with the DCT [Miller
et al. 1998], an eigenbasis (PCA) [Nishino et al. 1999], and
generalizations of VQ or PCA to irregular sampling patterns
[Wood et al. 2000]. Our CPCA compression strategy improves
[Wood et al. 2000] by hybridizing VQ and PCA in a way that
reduces error better than either by itself. Unlike [Chen et al.
2002] which compresses a 4D surface light field over each 1-ring

mesh neighborhood, our clustering is free to group any number of
samples that can be approximated well together regardless of their
surface location. Our purpose is real-time rendering with graphics
hardware, not minimizing storage space. For example, we avoid
entropy coding for which current graphics hardware is ill-suited.
Jensen et al. [2002] simulate translucent materials using a diffu-
sion approximation of subsurface scattering, accelerated by
decoupling the computation of irradiance from a hierarchical
evaluation of the diffusion approximation. This paper also ex-
perimentally validated when the multiple scattering term
dominated. Two recent papers exploit this property and imple-
ment interactive rendering techniques based on the idea. Lensch
et al. [2002] combine spatially varying filters in texture space
with vertex-to-vertex transfer to model near and far subsurface
transport. Global shadowing and interreflection effects are
ignored and only ~5Hz frame rate is obtained. Hao et al. [2003]
precompute subsurface scattering for a directional light basis.
We model smooth, distant lighting environments and include a
glossy term to approximate single scattering.
Like PRT, Westin et al. [1992] also use matrices which transform
lighting into exiting radiance, both expressed in the SH basis.
Their matrices encode local effects for BRDF synthesis, not
spatially-varying global transport for real-time rendering. They
devise a SH projection of hemispherical functions, which we
improve via least-squares in the appendix.
Lensch et al. [2001] use a similar clustering procedure to recon-
struct a spatially-varying BRDF from images. They fit
parameters of a BRDF model in each cluster using nonlinear
optimization and approximate using a linear combination of the
resulting models, one per cluster. We use an independent affine
basis per cluster.

3. Radiance Transfer Signal Representation
For diffuse surfaces, PRT encodes a transfer vector, tp, per surface
point p [Sloan et al. 2002]. The i-th component of this vector
represents the linear contribution of source lighting basis function
yi(s) to the exiting radiance of p. For glossy surfaces, we make
several modifications to the glossy transfer matrix defined in
[Sloan et al. 2002].

3.1 Transferred Incident vs. Exiting Radiance Transfer
PRT in [Sloan et al. 2002] represents transferred incident radi-
ance (Figure 1). It is derived from a Monte Carlo simulation
illuminating geometry by the SH basis functions. This decouples
the way an object shadows itself from its reflectance properties,
and allows different BRDFs to be substituted at run-time. Here
we seek to approximate the transfer signal to reduce computation.
To measure approximation error properly, we must know the
BRDF. For example, a smooth BRDF weights low-frequency
components of transferred radiance more than high-frequency
components.
To measure signal errors properly, we include BRDF scaling by
encoding the exiting radiance transfer matrix at p, Mp. Its com-
ponent, Mp,ij, represents the linear influence of source lighting
basis function j to exiting radiance basis function i. It can be
numerically integrated over light directions s and view directions
v over the hemisphere H={(x,y,z) | z ≥ 0 and x2+y2+z2=1} via

(), () , () (,)p ij i p j z
v s

M y v T s y s B v s s ds dv
H HŒ Œ

= Ú Ú

where Tp represents transport effects like shadowing, B is the
BRDF, y are the SH basis functions, and sz is the “cosine” factor
(z component of s). For simple shadowing, Tp = yj(s) qp(s) where
qp(s) is 0 if the object occludes itself in direction s and 1 other-

Siggraph 2003 paper: papers_0259, page 3 of 10

wise. For general transport where lighting is specified in a global
frame, Mp = B Rp Tp where Tp is the glossy transfer matrix defined
in [Sloan et al. 2002], Rp is an SH rotation aligning p’s normal to
the z axis and its tangents to x and y, and B is the BRDF matrix

() () (,)ij i j z
v s

B y v y s B v s s ds dv
H HŒ Œ

= Ú Ú

Rp is a N×N rotation matrix; its computation is outlined in [Kautz
et al. 2002].
We also add a view-independent subsurface scattering term to the
transport, precomputed using the hierarchical diffusion approxi-
mation of [Jensen and Buhler 2002] but parameterized by the SH
basis for lighting. The result affects only the y0 (constant) basis
function of exiting radiance.
3.2 Representing Radiance over the Hemisphere
Exit and transferred radiance at a surface point are actually func-
tions over a hemisphere, not a sphere. For the SH basis, there is
complete freedom in evaluating the function on the “opposite”
hemisphere when projecting it to the SH basis. Transfer in [Sloan
et al. 2002] and the formulas above in Section 3.1 implicitly zero
the opposite hemisphere by integrating only over the hemisphere.
Westin et al. [1992] used a reflection technique. It is also possi-
ble to use other bases such as Zernike polynomials lifted to the
hemisphere [Koenderink et al. 1996].
Our approach uses the least-squares optimal projection of the SH
basis onto the hemisphere described in the Appendix. The tech-
nique represents any SH-bandlimited spherical function restricted
to the hemisphere without error. In contrast, zero-hemisphere
projection incurs 35% worst-case and 20% average-case RMS
error integrated over the hemisphere for all unit-power spherical
signals formed by linear combinations of the 5th order SH basis.
The odd reflection technique [Westin et al. 1992] is even worse.
Beyond theoretical results, we also see visibly better accuracy on
our experimental objects using optimal projection (see Figure 7).
Given a vector b which projects a hemispherical function into the
SH basis by zeroing out the opposite hemisphere, the optimal
hemispherical projection is simply A-1 b where A is defined in the
appendix. Therefore, the optimally projected exiting radiance
transfer matrix is given by
 1 1

p p pM A B A R T- -= (1)

projecting first transferred radiance, Rp Tp, and then exiting radi-
ance. Figure 7 compares results with and without this least-
squares “boost” by A-1 to reduce error in transferred and exiting
radiance.

