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Abstract 
We compress storage and accelerate performance of precomputed 
radiance transfer (PRT), which captures the way an object shad-
ows, scatters, and reflects light.   PRT records over many surface 
points a transfer matrix.  At run-time, this matrix transforms a 
vector of spherical harmonic coefficients representing distant, 
low-frequency source lighting into exiting radiance.  Per-point 
transfer matrices form a high-dimensional surface signal that we 
compress using clustered principal component analysis (CPCA), 
which partitions many samples into fewer clusters each approxi-
mating the signal as an affine subspace.  CPCA thus reduces the 
high-dimensional transfer signal to a low-dimensional set of per-
point weights on a per-cluster set of representative matrices.  
Rather than computing a weighted sum of representatives and 
applying this result to the lighting, we apply the representatives to 
the lighting per-cluster (on the CPU) and weight these results per-
point (on the GPU).  Since the output of the matrix is lower-
dimensional than the matrix itself, this reduces computation.  We 
also increase the accuracy of encoded radiance functions with a 
new least-squares optimal projection of spherical harmonics onto 
the hemisphere.  We describe an implementation on graphics 
hardware that performs real-time rendering of glossy objects with 
dynamic self-shadowing and interreflection without fixing the 
view or light as in previous work.  Our approach also allows 
significantly increased lighting frequency when rendering diffuse 
objects and includes subsurface scattering. 
Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques, 
Rendering, Shadow Algorithms. 

1. Introduction 
Global illumination effects challenge real-time graphics, espe-
cially in area lighting environments that require integration over 
many light source samples.  We seek to illuminate an object from 
a dynamic, low-frequency lighting environment in real time, 
including shadowing, interreflection, subsurface scattering, and 
complex (anisotropic) reflectance. 
These effects can be measured as radiance passing through spheri-
cal shells about the surface point p  in Figure 1.  Source radiance 
originates from an infinite sphere (environment map).  
Transferred incident radiance passes through an infinitesimal 
hemisphere, and equals the source radiance decreased by self-
shadowing and increased by interreflection.  Exiting radiance 
passes outward through an infinitesimal hemisphere, and results 
from the BRDF times the transferred incident radiance, plus 
subsurface scattering.  
The spherical harmonic (SH) basis provides a compact, alias-
avoiding representation for functions of radiance over a sphere or 
hemisphere [Cabral et al. 1987][Sillion et al. 1991][Westin et al. 
1992][Ramamoorthi and Hanrahan 2001]. Low-frequency source 
illumination, which small vectors (e.g. N=25) of SH coefficients 

approximate well [Ramamoorthi and Hanrahan 2001][Sloan et al. 
2002], is exactly the situation in which integration over the light 
becomes the bottleneck for traditional rendering methods. 
Sloan et al. [2002] precompute the radiance transfer of an object 
in terms of low-order SHs.  For a diffuse object, exiting radiance 
results from dotting a 25-vector, representing the source radiance, 
with a 25-element radiance transfer vector precomputed and stor-
ed at each sample point p.  By storing this transfer vector per-
vertex, real-time self-shadowing and interreflection results from a 
simple vertex shader.  For a glossy object, [Sloan et al. 2002] 
represents radiance transfer as a linear operator converting a 25D 
source radiance vector into a 25D transferred radiance vector, via 
a 625-element transfer matrix that varies for each p.  This glossy 
transfer matrix was too big for graphics hardware. The CPU 
implementation ran at interactive rates (~4 Hz) and could achieve 
real-time frame rates only for a constant view or lighting, hamper-
ing its usefulness for applications like 3D games. 
Our method lifts these restrictions, rendering the same glossy 
objects more than 10-20 times faster.  For simpler diffuse transfer, 
the method allows higher frequency lighting (i.e., higher-order SH 
projections) for the same computational cost.  As in [Lehtinen and 
Kautz 2003], we precompute and store per-vertex the source-to-
exiting radiance transfer matrix, instead of the source-to-incident 
transfer [Sloan et al. 2002]. This also allows us to include the 
precomputed contribution of the object's subsurface scattering of 
distant environmental light. 
To get real-time performance, we treat the transfer vectors or 
matrices stored at each vertex as a surface signal and partition 
them into a few (128-256) clusters.  Principal component analysis 
(PCA) approximates the points in each cluster as a low-
dimensional affine subspace (mean plus up to n′=8 PCA vectors).  
We call this approach clustered principal component analysis 
(CPCA).  For glossy transfer, CPCA reconstructs a good ap-
proximation of its N×N matrix at each point by storing only the 
index of its cluster and a few ( 2n N N� �¢ ) scalar coordinates of 

Figure 1: Radiance transfer at p from source to transferred incident to 
exit. 
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projection onto the cluster’s PCA vectors. CPCA reduces not only 
signal storage (n′ rather than N2 scalars per point) but also the run-
time computation.  Instead of multiplying an N×N transfer matrix 
by an N-dimensional light vector at each p, we precompute this 
multiplication in each cluster for each of its PCA vectors and 
accumulate weighted versions of the n′ resulting N-vectors.  
CPCA on diffuse transfer provides a similar savings in storage 
and computation.  
We describe two technical contributions which may have wider 
applicability.  The first is a very general signal approximation 
method using CPCA. Though used before in machine learning 
applications [Kambhatla and Leen 1994][Kambhatla and Leen 
1997][Tipping and Bishop 1999], it is new to computer graphics.  
To increase spatial coherence, we augment the method by redis-
tributing points to clusters according to an “overdraw” metric.  
The second contribution is the use of the optimal least-squares 
projection of the SH basis onto the hemisphere, which signifi-
cantly reduces error compared to approaches used in the past 
[Sloan et al. 2002][Westin et al. 1992]. 