3.3 Clustered PCA (CPCA) Approximation
We have an n-dimensional signal xp sampled at points p over a
surface. Each xp represents exiting radiance as a linear operator
on a light vector, and takes the form of vectors for diffuse surfaces
(e.g., n=N=25) or matrices for glossy surfaces (e.g., n=N2=625).
To approximate this signal, we partition its samples into a number
of clusters each of which is approximated by an affine subspace.
More precisely, the points in a cluster are approximated by

1 2
0 1 2

n
p p p p p nx x x w x w x w x� " ¢

¢ª = + + + +
where the n′+1 n-vectors x0, x1, …, xn′ are constant over the cluster
and the n′ scalar weights 1 2, , , n

p p pw w w ¢" vary for each point p on
the surface. To reduce signal dimensionality, n n�¢ . The vector
x0 is called the cluster mean, and the vectors xi, i ≥ 1 are called the
cluster PCA vectors. Together, the cluster’s mean and PCA
vectors are called its representative vectors.
CPCA (called “VQPCA” in [Kambhatla and Leen 1994]
[Kambhatla and Leen 1997] and “local PCA” or “piecewise PCA”
in the machine learning literature under the general title of “mix-
tures of linear subspaces”) generalizes PCA (single cluster, n′ > 0)
and VQ (many clusters, n′ = 0). VQ approximates a signal as a
piecewise constant while PCA assumes it is globally linear.
CPCA exploits the local linearity of our radiance transfer signal
by breaking it down into clusters, approximating each with a
separate affine subspace.

4. Compressing Surface Signals with CPCA
We review CPCA, beginning with the simplest approach and then
describing several enhancements that further reduce error.

4.1 VQ Followed by Static PCA
The simplest CPCA method is to first cluster the points using VQ,
and then compute a PCA fit in each of the resulting clusters
[Kambhatla and Leen 1994].
VQ Clustering The LBG algorithm [Linde et al. 1980] performs
the initial clustering. Given a desired number of clusters, the
algorithm starts with clusters generated by random points from the
signal and then classifies each point into the cluster having mini-
mum distance to its representative. Each cluster representative is
then updated to the mean of all its points, and the algorithm iter-
ated until no points are switched or an iteration count is reached.
Per-Cluster PCA We first compute the cluster mean, x0. We
then compute a mk×n matrix of residuals after subtracting the
mean, C = [xp1-x0, xp2-x0, …, xpnk-x0]T, where mk is the number of
points in cluster k. Computing an SVD yields C = U D VT where
U and VT are rotation matrices and D is a diagonal matrix whose
elements are sorted in decreasing order. The first n′ rows of V
(columns of VT) are the cluster PCA vectors. A point pj’s projec-
tion weights (n′-vector

jpw) are given by the first n′ columns of
row j of UD (they are also given simply by the dot product of xpj-
x0 with each of the PCA vectors). This provides a least-squares
optimal linear approximation of C from combinations of n′ fixed
vectors. Total squared error over all cluster points is given by

2 2

2 2
01 1 1 1

k k

j j j

m n m n
p p i p ij i n j i

x x D x x D� ¢

= = + = =¢
- = = - -Â Â Â Â

The SVD of C can be directly computed using the LAPACK
routine dgesvd. To reduce matrix size and so computation, we
instead convert to normal form. When mk ≥ n, we compute the

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000 10000000

uncompressed storage cost

to
ta

l s
qu

ar
ed

 e
rro

r

n'=0
n'=1
n'=2
n'=4
n'=8
n'=16

Figure 2: CPCA error analysis using static PCA. Each curve represents
how squared error varies with various numbers of clusters (1, 2, 4, …,
16k) using a given number of principal components in each cluster (n′ = 0,
1, 2, 4, 8, and 16). The signal approximated was a 25D shadowed diffuse
transfer vector over a bird statue model from [Sloan et al. 2002] having
48668 sample points. 20 VQ iterations were used, followed by PCA in
each cluster.

Siggraph 2003 paper: papers_0259, page 4 of 10

n×n matrix CTC and its eigenvalues (which are the squares of C’s
singular values) and eigenvectors (which are equal to C’s right
singular vectors VT and thus the needed PCA vectors). When mk
< n, we compute the mk×mk matrix CCT. Its eigenvalues are still
the squares of C’s singular values, but its eigenvectors are C’s left
singular vectors, U, from which the right can be derived via VT =
UT D-1 C. The LAPACK routine dsyevx computes eigenpairs of
symmetric matrices like CTC and CCT, and saves computation
because it can return just the n′ eigenpairs having the largest
eigenvalues, while dgesvd returns all singular values.
Experimental Results Figure 2 shows results for this approach
on an example diffuse transfer signal (25D) over a bird statue
model. Using straight VQ (n′=0), errors are only gradually
reduced as storage increases. Increasing the number of PCA
vectors per cluster provides an approximation that is worse at
small numbers of clusters but eventually crosses below the previ-
ous curve as the number of clusters increases.
The graphs use a simple cost metric measuring total storage for
the approximated signal:

mp n′ + mc (n′ + 1) n
where mp is the number of surface samples and mc is the number
of clusters. The first term represents the per-point weight data
whereas the second represents the per-cluster representative data.
This simple model correlates well with actual rendering cost.

4.2 Iterative PCA
The previous section clusters using distance to the cluster mean

2
0px x- as the classification metric, but as observed in

[Kambhatla and Leen 1997], the distance that matters is approxi-
mation error, 2

p px x�- . Iterative PCA [Kambhatla and Leen
1997] exploits this observation by classifying points in the cluster
that minimizes approximation error rather than distance to the
mean. Also, after every point classification step (instead of only
once at the end of the whole clustering process) it computes a
PCA of the cluster’s current point members to update the affine
subspace model.
This approximation error at a point xp is computed via

()222
0 01

()
n

p p p p ii
x x x x x x x� i¢

=
- = - - -Â .