2. Related Work 
Various representations encapsulate precomputed or acquired 
global illumination.  Light fields [Gortler et al. 1996][Levoy and 
Hanrahan 1996] record radiance samples as they pass through a 
pair of viewing planes whereas surface light fields [Chen et al. 
2002][Miller et al. 1998][Nishino et al. 1999][Wood et al. 2000] 
record 4D exiting radiance sampled over an object’s surface.  
Both techniques support arbitrary views but fix lighting relative to 
the object.   
Precomputed radiance transfer (PRT) [Sloan et al. 2002] param-
eterizes transferred incident radiance in terms of low-frequency 
source lighting,  allowing changes to lighting as well as view-
point.  We build on PRT and its generalization to anisotropic 
BRDFs [Kautz et al. 2002], but speed up performance and reduce 
error in three ways:  we record exiting radiance instead of trans-
ferred incident, use least-squares optimal projection of 
hemispherical functions, and compress using CPCA.  We also 
extend PRT to include subsurface scattering.  In parallel work, 
Lehtinen and Kautz [2003] approximate PRT using PCA.  Our 
CPCA decoding reduces approximation error and maps well to the  
GPU, resulting in 2-3 times better performance. 
Other illumination precomputation methods also support dynamic 
lighting.  Matusik et al. [2002] handle limited, non-real-time 
lighting change with a surface reflectance field measured over a 
sparsely sampled directional light basis, stored on the visual hull 
of an acquired object.  Hakura et al. [2000] support real-time 
lighting change with parameterized textures, but constrain view-
ing and lighting changes to a 2D subspace (e.g. a 1D circle of 
viewpoints × 1D swing angle of a hanging light source).  [Sloan et 
al. 2002] compares PRT to many other precomputed approaches 
for global illumination. 
Precomputed illumination datasets are huge, motivating compres-
sion. Light fields were compressed using vector quantization 
(VQ) and entropy coding [Levoy and Hanrahan 1996], and reflec-
tance fields using block-based PCA [Matusik et al. 2002].  
Surface light fields have been compressed with the DCT [Miller 
et al. 1998], an eigenbasis (PCA) [Nishino et al. 1999], and 
generalizations of VQ or PCA to irregular sampling patterns 
[Wood et al. 2000].  Our CPCA compression strategy improves 
[Wood et al. 2000] by hybridizing VQ and PCA in a way that 
reduces error better than either by itself.   Unlike [Chen et al. 
2002] which compresses a 4D surface light field over each 1-ring 

mesh neighborhood, our clustering is free to group any number of 
samples that can be approximated well together regardless of their 
surface location.  Our purpose is real-time rendering with graphics 
hardware, not minimizing storage space.  For example, we avoid 
entropy coding for which current graphics hardware is ill-suited. 
Jensen et al. [2002] simulate translucent materials using a diffu-
sion approximation of subsurface scattering, accelerated by 
decoupling the computation of irradiance from a hierarchical 
evaluation of the diffusion approximation.  This paper also ex-
perimentally validated when the multiple scattering term 
dominated.   Two recent papers exploit this property and imple-
ment interactive rendering techniques based on the idea.  Lensch 
et al. [2002] combine spatially varying filters in texture space 
with vertex-to-vertex transfer to model near and far subsurface 
transport.  Global shadowing and interreflection effects are 
ignored and only ~5Hz frame rate is obtained.  Hao et al. [2003] 
precompute subsurface scattering for a directional light basis.   
We model smooth, distant lighting environments and include a 
glossy term to approximate single scattering. 
Like PRT, Westin et al. [1992] also use matrices which transform 
lighting into exiting radiance, both expressed in the SH basis.  
Their matrices encode local effects for BRDF synthesis, not 
spatially-varying global transport for real-time rendering.  They 
devise a SH projection of hemispherical functions, which we 
improve via least-squares in the appendix. 
Lensch et al. [2001] use a similar clustering procedure to recon-
struct a spatially-varying BRDF from images.   They fit 
parameters of a BRDF model in each cluster using nonlinear 
optimization and approximate using a linear combination of the 
resulting models, one per cluster.   We use an independent affine 
basis per cluster. 

3. Radiance Transfer Signal Representation 
For diffuse surfaces, PRT encodes a transfer vector, tp, per surface 
point p [Sloan et al. 2002].  The i-th component of this vector 
represents the linear contribution of source lighting basis function 
yi(s) to the exiting radiance of p.  For glossy surfaces, we make 
several modifications to the glossy transfer matrix defined in 
[Sloan et al. 2002]. 

3.1 Transferred Incident vs. Exiting Radiance Transfer 
PRT in [Sloan et al. 2002] represents transferred incident radi-
ance (Figure 1).  It is derived from a Monte Carlo simulation 
illuminating geometry by the SH basis functions.  This decouples 
the way an object shadows itself from its reflectance properties, 
and allows different BRDFs to be substituted at run-time.  Here 
we seek to approximate the transfer signal to reduce computation.  
To measure approximation error properly, we must know the 
BRDF.  For example, a smooth BRDF weights low-frequency 
components of transferred radiance more than high-frequency 
components.   
To measure signal errors properly, we include BRDF scaling by 
encoding the exiting radiance transfer matrix at p, Mp.  Its com-
ponent, Mp,ij, represents the linear influence of source lighting 
basis function j to exiting radiance basis function i.  It can be 
numerically integrated over light directions s and view directions 
v over the hemisphere H={(x,y,z) | z ≥ 0 and x2+y2+z2=1} via 

( ), ( ) , ( ) ( , )p ij i p j z
v s

M y v T s y s B v s s ds dv
H HŒ Œ

= Ú Ú  

where Tp represents transport effects like shadowing, B is the 
BRDF, y are the SH basis functions, and sz is the “cosine” factor 
(z component of s). For simple shadowing, Tp = yj(s) qp(s) where 
qp(s) is 0 if the object occludes itself in direction s and 1 other-
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wise.  For general transport where lighting is specified in a global 
frame, Mp = B Rp Tp where Tp is the glossy transfer matrix defined 
in [Sloan et al. 2002], Rp is an SH rotation aligning p’s normal to 
the z axis and its tangents to x and y, and B is the BRDF matrix   

( ) ( ) ( , )ij i j z
v s

B y v y s B v s s ds dv
H HŒ Œ

= Ú Ú    

Rp is a N×N rotation matrix; its computation is outlined in [Kautz 
et al. 2002]. 
We also add a view-independent subsurface scattering term to the 
transport, precomputed using the hierarchical diffusion approxi-
mation of [Jensen and Buhler 2002] but parameterized by the SH 
basis for lighting.  The result affects only the y0 (constant) basis 
function of exiting radiance. 
3.2 Representing Radiance over the Hemisphere 
Exit and transferred radiance at a surface point are actually func-
tions over a hemisphere, not a sphere.  For the SH basis, there is 
complete freedom in evaluating the function on the “opposite” 
hemisphere when projecting it to the SH basis.  Transfer in [Sloan 
et al. 2002] and the formulas above in Section 3.1 implicitly zero 
the opposite hemisphere by integrating only over the hemisphere.  
Westin et al. [1992] used a reflection technique.  It is also possi-
ble to use other bases such as Zernike polynomials lifted to the 
hemisphere [Koenderink et al. 1996]. 
Our approach uses the least-squares optimal projection of the SH 
basis onto the hemisphere described in the Appendix.  The tech-
nique represents any SH-bandlimited spherical function restricted 
to the hemisphere without error.  In contrast, zero-hemisphere 
projection incurs 35% worst-case and 20% average-case RMS 
error integrated over the hemisphere for all unit-power spherical 
signals formed by linear combinations of the 5th order SH basis.   
The odd reflection technique [Westin et al. 1992] is even worse.  
Beyond theoretical results, we also see visibly better accuracy on 
our experimental objects using optimal projection (see Figure 7). 
Given a vector b which projects a hemispherical function into the 
SH basis by zeroing out the opposite hemisphere, the optimal 
hemispherical projection is simply A-1 b where A is defined in the 
appendix.  Therefore, the optimally projected exiting radiance 
transfer matrix is given by 
 1 1

p p pM A B A R T- -=  (1) 

projecting first transferred radiance, Rp Tp, and then exiting radi-
ance.  Figure 7 compares results with and without this least-
squares “boost” by A-1 to reduce error in transferred and exiting 
radiance. 

3.3 Clustered PCA (CPCA) Approximation  
We have an n-dimensional signal xp sampled at points p over a 
surface.  Each xp represents exiting radiance as a linear operator 
on a light vector, and takes the form of vectors for diffuse surfaces 
(e.g., n=N=25) or matrices for glossy surfaces (e.g., n=N2=625).  
To approximate this signal, we partition its samples into a number 
of clusters each of which is approximated by an affine subspace.  
More precisely, the points in a cluster are approximated by 

1 2
0 1 2

n
p p p p p nx x x w x w x w x� " ¢

¢ª = + + + +  
where the n′+1 n-vectors x0, x1, …, xn′ are constant over the cluster 
and the n′ scalar weights 1 2, , , n

p p pw w w ¢" vary for each point p on 
the surface.  To reduce signal dimensionality, n n�¢ .  The vector 
x0 is called the cluster mean, and the vectors xi, i ≥ 1 are called the 
cluster PCA vectors.  Together, the cluster’s mean and PCA 
vectors are called its representative vectors. 
CPCA (called “VQPCA” in [Kambhatla and Leen 1994] 
[Kambhatla and Leen 1997] and “local PCA” or “piecewise PCA” 
in the machine learning literature under the general title of “mix-
tures of linear subspaces”) generalizes PCA (single cluster, n′ > 0) 
and VQ (many clusters, n′ = 0).  VQ approximates a signal as a 
piecewise constant while PCA assumes it is globally linear.  
CPCA exploits the local linearity of our radiance transfer signal 
by breaking it down into clusters, approximating each with a 
separate affine subspace. 

4. Compressing Surface Signals with CPCA 
We review CPCA, beginning with the simplest approach and then 
describing several enhancements that further reduce error. 