To avoid local minima having high error, we introduce additional
PCA vectors one by one, from zero to n′, and do several iterations
(typically 10-20) of the generalized LBG algorithm for that
number of vectors before adding another.

Figure 3 and Figure 4 demonstrate the large error reduction from
iterative over static PCA. Typically, iterative PCA performs as
well as static having 1-4 additional PCA vectors per cluster, but
the encoding cost is significantly higher.

4.3 Per-Cluster Adaptation of Number of PCA Vectors
Neither static nor iterative CPCA distribute error homogenously –
some clusters usually have much more error than others. Without
increasing the overall amount of per-point data, we can reduce
error by allowing clusters with high error to use more PCA
vectors and clusters with less error to use fewer. Adaptation like
this was used in [Meinicke and Ritter 2001] to avoid local overfit-
ting.
The squared singular value Di

2 in a cluster represents how much
total squared error is reduced by the addition of PCA vector i to
that cluster. But clusters do not contain the same number of
points; adding an additional PCA vector in a cluster with more
points is more expensive than in a cluster with fewer points
because an additional weight must be stored per point. So we
rank PCA vectors by Di

2/mk which represents the rate at which
per-point squared error will be reduced by the addition of PCA
vector i in cluster k containing mk points. We sort this quantity in
decreasing order over all PCA vectors in all clusters, and add
PCA vectors according to this order (greatest error-reduction rate
first), until it reaches its total budget of PCA vectors.
The overall algorithm starts with the CPCA result from the previ-
ous section (constant number of PCA vectors per cluster).
Additional adaptation iterations then perform the following steps:

1) classify each point to the cluster having minimum
approximation error, using the cluster’s current n′,

2) update cluster representatives using PCA (see Section 4.1),
3) redistribute the number of PCA vectors over all clusters by

sorting over Di
2/mk and adding vectors (vector i from cluster

k) in decreasing order until Σmk reaches its budget. Record
the number of PCA vectors allocated in each cluster.

0.0001

0.001

0.01

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16

average number of PCA vectors per point

to
ta

l s
qu

ar
ed

 e
rro

r

static pca after vq
iterative pca
iterative/adaptive pca

Figure 3: Comparison of error for three CPCA encoding methods. As in
Figure 2, the signal encoded is 25D diffuse transfer over a bird model.
256 clusters were used.

(a) static [17.7] (b) iterative [4.28] (c) adaptive [2.54]

Figure 4: Per-point error distribution for three CPCA methods. A linear
blue-cyan-green-yellow-red error scale is used. Rendered images are
shown in the second row. The signal is that for Figure 3 with n′=3. Total
squared error of the 25D signal over all 48k vertices is written in brackets.

Siggraph 2003 paper: papers_0259, page 5 of 10

As shown in Figure 3 and Figure 4, adaptation reduces error,
typically producing error as low as non-adaptive PCA with an
additional vector.

5. Cluster Coherence Optimization
The clusters from the previous section ignore where samples lie
on the object’s surface – clusters can have ragged boundaries or
contain multiple components. This leads to rendering inefficiency
because triangles whose vertices are in different clusters are
drawn multiple times. For each triangle, this overdraw is defined
as the number of unique clusters its vertices belong to. Overdraw
summed over all mesh triangles represents the number of triangles
sent to the graphics hardware for rendering (see details in Section
6). We reduce overdraw with two techniques.
The first technique seeks for each vertex a better cluster that
reduces overdraw without significantly increasing approximation
error. This greedy search tries reclassifying the vertex’s signal in
its neighboring vertices’ clusters, and computes the resulting
overdraw reduction and error increase. The technique then sorts
all vertices by overdraw reduction divided by error increase, and
reclusters each vertex in decreasing order of this quotient until
reaching a given error increase budget, such as 5-10% of the
initial error. Vertex reclassification requires recomputation of the
quotient for the vertex and its neighbors. Figure 5(b) shows
reclassification results.
The second technique, called superclustering, allows the graphics
hardware to draw a group of clusters as a single unit. It reduces
overdraw because triangles straddling clusters from the same
supercluster need not be drawn more than once (see Section 6).
Superclustering also ensures that primitive batches are large
enough to maximize performance; the number of clusters in a
supercluster is limited by the number of registers available in the
graphics hardware. Unlike reclassification, superclustering does
not increase approximation error.
We form superclusters greedily, initializing them to be the clus-
ters, then repeatedly merging neighboring superclusters in order
of overdraw reduction. Two superclusters neighbor each other
when at least one triangle has vertices from both. Figure 5(c)
demonstrates how well greedy superclustering reduces overdraw.

6. Rendering Using CPCA-Encoded Transfer
To shade a glossy surface at point p using CPCA-encoded trans-
fer, we use a modified version of [Kautz et al. 2002], via