4.1 VQ Followed by Static PCA 
The simplest CPCA method is to first cluster the points using VQ, 
and then compute a PCA fit in each of the resulting clusters 
[Kambhatla and Leen 1994]. 
VQ Clustering  The LBG algorithm [Linde et al. 1980] performs 
the initial clustering.  Given a desired number of clusters, the 
algorithm starts with clusters generated by random points from the 
signal and then classifies each point into the cluster having mini-
mum distance to its representative.  Each cluster representative is 
then updated to the mean of all its points, and the algorithm iter-
ated until no points are switched or an iteration count is reached. 
Per-Cluster PCA  We first compute the cluster mean, x0.  We 
then compute a mk×n matrix of residuals after subtracting the 
mean, C = [xp1-x0, xp2-x0, …, xpnk-x0]T, where mk is the number of 
points in cluster k.  Computing an SVD yields C = U D VT where 
U and VT are rotation matrices and D is a diagonal matrix whose 
elements are sorted in decreasing order.  The first n′ rows of V 
(columns of VT) are the cluster PCA vectors.  A point pj’s projec-
tion weights (n′-vector 

jpw ) are given by the first n′ columns of 
row j of UD (they are also given simply by the dot product of xpj-
x0 with each of the PCA vectors).   This provides a least-squares 
optimal linear approximation of C from combinations of n′ fixed 
vectors.  Total squared error over all cluster points is given by 

 
2 2

2 2
01 1 1 1

k k

j j j

m n m n
p p i p ij i n j i

x x D x x D� ¢

= = + = =¢
- = = - -Â Â Â Â  

The SVD of C can be directly computed using the LAPACK 
routine dgesvd.  To reduce matrix size and so computation, we 
instead convert to normal form.  When mk ≥ n, we compute the 
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Figure 2: CPCA error analysis using static PCA.  Each curve represents 
how squared error varies with various numbers of clusters (1, 2, 4, …,
16k) using a given number of principal components in each cluster (n′ = 0, 
1, 2, 4, 8, and 16).  The signal approximated was a 25D shadowed diffuse 
transfer vector over a bird statue model from [Sloan et al. 2002] having 
48668 sample points.  20 VQ iterations were used, followed by PCA in
each cluster. 
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n×n matrix CTC and its eigenvalues (which are the squares of C’s 
singular values) and eigenvectors (which are equal to C’s right 
singular vectors VT and thus the needed PCA vectors).  When mk 
< n, we compute the mk×mk matrix CCT.  Its eigenvalues are still 
the squares of C’s singular values, but its eigenvectors are C’s left 
singular vectors, U, from which the right can be derived via VT = 
UT D-1 C.   The LAPACK routine dsyevx computes eigenpairs of 
symmetric matrices like CTC and CCT, and saves computation  
because it can return just the n′ eigenpairs having the largest 
eigenvalues, while dgesvd returns all singular values. 
Experimental Results  Figure 2 shows results for this approach 
on an example diffuse transfer signal (25D) over a bird statue 
model.   Using straight VQ (n′=0), errors are only gradually 
reduced as storage increases.  Increasing the number of PCA 
vectors per cluster provides an approximation that is worse at 
small numbers of clusters but eventually crosses below the previ-
ous curve as the number of clusters increases. 
The graphs use a simple cost metric measuring total storage for 
the approximated signal: 

mp n′ + mc (n′ + 1) n 
where mp is the number of surface samples and mc is the number 
of clusters.  The first term represents the per-point weight data 
whereas the second represents the per-cluster representative data.  
This simple model correlates well with actual rendering cost. 

4.2 Iterative PCA  
The previous section clusters using distance to the cluster mean 

2
0px x- as the classification metric, but as observed in 

[Kambhatla and Leen 1997], the distance that matters is approxi-
mation error, 2

p px x�- .  Iterative PCA [Kambhatla and Leen 
1997] exploits this observation by classifying points in the cluster 
that minimizes approximation error rather than distance to the 
mean.  Also, after every point classification step (instead of only 
once at the end of the whole clustering process) it computes a 
PCA of the cluster’s current point members to update the affine 
subspace model.   
This approximation error at a point xp is computed via 

( )222
0 01

( )
n

p p p p ii
x x x x x x x� i¢

=
- = - - -Â . 

To avoid local minima having high error, we introduce additional 
PCA vectors one by one, from zero to n′, and do several iterations 
(typically 10-20) of the generalized LBG algorithm for that 
number of vectors before adding another. 

Figure 3 and Figure 4 demonstrate the large error reduction from 
iterative over static PCA.  Typically, iterative PCA performs as 
well as static having 1-4 additional PCA vectors per cluster, but 
the encoding cost is significantly higher. 

4.3 Per-Cluster Adaptation of Number of PCA Vectors 
Neither static nor iterative CPCA distribute error homogenously – 
some clusters usually have much more error than others.  Without 
increasing the overall amount of per-point data, we can reduce 
error by allowing clusters with high error to use more PCA 
vectors and clusters with less error to use fewer.   Adaptation like 
this was used in [Meinicke and Ritter 2001] to avoid local overfit-
ting. 
The squared singular value Di

2 in a cluster represents how much 
total squared error is reduced by the addition of PCA vector i to 
that cluster.  But clusters do not contain the same number of 
points; adding an additional PCA vector in a cluster with more 
points is more expensive than in a cluster with fewer points 
because an additional weight must be stored per point.  So we 
rank PCA vectors by Di

2/mk which represents the rate at which 
per-point squared error will be reduced by the addition of PCA 
vector i in cluster k containing mk points.   We sort this quantity in 
decreasing order over all PCA vectors in all clusters, and add 
PCA vectors according to this order (greatest error-reduction rate 
first), until it reaches its total budget of PCA vectors.  
The overall algorithm starts with the CPCA result from the previ-
ous section (constant number of PCA vectors per cluster). 
Additional adaptation iterations then perform the following steps: 

1) classify each point to the cluster having minimum 
approximation error, using the cluster’s current n′, 

2) update cluster representatives using PCA (see Section 4.1),  
3) redistribute the number of PCA vectors over all clusters by 

sorting over Di
2/mk and adding vectors (vector i from cluster 

k) in decreasing order until Σmk reaches its budget.  Record 
the number of PCA vectors allocated in each cluster. 
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Figure 3: Comparison of error for three CPCA encoding methods.  As in 
Figure 2, the signal encoded is 25D diffuse transfer over a bird model.  
256 clusters were used. 

  

 
(a) static [17.7] (b) iterative [4.28] (c) adaptive [2.54] 

Figure 4: Per-point error distribution for three CPCA methods.  A linear 
blue-cyan-green-yellow-red error scale is used.  Rendered images are 
shown in the second row.  The signal is that for Figure 3 with  n′=3.  Total 
squared error of the 25D signal over all 48k vertices is written in brackets.
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As shown in Figure 3 and Figure 4, adaptation reduces error, 
typically producing error as low as non-adaptive PCA with an 
additional vector.   

5. Cluster Coherence Optimization 
The clusters from the previous section ignore where samples lie 
on the object’s surface – clusters can have ragged boundaries or 
contain multiple components.  This leads to rendering inefficiency 
because triangles whose vertices are in different clusters are 
drawn multiple times.  For each triangle, this overdraw is defined 
as the number of unique clusters its vertices belong to.  Overdraw 
summed over all mesh triangles represents the number of triangles 
sent to the graphics hardware for rendering (see details in Section 
6). We reduce overdraw with two techniques.   
The first technique seeks for each vertex a better cluster that 
reduces overdraw without significantly increasing approximation 
error.  This greedy search tries reclassifying the vertex’s signal in 
its neighboring vertices’ clusters, and computes the resulting 
overdraw reduction and error increase. The technique then sorts 
all vertices by overdraw reduction divided by error increase, and 
reclusters each vertex in decreasing order of this quotient until 
reaching a given error increase budget, such as 5-10% of the 
initial error.  Vertex reclassification requires recomputation of the 
quotient for the vertex and its neighbors. Figure 5(b) shows 
reclassification results. 
The second technique, called superclustering, allows the graphics 
hardware to draw a group of clusters as a single unit.  It reduces 
overdraw because triangles straddling clusters from the same 
supercluster need not be drawn more than once (see Section 6).  
Superclustering also ensures that primitive batches are large 
enough to maximize performance; the number of clusters in a 
supercluster is limited by the number of registers available in the 
graphics hardware.  Unlike reclassification, superclustering does 
not increase approximation error.  
We form superclusters greedily, initializing them to be the clus-
ters, then repeatedly merging neighboring superclusters in order 
of overdraw reduction. Two superclusters neighbor each other 
when at least one triangle has vertices from both.  Figure 5(c) 
demonstrates how well greedy superclustering reduces overdraw. 

6. Rendering Using CPCA-Encoded Transfer  
To shade a glossy surface at point p using CPCA-encoded trans-
fer, we use a modified version of  [Kautz et al. 2002], via 

( ) ( )( ) ( )T T
p p p p py v B R T l y v M l=  

Here, the column-vector l results of projecting source lighting (in 
a global coordinate frame) into the SH basis.  The matrix Tp 
converts this source lighting to transferred incident radiance 
(accounts for self-shadowing and inter-reflection).  The rotation 
matrix Rp aligns the global coordinate system to a local frame 
defined by p’s normal and tangent directions.  The BRDF matrix 
B converts local incident radiance into exit.  Finally, y is a col-
umn-vector (yT is a row-vector) of SH basis functions evaluated at 
the view direction at p, vp, expressed in the local frame.   y and l 
are N-vectors and B, R, and T are N×N matrices. A fifth-order SH 
projection, N=25, is accurate when the lighting and BRDF are 
low-frequency. 
One can compute the source lighting vector l in various ways 
[Sloan et al. 2002].  We can dynamically rotate a predefined 
environment to simulate rigid rotations of the object.  Graphics 
hardware can sample radiance near the object which is then SH-
projected.  Simple light sources like circles can be projected 
analytically.  Spatial variation in l captures local lighting effects 
but complicates the rendering process. 
The approach in [Kautz et al. 2002] recorded the spatially varying 
signal T′p = Rp Tp and evaluated the matrix-vector product fp=T′p l 
on the CPU.  It then evaluated B′(vp) = y(vp) B using N texture 
maps indexed by the view vector vp, and finally computed a dot 
product of these two vectors.  Texture maps B′ in [Kautz et al. 
2002] were evaluated per-vertex on the CPU because the hard-
ware was unable to interpolate 25D vectors fp over a triangle nor 
perform the 25D dot product in a pixel shader.  Though the latest 
graphics hardware now makes it possible to interpolate such large 
vectors, transfer matrices remain too large to be manipulated on 
the GPU.  Fortunately, the affine approximation used by CPCA 
solves this problem. 
Using CPCA, we encode the entire matrix chain Mp converting 
source lighting to exiting radiance.  This produces the approxima-
tion  

1 2
0 1 2

n
p p p p nM M w M w M w M� " ¢

¢= + + +  
Multiplying pM� by l then yields exiting radiance projected into the 
SH basis, ep, via 