() ()() ()T T
p p p p py v B R T l y v M l=

Here, the column-vector l results of projecting source lighting (in
a global coordinate frame) into the SH basis. The matrix Tp
converts this source lighting to transferred incident radiance
(accounts for self-shadowing and inter-reflection). The rotation
matrix Rp aligns the global coordinate system to a local frame
defined by p’s normal and tangent directions. The BRDF matrix
B converts local incident radiance into exit. Finally, y is a col-
umn-vector (yT is a row-vector) of SH basis functions evaluated at
the view direction at p, vp, expressed in the local frame. y and l
are N-vectors and B, R, and T are N×N matrices. A fifth-order SH
projection, N=25, is accurate when the lighting and BRDF are
low-frequency.
One can compute the source lighting vector l in various ways
[Sloan et al. 2002]. We can dynamically rotate a predefined
environment to simulate rigid rotations of the object. Graphics
hardware can sample radiance near the object which is then SH-
projected. Simple light sources like circles can be projected
analytically. Spatial variation in l captures local lighting effects
but complicates the rendering process.
The approach in [Kautz et al. 2002] recorded the spatially varying
signal T′p = Rp Tp and evaluated the matrix-vector product fp=T′p l
on the CPU. It then evaluated B′(vp) = y(vp) B using N texture
maps indexed by the view vector vp, and finally computed a dot
product of these two vectors. Texture maps B′ in [Kautz et al.
2002] were evaluated per-vertex on the CPU because the hard-
ware was unable to interpolate 25D vectors fp over a triangle nor
perform the 25D dot product in a pixel shader. Though the latest
graphics hardware now makes it possible to interpolate such large
vectors, transfer matrices remain too large to be manipulated on
the GPU. Fortunately, the affine approximation used by CPCA
solves this problem.
Using CPCA, we encode the entire matrix chain Mp converting
source lighting to exiting radiance. This produces the approxima-
tion

1 2
0 1 2

n
p p p p nM M w M w M w M� " ¢

¢= + + +
Multiplying pM� by l then yields exiting radiance projected into the
SH basis, ep, via

() () () ()1 2
0 1 2

n
p p p p p ne M l M l w M l w M l w M l� " ¢

¢= = + + + +
We precompute the matrix/vector products for each cluster on the
CPU, resulting in n′+1 fixed N-vectors, and accumulate them as a
sum scaled by the per-point weights, i

pw , on the GPU. For small
n′ < N, this reduces computation and makes the vertex data small
enough for vertex shaders on current graphics cards. For exam-
ple, for N=25 and n′=5, we save more than a factor of 4.
Finally, we evaluate the exiting radiance function at vp by dotting
the vector y(vp) with ep . We evaluate y at vp using a texture map
in the same way as [Kautz et al. 2002] evaluated yT(vp) B, but we
can now perform this evaluation and dot product in a pixel shader.
Diffuse surfaces simplify the computation but CPCA achieves a
similar reduction. In this case, pt li computes shading where tp is
an N-dimensional transfer vector and l is the lighting’s SH projec-
tion as before. Using CPCA, we encode tp as an affine
combination of per-cluster representatives and precompute in each
cluster the dot product of the light with these vectors. The final
shade is a weighted combination of n′+1 scalar values it li which
are constant over a cluster, via

(a) original

mean overdraw: 2.03
(b) reclassification

1.79
(c) recl.+supercluster

1.60
Figure 5: Overdraw reduction using cluster coherence optimization on
256 clusters of a 625D glossy transfer signal with n′=8 and a reclassifi-
cation error “budget” of 10% of the original error. Triangle color
indicates overdraw: red = 3, yellow = 2, and green = 1.

Siggraph 2003 paper: papers_0259, page 6 of 10

() () () ()1 2
0 1 2

n
p p p p nt l t l w t l w t l w t l� i i i i " i¢

¢= + + + +

This saves computation when n′ < N. In fact, the per-vertex
computation does not depend on N at all! So we can use higher-
order projections (e.g., N=36 up to N=100) as long as the ap-
proximation error remains acceptable for small n′ (Figure 6).
Unlike [Sloan et al. 2002], real-time rendering is now possible
with such high-order lighting, since the transfer vector is no
longer stored on the GPU.

6.1 Non-Square Matrices
Mp need not be square. In an Nr×Nl matrix, more columns, Nl,
provide for greater lighting frequency and thus longer, sharper
shadows. More rows, Nr, provide for more specular BRDFs.
Interestingly, Nl has little effect on the run-time cost with CPCA,
since the transformation of source lighting is done per-cluster to
produce vectors whose dimensionality only depends on Nr.
Increasing Nl does increase the entropy of the transfer signal,
making it harder to encode and likely to require more representa-
tives per cluster.
Non-square transfer matrices are useful in another way. Exiting
radiance is a hemispherical function, so we can use the optimal
least-squares projection derived in the Appendix to represent Mp.
Fifth order optimal projection of the output of Mp can be done
with little error using Nr=24 basis functions – one of the 25 bases
is nearly redundant (see Appendix).

6.2 Implementation Notes
We first describe the simple case of no superclustering. We
decompose the mesh into chunks of geometry for each cluster,
where a chunk contains all faces containing at least one vertex
from that cluster. Since this also includes vertices from other
clusters, we store a per-vertex bit, αp, indicating whether the
vertex p is a cluster member. Pseudocode for rendering is

Draw the mesh into the zbuffer only (rgb=0)
Set the blending mode to add
Foreach cluster
 Compute n′+1 per-cluster constants (Mi l or it li) on CPU
 Load per-cluster constants to graphics hardware
 DrawCluster

DrawCluster sends the cluster’s geometry to the GPU and runs a
vertex shader computing the linear combination of the i

pw with
the per-cluster constants. If αp = 0, the i

pw ’s are also set to zero
so that blending vertices from other clusters does not effect the
result. In other words, we blend using a linear partition of unity

over each triangle face that straddles multiple clusters.
Generalizing to superclusters is not much more complicated. We
compute the per-cluster constants for all clusters in the superclus-
ter and load them into hardware registers. Every vertex in a
supercluster records a cluster index, used by the vertex shader as
an index register to look up its cluster’s constants.
For diffuse transfer, the vertex shader produces the final shaded
result. Glossy transfer is more complex – its vertex shader re-
quires normal and tangent vectors to transform the global view
vector into the local frame at p to obtain vp. Rasterization interpo-
lates the resulting view vector vp and exiting radiance vector ep
over the pixels of each triangle. The pixel shader uses the local
view vector to index a map of SH basis functions, y(vp), and then
dots this result with ep. We use a parabolic hemispherical
parameterization [Heidrich and Seidel 1999] for the SH map,
sampled at 32×32. Since ep contains more components than
current rasterization hardware can interpolate, we perform three
separate passes for glossy transfer – one per color channel.
Diffuse and glossy transfer also differ in their per-cluster state.
For each of the n′+1 representative vectors, the per-cluster con-
stant is a scalar color, it li , for diffuse transfer regardless of the
value of Nl. For glossy transfer, this state is a colored Nr-vector,

iM l . Current graphics hardware (ATI 9700, Nvidia GeForce 4)
supports ~256 registers accessible by vertex shaders where each
register contains 4 channels. For nonadaptive PCA, glossy
transfer requires ms (n′ + 1) Nr/4 registers where ms is the number
of clusters per supercluster. This assumes three pass rendering,
one per color channel, and packs 4 components of an Nr-vector
into each register. Diffuse transfer requires less state: only ms (n′
+ 1) registers per supercluster to compute all three color channels
by packing an rgb color per register.
Though the programmable resources of GPUs have increased
greatly, they are not yet sufficient to feasibly render adaptive PCA
(Section 4.3), which requires data-dependent looping.

7. Results
Figure 10 compares rendering quality of various transfer encod-
ings on an example bird model with a glossy anisotropic BRDF.
We experimentally picked a number of clusters for VQ (n′=0) and
a number of representative vectors for pure PCA (mc=1) such that
rendering performance matched that from CPCA with n′=8,
mc=256. For CPCA, we used iterative PCA encoding from
Section 4.2. We applied superclustering (Section 4.3) to both VQ
and CPCA to the extent permitted by hardware register limits (it is

unnecessary for pure PCA since there is only
one cluster). Example images, encoding error,
and rendering rates appear in the figure for all
three methods as well as the uncompressed
original. Methods used before in computer
graphics [Nishino et al. 1999][Wood et al. 2000]
perform poorly: pure PCA is smooth but has
high error; VQ reduces error but has obvious
cluster artifacts. Our CPCA result (third column)
is very faithful to the uncompressed image on
the far right.
Figure 11 shows the effect on encoding accuracy
of varying the per-cluster number of representa-
tive vectors (n′). The two rows show results on
two models, one smooth (bird, bottom) and one
bumpier (Buddha, top). Each column corre-
sponds to a different n′. The signal encoded
represents glossy transfer for an anisotropic

Order 10, static, n′=1

SE=15.293
Order 10, iter, n′=1

SE=8.83
Order 10, iter, n′=2

SE=2.23
Order 10, iter, n′=4

SE=0.432
Order 5

Uncompressed

Figure 6: Higher-order lighting for diffuse transfer (simple two-polygon scene). The left four
columns show CPCA-encoded results for 10th order lighting (N=100) using various numbers of
representatives (n′) and mc=64. The rightmost column shows uncompressed 5th order lighting
(N=25) used in [Sloan et al. 2002]. Note how shadows are sharpened at higher order and how
iterative PCA adapts cluster shapes to the transfer signal better than static PCA (leftmost two
columns). CPCA with n′=4 provides an accurate approximation that can be rendered in real-time.

Siggraph 2003 paper: papers_0259, page 7 of 10

BRDF, including multiple bounce interreflections for the
Buddha model, but only shadowing for the bird model. With
about 8 cluster PCA vectors, we obtain very accurate results
that can be rendered quickly. Rendering results using uncom-

pressed transfer
data (without
CPCA encod-
ing) is shown in
the far right

column. CPCA speeds up rendering by more than a factor of
10 compared to uncompressed rendering [Sloan et al. 2002]
with little visual loss.
Interestingly, though the Buddha model has higher error per
transfer sample than the bird model, error is masked by its
high-frequency spatial variation. The Buddha’s n′=4 result
looks quite accurate, whereas the bird’s has cluster artifacts
visible in the shadowed neck area. Error on the Buddha
reveals itself in the neck/chin shadow and the pedestal shadow
between the feet.
Figure 9 and Figure 8 show the quality of real-time rendering
results achieved by our method. The transfer signal for Figure 9
represents the sum of a diffuse subsurface scattering term and a
isotropic glossy term. The result is a realistically rendered Bud-
dha that includes shadowing, translucency, and glossiness effects
that respond to changes in lighting or view in real-time.
Figure 8 includes models from [Sloan et al. 2002] which could be
rendered quickly only by fixing the light with respect to the object
(allowing view change), or fixing the view (allowing light move-
ment). We now render these models with visually identical
quality in real-time without constraints. For comparison, uncom-
pressed rendering using 25×25 matrices gives a frame rate of
2.9Hz for the head model, and 2.7Hz for the buddha model, a
factor of 20× and 16× slower than rendering with CPCA-encoded
16×25 matrices. (For 16×25 matrices, the uncompressed render-
ing speeds are 5.2Hz and 4.7Hz.) This comparison is fair because
16×25 matrices with least squares optimal projection (Equation
(1)) produce results almost indistinguishable from 25×25 matrices
with the zero-hemisphere projection (see Figure 7). A Radeon
9800 runs 20% faster with CPCA while uncompressed rendering
is 1% faster, showing that CPCA scales well with the GPU.
Table 1 compares encoding results, highlighting the preprocessing
times and error values for static PCA (Section 4.1) vs. iterative
PCA (Section 4.2). Iterative encoding is expensive, but it often
reduces error significantly (see rows for bird model, for example).
For the Buddha model, transfer signals tend to be more spatially
incoherent, so error reduction from iterative encoding is less
dramatic. Using more clusters (increasing mc) could help matters,
but we have done little experimentation with this parameter.
We also measured the effectiveness of cluster coherence optimiz-
ation (Section 5). Using a 5% error threshold, which has little
effect on visual quality, this table shows overdraw/frame rate (in
Hz) using reclassification alone (“rec”), superclustering alone
(“sc”), and both together (“sc+rec”). Results are for anisotropic
glossy transfer (“gloss-anis” from Table 1). We achieve a 15-
20% increase in rendering speed on these examples.