( ) ( ) ( ) ( )1 2
0 1 2

n
p p p p p ne M l M l w M l w M l w M l� " ¢

¢= = + + + +  
We precompute the matrix/vector products for each cluster on the 
CPU, resulting in n′+1 fixed N-vectors, and accumulate them as a 
sum scaled by the per-point weights, i

pw , on the GPU.  For small 
n′ < N, this reduces computation and makes the vertex data small 
enough for vertex shaders on current graphics cards.  For exam-
ple, for N=25 and n′=5, we save more than a factor of 4.  
Finally, we evaluate the exiting radiance function at vp by dotting 
the vector y(vp) with ep .  We evaluate y at vp using a texture map 
in the same way as [Kautz et al. 2002] evaluated yT(vp) B, but we 
can now perform this evaluation and dot product in a pixel shader. 
Diffuse surfaces simplify the computation but CPCA achieves a 
similar reduction.  In this case, pt li  computes shading where tp is 
an N-dimensional transfer vector and l is the lighting’s SH projec-
tion as before.  Using CPCA, we encode tp as an affine 
combination of per-cluster representatives and precompute in each 
cluster the dot product of the light with these vectors.  The final 
shade is a weighted combination of n′+1 scalar values it li which 
are constant over a cluster, via 

   
(a) original 

mean overdraw: 2.03 
(b) reclassification 

1.79 
(c) recl.+supercluster 

1.60 
Figure 5: Overdraw reduction using cluster coherence optimization on 
256 clusters of a 625D glossy transfer signal with n′=8 and a reclassifi-
cation error “budget” of 10% of the original error.  Triangle color 
indicates overdraw: red = 3, yellow = 2, and green = 1. 
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This saves computation when n′ < N.  In fact, the per-vertex 
computation does not depend on N at all!  So we can use higher-
order projections (e.g., N=36 up to N=100) as long as the ap-
proximation error remains acceptable for small n′ (Figure 6).  
Unlike [Sloan et al. 2002], real-time rendering is now possible 
with such high-order lighting, since the transfer vector is no 
longer stored on the GPU.  

6.1 Non-Square Matrices   
Mp need not be square.  In an Nr×Nl matrix, more columns, Nl, 
provide for greater lighting frequency and thus longer, sharper 
shadows.  More rows, Nr, provide for more specular BRDFs.  
Interestingly, Nl has little effect on the run-time cost with CPCA, 
since the transformation of source lighting is done per-cluster to 
produce vectors whose dimensionality only depends on Nr.   
Increasing Nl does increase the entropy of the transfer signal, 
making it harder to encode and likely to require more representa-
tives per cluster. 
Non-square transfer matrices are useful in another way.  Exiting 
radiance is a hemispherical function, so we can use the optimal 
least-squares projection derived in the Appendix to represent Mp. 
Fifth order optimal projection of the output of Mp can be done 
with little error using Nr=24 basis functions – one of the 25 bases 
is nearly redundant (see Appendix).   

6.2 Implementation Notes   
We first describe the simple case of no superclustering.  We 
decompose the mesh into chunks of geometry for each cluster, 
where a chunk contains all faces containing at least one vertex 
from that cluster.  Since this also includes vertices from other 
clusters, we store a per-vertex bit, αp, indicating whether the 
vertex p is a cluster member.  Pseudocode for rendering is  

Draw the mesh into the zbuffer only (rgb=0) 
Set the blending mode to add 
Foreach cluster 
 Compute n′+1 per-cluster constants (Mi l or it li ) on CPU 
 Load per-cluster constants to graphics hardware 
 DrawCluster 

DrawCluster sends the cluster’s geometry to the GPU and runs a 
vertex shader computing the linear combination of the i

pw  with 
the per-cluster constants.  If αp = 0, the i

pw ’s are also set to zero 
so that blending vertices from other clusters does not effect the 
result.  In other words, we blend using a linear partition of unity 

over each triangle face that straddles multiple clusters. 
Generalizing to superclusters is not much more complicated.  We 
compute the per-cluster constants for all clusters in the superclus-
ter and load them into hardware registers.  Every vertex in a 
supercluster records a cluster index, used by the vertex shader as 
an index register to look up its cluster’s constants. 
For diffuse transfer, the vertex shader produces the final shaded 
result.  Glossy transfer is more complex – its vertex shader re-
quires normal and tangent vectors to transform the global view 
vector into the local frame at p to obtain vp.  Rasterization interpo-
lates the resulting view vector vp and exiting radiance vector ep 
over the pixels of each triangle.  The pixel shader uses the local 
view vector to index a map of SH basis functions, y(vp), and then 
dots this result with ep.  We use a parabolic hemispherical 
parameterization [Heidrich and Seidel 1999] for the SH map, 
sampled at 32×32.   Since ep contains more components than 
current rasterization hardware can interpolate, we perform three 
separate passes for glossy transfer – one per color channel.  
Diffuse and glossy transfer also differ in their per-cluster state.  
For each of the n′+1 representative vectors, the per-cluster con-
stant is a scalar color, it li , for diffuse transfer regardless of the 
value of Nl.  For glossy transfer, this state is a colored Nr-vector, 

iM l .  Current graphics hardware (ATI 9700, Nvidia GeForce 4) 
supports ~256 registers accessible by vertex shaders where each 
register contains 4 channels.  For nonadaptive PCA, glossy 
transfer requires ms (n′ + 1) Nr/4 registers where ms is the number 
of clusters per supercluster.  This assumes three pass rendering, 
one per color channel, and packs 4 components of an Nr-vector 
into each register.  Diffuse transfer requires less state: only ms (n′ 
+ 1) registers per supercluster to compute all three color channels 
by packing an rgb color per register.   
Though the programmable resources of GPUs have increased 
greatly, they are not yet sufficient to feasibly render adaptive PCA 
(Section 4.3), which requires data-dependent looping. 