8. Conclusions and Future Work
We have shown that CPCA-encoded transfer provides real-time
rendering of global transport effects for a variety of geometric
models and material characteristics, including glossy/anisotropic
BRDFs and translucency. Though they depend on prerecorded
transfer data over specific models, these effects are new to real-

time graphics. CPCA is an effective and very general technique
for approximating high-dimensional signals (e.g., transfer matri-
ces) over low-dimensional manifolds (e.g., 3D surfaces). It
reduces error better than VQ or PCA for the same storage and
yields data granularity in the approximation that better suits GPU
implementation. Rather than grouping arbitrarily based on blocks
in an image or polygons on a mesh, CPCA adapts cluster size and
shape to the nature of the signal. Since the transfer signal is a
linear operator on a light vector, representing a cluster containing
many samples as a low-dimensional affine subspace not only
reduces storage but converts a matrix/vector multiply per point
into a weighted combination of a few pre-computed vectors. This
is the key to our real-time performance.
In future work, we are interested in using CPCA compression to
precompute transfer on deformable models, perhaps by constrain-
ing the number of degrees of freedom. We also believe CPCA
can be used for surface signals other than radiance transfer of
distant source lighting, including simpler signals like surface light
fields and more complex ones like transfer for spatially varying
illumination. CPCA could be enhanced by an automatic search
over the number of clusters variable (mc), at the cost of additional
encoding time. Finally, we are interested in combining our
transfer technique, which is specialized for low-frequency light-
ing, with others handling high-frequency lighting.

Acknowledgments
This research was supported by Microsoft, with additional support from
ATI, NVidia, and the NSF ITR grant ACI-0113968. We thank David
Thiel for editing the submission video.

References
CABRAL, B, MAX, N, AND SPRINGMEYER, R. 1987. Bidirectional Reflec-

tion Functions from Surface Bump Maps, SIGGRAPH 87, 273-281.
CHEN, W-C, BOUGUET, Y-V, CHU, MH, AND GRZESZCZUK, R. 2002. Light

Field Mapping: Efficient Representation and Hardware Rendering of
Surface Light Fields, SIGGRAPH 2002, 447-456.

GERSHO, A, AND GRAY, R. 1992. Vector Quantization and Signal Com-
pression, Kluwer Academic, Boston, pp. 606-610.

GORTLER, SJ, GRZESZCZUK, R, SZELISKI, R, AND COHEN, M.F. 1996. The
Lumigraph, SIGGRAPH 96, 43-54.

HAKURA, Z, LENGYEL, J, AND SNYDER, J. 2000. Parameterized Animation
Compression. Eurographics Rendering Workshop, pp.101-112.

HAO, X, BABY, T, VARSHNEY, A. 2003. Interactive Subsurface Scattering
for Translucent Meshes, to appear in Symposium on Interactive 3D
Graphics.

HEIDRICH, W, SEIDEL H. 1999. Realistic, Hardware-Accelerated Shading
and Lighting, SIGGRAPH 99, 171-178.

JENSEN, H, AND BUHLER, J. 2002. A Rapid Hierarchical Rendering
Technique for Translucent Material, SIGGRAPH 2002, 576-581.

Model original Rec sc sc+rec
Buddha 1.93/26.8 1.72/29.6 1.61/29.7 1.48/33.2
Bird 1.25/39.3 1.23/39.3 1.14/45.2 1.138/45.3

Static PCA Iter PCA model BRDF figure mp Transfer
Nr×Nl

mc n′
cpu SE cpu SE Fps

Buddha gloss-iso 11b 49990 16×25 256 6 3m30s 563 1h51m 451 42.8

Buddha gloss-
anis 10 49990 24×25 256 8 6m7s 10996 4h34m 8524 24.2

Buddha subsurf+
gloss-iso 9 49990 25×25 256 8 6m21s 1992 4h32m 1439 27

bird gloss-
anis

8,10 48688 24×25 256 8 6m34s 898 3h43m 294 45

bird diffuse video 48688 1×100 256 8 43s 3.14 3m26s 0.668 227

head gloss-iso 11a 50060 16×25 256 6 4m20s 78.8 2h12m 43.7 58.5

polys diffuse 6 58624 1×100 32 4 14s 0.492 3m26s 0.432 294

Table 1: Encoding/performance results. SE means squared approximation error
over all vertices. Fps is the rendering performance in Hz. All performance
measurements were taken from a 2.2Gz Pentium IV with ATI Radeon 9700.

Siggraph 2003 paper: papers_0259, page 8 of 10

KAMBHATLA, N, AND LEEN, T. 1994 Fast Non-Linear Dimension Reduc-
tion, Advances in Neural Information Processing Systems 6.

KAMBHATLA, N, AND LEEN, T. 1997. Dimension Reduction by Local PCA,
Neural Computation, 9, 1493.

KAUTZ, J, SLOAN, P, AND SNYDER J. 2002. Fast, Arbitrary BRDF Shading
for Low-Frequency Lighting Using Spherical Harmonics, Eurographics
Workshop on Rendering, 291-296.

KOENDERINK, J, VAN DOORN, A, AND STAVRIDI, M. 1996. Bidirectional
Reflection Distribution Function Expressed in terms of surface scatter-
ing modes, ECCV.

LEHTINEN, J, AND KAUTZ, J. 2003. Matrix Radiance Transfer, to appear in
Symposium on Interactive 3D Graphics.

LENSCH, H, KAUTZ, J, GOESELE, M, HEIDRICH, W, AND SEIDEL, H. 2001.
Image-Based Reconstruction of Spatially Varying Materials, Proceed-
ings of Eurographics Rendering Workshop, 104-115.

LENSCH, H, GOESCELE, M, BEKAERT, P, KAUTZ, J, MAGNOR, M, LANG, J,
SEIDEL, H. 2002. Interactive Rendering of Translucent Objects, Pacific
Graphics.

LEVOY, M, AND HANRAHAN, P. 1996. Light Field Rendering, SIGGRAPH
96, August 1996, 31-41

LINDE, Y, BUZO, A, AND GRAY, R. 1980. An algorithm for Vector Quan-
tizer Design, IEEE Transactions on Communication COM-28, 84-95.

MATUSIK, W, PFISTER, H, NGAN, A, BEARDSLEY, P, ZIEGLER, R, AND
MCMILLAN L. 2002. Image-Based 3D Photography using Opacity
Hulls. SIGGRAPH 02, 427-437.

MEINICKE, P, AND RITTER, H. 2001. Resolution-Based Complexity Control
for Gaussian Mixture Models, Neural Computation, 13(2), 453-475.

MILLER, G, RUBIN, S, AND PONCELEN, D. 1998. Lazy Decompression of
Surface Light Fields for Pre-computed Global Illumination, In 9th Eu-
rographics Rendering Workshop, June, pp. 281-292.

NISHINO, K, SATO, Y, AND IKEUCHI, K. 1999. Eigen-Texture Method:
Appearance Compression based on 3D Model, Proceedings of 1999
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Fort Collins, CO, June, pp. 618-24 Vol. 1.

RAMAMOORTHI, R, AND HANRAHAN, P. 2001. An Efficient Representation
for Irradiance Environment Maps, SIGGRAPH 2001, 497-500.

SILLION, F, ARVO, J, WESTIN, S, AND GREENBERG, D. 1991. A Global
Illumination Solution for General Reflectance Distributions, SIG-
GRAPH 91, 187-196.

SLOAN, P., KAUTZ, J, AND SNYDER J. 2002. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Light-
ing Environments, SIGGRAPH 2002, 527-536.

TIPPING, M, AND BISHOP, C. 1999. Mixtures of Probabilistic Principal
Component Analysers, Neural Computation, 11(2), 443-482.

WESTIN, S, ARVO, J, TORRANCE, K. 1992. Predicting Reflectance Func-
tions from Complex Surfaces, SIGGRAPH 92, 255-264.

WOOD, D, AZUMA, D, ALDINGER, K, CURLESS, B, DUCHAMP, T, SALESIN,
D, AND STUETZLE, W. 2000. Surface Light Fields for 3D Photography,
SIGGRAPH 2000, 287-296.

9. Appendix: Hemispherical SH Projection
9.1 Least-Squares Optimal Projection
Let f(s) be a function over the hemisphere s=(x,y,z), sŒH. We approxi-
mate f as a linear combination of SH basis functions yi(s) restricted to H
where these basis functions are no longer orthogonal. So we seek

f(s) ≈ Σi ci yi(s)
such that this approximation has minimum squared error over H. We call
this vector c the least-squares optimal hemispherical projection of f.
To derive the coefficients ci of this projection, we minimize squared error

E = ∫H (f(s) - Σi ci yi(s))2 ds
This is an unconstrained minimization problem with the ci forming the
degrees of freedom. So we take ∂E/∂ck and set it to 0:
 ∂E/∂ck = ∫H 2 (f(s) - Σi ci yi(s)) yk(s) ds = 0

fi Σi ci ∫H yi(s) yk(s) ds = ∫H f(s) yk(s) ds
This reduces to Ac=b or c=A-1 b where A is the symmetric matrix

Aik = ∫H yi(s) yk(s) ds
and b is the vector of integrals over the hemisphere of f(s) multiplied by
the SH basis functions

bk = ∫H f(s) yk(s) ds
Alternatively, b can be thought of as the standard SH projection of a
spherical extension of f which returns 0 when evaluated on the other half
of the sphere, called the zero-hemisphere hemispherical projection. Note
that A can be inverted once regardless of the function f(s). Note also that
A is the identity matrix when integrating over the entire sphere.
Readers familiar with biorthogonal bases used for wavelets will find this
familiar; y(s) is the primal basis and A-1 y(s) forms its dual basis.
For 5th order SH projection (25 basis functions), the matrix A is nearly
singular – its smallest singular value is 6.59×10-6 whereas its largest
singular value is 1 (for comparison, the second smallest singular value is
3.10×10-4). We can therefore discard one of the SH basis functions, since
at least one is very well approximated as a linear combination of the others
when restricted to a single hemisphere. A simple analysis shows that
discarding the l=1,m=0 SH basis function (i.e., the SH basis function that
is linear in z) has the smallest squared error, 1.48×10-5, when approxi-
mated as a linear combination of the other basis functions.

9.2 Error Analysis of Various Projections
We first compare the difference between the zero-hemisphere and least-
squares optimal projections. The integral, ∫H (Σi ci yi(s))2 ds, of the
squared value of an approximated function specified by its least-squares

optimal coefficient vector c is given by cT A c. If, as
before, b is the zero-hemisphere hemispherical
projection of f, then c = A-1 b is the optimal least-
squares hemispherical projection of f. The squared
difference between these two projections integrated
over H is
E1=(c-b)T A (c-b)= cT [(A - I)T A (A - I)] c = cT Q1 c
where I is the identity matrix. E1 attains a maximum
value of 0.125 and an average value of 0.0402 over
all signals formed by linear combinations of up to
5th order SH basis functions having unit squared
integral over the sphere; i.e., over all unit-length
25D vectors c. Worst- and average-case errors are
derived as the largest and average singular value of
the symmetric matrix Q1. These are large differences
as a fraction of the original unit-length signal; using
the RMS norm enlarges them still more via a square
root. Optimal projection represents any element of
this function space without error.
Another way of restricting the SH basis to the
hemisphere ([Westin et al. 1992]) is to reflect f’s
value about z to form a function defined over the
whole sphere, via

(a) Zero-hemisphere,
16×25

(b) Optimal Least-Squares,
16×25

(c) Original signal,
25×25 (zero-hemisphere from [Sloan

et al. 2002])

Figure 7: Projection comparison for glossy transfer matrices. Note the increased fidelity of the
optimal least-squares projection (b) compared to zero-hemisphere (a) especially at the silhouettes
(blue and red from colored light sources) where the Fresnel factor in the BRDF has high energy.
Essentially, using optimal least-squares matches accuracy of a 25×25 matrix from [Sloan et al.
2002] via a 16×25 matrix (compare b and c).