7. Results 
Figure 10 compares rendering quality of various transfer encod-
ings on an example bird model with a glossy anisotropic BRDF.  
We experimentally picked a number of clusters for VQ (n′=0) and 
a number of representative vectors for pure PCA (mc=1) such that 
rendering performance matched that from CPCA with n′=8, 
mc=256.  For CPCA, we used iterative PCA encoding from 
Section 4.2.  We applied superclustering (Section 4.3) to both VQ 
and CPCA to the extent permitted by hardware register limits (it is 

unnecessary for pure PCA since there is only 
one cluster).  Example images, encoding error, 
and rendering rates appear in the figure for all 
three methods as well as the uncompressed 
original.  Methods used before in computer 
graphics [Nishino et al. 1999][Wood et al. 2000] 
perform poorly: pure PCA is smooth but has 
high error; VQ reduces error but has obvious 
cluster artifacts. Our CPCA result (third column) 
is very faithful to the uncompressed image on 
the far right. 
Figure 11 shows the effect on encoding accuracy 
of varying the per-cluster number of representa-
tive vectors (n′).  The two rows show results on 
two models, one smooth (bird, bottom) and one 
bumpier (Buddha, top).  Each column corre-
sponds to a different n′.  The signal encoded 
represents glossy transfer for an anisotropic 

  
Order 10, static, n′=1 

SE=15.293 
Order 10, iter, n′=1 

SE=8.83 
Order 10, iter, n′=2 

SE=2.23 
Order 10, iter, n′=4 

SE=0.432 
Order 5 

Uncompressed 

Figure 6: Higher-order lighting for diffuse transfer (simple two-polygon scene).  The left four 
columns show CPCA-encoded results for 10th order lighting (N=100) using various numbers of 
representatives (n′) and mc=64.  The rightmost column shows uncompressed  5th order lighting 
(N=25) used in [Sloan et al. 2002].  Note how shadows are sharpened at higher order and how 
iterative PCA adapts cluster shapes to the transfer signal better than static PCA (leftmost two 
columns).  CPCA with  n′=4 provides an accurate approximation that can be rendered in real-time. 
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BRDF, including multiple bounce interreflections for the 
Buddha model, but only shadowing for the bird model. With 
about 8 cluster PCA vectors, we obtain very accurate results 
that can be rendered quickly. Rendering results using uncom-

pressed transfer 
data (without 
CPCA encod-
ing) is shown in 
the far right 

column.  CPCA speeds up rendering by more than a factor of 
10 compared to uncompressed rendering [Sloan et al. 2002] 
with little visual loss.  
Interestingly, though the Buddha model has higher error per 
transfer sample than the bird model, error is masked by its 
high-frequency spatial variation.  The Buddha’s n′=4 result 
looks quite accurate, whereas the bird’s has cluster artifacts 
visible in the shadowed neck area.  Error on the Buddha 
reveals itself in the neck/chin shadow and the pedestal shadow 
between the feet. 
Figure 9 and Figure 8 show the quality of real-time rendering 
results achieved by our method.  The transfer signal for Figure 9 
represents the sum of a diffuse subsurface scattering term and a 
isotropic glossy term.  The result is a realistically rendered Bud-
dha that includes shadowing, translucency, and glossiness effects 
that respond to changes in lighting or view in real-time.   
Figure 8 includes models from [Sloan et al. 2002] which could be 
rendered quickly only by fixing the light with respect to the object 
(allowing view change), or fixing the view (allowing light move-
ment).  We now render these models with visually identical 
quality in real-time without constraints.  For comparison, uncom-
pressed rendering using 25×25 matrices gives a frame rate of 
2.9Hz for the head model, and 2.7Hz for the buddha model, a 
factor of 20× and 16× slower than rendering with CPCA-encoded 
16×25 matrices. (For 16×25 matrices, the uncompressed render-
ing speeds are 5.2Hz and 4.7Hz.)  This comparison is fair because 
16×25 matrices with least squares optimal projection (Equation 
(1)) produce results almost indistinguishable from 25×25 matrices 
with the zero-hemisphere projection (see Figure 7).  A Radeon 
9800 runs 20% faster with CPCA while uncompressed rendering 
is 1% faster, showing that CPCA scales well with the GPU. 
Table 1 compares encoding results, highlighting the preprocessing 
times and error values for static PCA (Section 4.1) vs. iterative 
PCA (Section 4.2).  Iterative encoding is expensive, but it often 
reduces error significantly (see rows for bird model, for example).  
For the Buddha model, transfer signals tend to be more spatially 
incoherent, so error reduction from iterative encoding is less 
dramatic.  Using more clusters (increasing mc) could help matters, 
but we have done little experimentation with this parameter. 
We also measured the effectiveness of cluster coherence optimiz-
ation (Section 5).  Using a 5% error threshold, which has little 
effect on visual quality, this table shows overdraw/frame rate (in 
Hz) using reclassification alone (“rec”), superclustering alone 
(“sc”), and both together (“sc+rec”).  Results are for anisotropic 
glossy transfer (“gloss-anis” from Table 1).   We achieve a 15-
20% increase in rendering speed on these examples. 