Siggraph 2003 paper: papers_0259, page 9 of 10

{ (, ,), if 0(, ,) (, ,), otherwiseodd
f x y z zf x y z f x y z

≥= − −

We can then derive a hemispherical projection of f as the coefficient
vector given by the standard SH projection of fodd. We call this method the
odd reflection hemispherical projection. It is easy to see that a spherical
function given by its SH coefficient vector c and then restricted to the z ≥
0 hemisphere yields a projection coefficient of 2ci for the odd SH basis
functions, for which yi(x,y,z) = yi(x,y,-z), and 0 for the even SH basis
functions, for which yi(x,y,z) = yi(x,y,z) (all SH basis functions are either
odd or even in z).
We analyze reflection projection in terms of squared error in the same way
as for zero-hemisphere projection. Since the projection should have a
comparable number (i.e, at least 25) of nonzero projection coefficients, we
use SH basis functions up to order 8, which includes 28 odd (and thus
nonzero) basis functions and 36 even ones, for a total of 64. Using this
projection method for the same 5th order function space of interest,
represented by the coefficient vector c, yields error E2 defined as

E2 = cT [(D*A – I)T A (D*A – I)] c = cT Q2 c
where D* is a 64×64 diagonal matrix which scales odd basis functions by
2 and even ones by 0, and A is the symmetric matrix defined previously
but now for up to 8th order (64×64). Using an SVD of the upper left
25×25 block of the symmetric matrix Q2, the worst case error over all
unit-length 25D vectors c is given by its largest singular value and equals
0.145. The average squared error is given by the average singular value of
the upper-left block of Q2 and equals 0.044. In other words, odd reflection
is worse than zero-hemisphere projection in both worst-case and average-
case, even though it has more projection coefficients.
A similar analysis can be applied to even reflection, by projecting the even
reflection extension of f defined as

{ (, ,), if 0(, ,) (, ,), otherwiseeven
f x y z zf x y z f x y z

≥= −

For 7th order SH basis functions, 28 are even and thus produce nonzero
coefficients. An error measure for even reflection is identical to E2 except
that its diagonal matrix D* scales by 2 the even basis functions and zeroes
the odd. This projection provides worst-case error over all unit-length
signals c of 0.022 and average-case error of 0.0036; still significant but far
less than either the zero-hemisphere or odd reflection projections.
Interestingly, even reflection using a smaller 5th order basis with only 15
relevant basis functions provides 0.193 worst-case and 0.030 average-case
error – better average-case error than zero-hemisphere projection with
many fewer coefficients.

So even reflection is better than zero-hemisphere which in turn is better
than odd reflection to approximate functions over the hemisphere. This
can be understood because odd reflection produces a discontinuous
spherical extension, while even reflection is continuous. Zeroing out the
hemisphere is at least continuous for a portion of its basis functions – the
odd ones. [Westin et al. 1992] also included scaling of the SH basis
function by z, so that scaled odd reflection provides a continuous spherical
extension. But such scaling yields high approximation error unless f
roughly decreases as z→0 and f(x,y,0)=0. This is not generally true of our
exiting radiance functions.

Figure 9: Translucent+glossy Buddha in two lighting envi-
ronments. These images were rendered at 27Hz.

(a) Head, 58.5Hz (b) Buddha, 42.8Hz

Figure 8: Glossy phong models. We get a performance speedup of 16-
20x over the method in [Sloan et al. 2002] without noticeable degrada-
tion, by encoding with CPCA and using least-squares optimal
projection to reduce matrix rows from 25 to 16.

Siggraph 2003 paper: papers_0259, page 10 of 10

PCA, mc =1, n′=20

45.7Hz, SE=101304
VQ, mc=1792, n′=0

41.8Hz, SE=14799
CPCA, mc=256, n′=8

45.5Hz, SE=294.4
Uncompressed

3.7Hz, SE=0

Figure 10: VQ vs. PCA vs. CPCA quality results for matched rendering performance. The transfer signal encoded was a 24×25 (600D) glossy transfer
matrix for an anisotropic BRDF. CPCA achieves much better visual and quantitative accuracy than VQ and pure PCA. Rendering frame rates and error
measurements are listed below each of the four columns. CPCA was encoded using the iterative method of Section 4.2.

40.4Hz, SE= 40353.5 36.4Hz, SE=21077.5 24.2Hz, SE=8524.1 18.7Hz, SE= 4413.01 3.3Hz, SE=0

58.9Hz, SE=9510.75 57.1Hz, SE=2353.09 45.5Hz, SE=294.421 31.9Hz, SE=66.7495 3.7Hz, SE=0

CPCA, n′=2 CPCA, n′=4 CPCA, n′=8 CPCA, n′=12 uncompressed
Figure 11: Varying the number of representatives per cluster (n′). Signal is glossy 24×25 transfer with anisotropic BRDF, mc=256.

	Introduction
	Related Work
	Radiance Transfer Signal Representation
	Transferred Incident vs. Exiting Radiance Transfer
	Representing Radiance over the Hemisphere
	Clustered PCA (CPCA) Approximation

	Compressing Surface Signals with CPCA
	VQ Followed by Static PCA
	Iterative PCA
	Per-Cluster Adaptation of Number of PCA Vectors

	Cluster Coherence Optimization
	Rendering Using CPCA-Encoded Transfer
	Non-Square Matrices
	Implementation Notes

	Results
	Conclusions and Future Work
	Acknowledgments
	Appendix: Hemispherical SH Projection
	Least-Squares Optimal Projection
	Error Analysis of Various Projections