8. Conclusions and Future Work 
We have shown that CPCA-encoded transfer provides real-time 
rendering of global transport effects for a variety of geometric 
models and material characteristics, including glossy/anisotropic 
BRDFs and translucency. Though they depend on prerecorded 
transfer data over specific models, these effects are new to real-

time graphics.  CPCA is an effective and very general technique 
for approximating high-dimensional signals (e.g., transfer matri-
ces) over low-dimensional manifolds (e.g., 3D surfaces).  It 
reduces error better than VQ or PCA for the same storage and 
yields data granularity in the approximation that better suits GPU 
implementation.  Rather than grouping arbitrarily based on blocks 
in an image or polygons on a mesh, CPCA adapts cluster size and 
shape to the nature of the signal.   Since the transfer signal is a 
linear operator on a light vector, representing a cluster containing 
many samples as a low-dimensional affine subspace not only 
reduces storage but converts a matrix/vector multiply per point 
into a weighted combination of a few pre-computed vectors.  This 
is the key to our real-time performance. 
In future work, we are interested in using CPCA compression to 
precompute transfer on deformable models, perhaps by constrain-
ing the number of degrees of freedom.  We also believe CPCA 
can be used for surface signals other than radiance transfer of 
distant source lighting, including simpler signals like surface light 
fields and more complex ones like transfer for spatially varying 
illumination.  CPCA could be enhanced by an automatic search 
over the number of clusters variable (mc), at the cost of additional 
encoding time.  Finally, we are interested in combining our 
transfer technique, which is specialized for low-frequency light-
ing, with others handling high-frequency lighting. 
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9. Appendix: Hemispherical SH Projection 
9.1 Least-Squares Optimal Projection 
Let f(s) be a function over the hemisphere s=(x,y,z), sŒH. We approxi-
mate f as a linear combination of SH basis functions yi(s) restricted to H 
where these basis functions are no longer orthogonal.  So we seek 

f(s) ≈ Σi ci yi(s) 
such that this approximation has minimum squared error over H.   We call 
this vector c the least-squares optimal hemispherical projection of f.   
To derive the coefficients ci of this projection, we minimize squared error  

E = ∫H (f(s) - Σi ci yi(s))2 ds 
This is an unconstrained minimization problem with the ci forming the 
degrees of freedom.  So we take ∂E/∂ck and set it to 0: 
 ∂E/∂ck = ∫H 2 (f(s) - Σi ci yi(s)) yk(s) ds = 0   

fi   Σi ci ∫H  yi(s) yk(s) ds = ∫H f(s) yk(s) ds 
This reduces to Ac=b or c=A-1 b where A is the symmetric matrix  

Aik = ∫H  yi(s) yk(s) ds 
and b is the vector of integrals over the hemisphere of f(s) multiplied by 
the SH basis functions 

bk  = ∫H  f(s) yk(s) ds 
Alternatively, b can be thought of as the standard SH projection of a 
spherical extension of f which returns 0 when evaluated on the other half 
of the sphere, called the zero-hemisphere hemispherical projection.  Note 
that A can be inverted once regardless of the function f(s).  Note also that  
A is the identity matrix when integrating over the entire sphere. 
Readers familiar with biorthogonal bases used for wavelets will find this 
familiar; y(s) is the primal basis and A-1 y(s) forms its dual basis. 
For 5th order SH projection (25 basis functions), the matrix A is nearly 
singular – its smallest singular value is 6.59×10-6 whereas its largest 
singular value is 1 (for comparison, the second smallest singular value is 
3.10×10-4).   We can therefore discard one of the SH basis functions, since 
at least one is very well approximated as a linear combination of the others 
when restricted to a single hemisphere.  A simple analysis shows that 
discarding the l=1,m=0 SH basis function (i.e., the SH basis function that 
is linear in z) has the smallest squared error, 1.48×10-5, when approxi-
mated as a linear combination of the other basis functions. 

9.2 Error Analysis of Various Projections 
We first compare the difference between the zero-hemisphere and least-
squares optimal projections.  The integral, ∫H (Σi ci yi(s))2 ds,  of the 
squared value of an approximated function specified by its least-squares 

optimal coefficient vector c is given by cT A c.  If, as 
before, b is the zero-hemisphere hemispherical 
projection of f, then c = A-1 b is the optimal least-
squares hemispherical projection of f.  The squared 
difference between these two projections integrated 
over H is 
E1=(c-b)T A (c-b)=  cT [(A - I)T A (A - I)] c = cT Q1 c 
where I is the identity matrix.  E1 attains a maximum 
value of 0.125 and an average value of 0.0402 over 
all signals formed by linear combinations of up to 
5th order SH basis functions having unit squared 
integral over the sphere; i.e., over all unit-length 
25D vectors c. Worst- and average-case errors are 
derived as the largest and average singular value of 
the symmetric matrix Q1. These are large differences 
as a fraction of the original unit-length signal; using 
the RMS norm enlarges them still more via a square 
root.  Optimal projection represents any element of 
this function space without error. 
Another way of restricting the SH basis to the 
hemisphere ([Westin et al. 1992]) is to reflect f’s 
value about z to form a function defined over the 
whole sphere, via  
 

(a) Zero-hemisphere,  
16×25 

(b) Optimal Least-Squares, 
16×25 

(c) Original signal,  
25×25 (zero-hemisphere from [Sloan

et al. 2002]) 

Figure 7: Projection comparison for glossy transfer matrices.  Note the increased fidelity of the 
optimal least-squares projection (b) compared to zero-hemisphere (a) especially at the silhouettes 
(blue and red from colored light sources) where the Fresnel factor in the BRDF has high energy. 
Essentially, using optimal least-squares matches accuracy of a 25×25 matrix from [Sloan et al. 
2002] via a 16×25 matrix (compare b and c). 
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{ ( , , ), if 0( , , ) ( , , ), otherwiseodd
f x y z zf x y z f x y z

≥= − −  

We can then derive a hemispherical projection of f as the coefficient 
vector given by the standard SH projection of fodd.  We call this method the 
odd reflection hemispherical projection.  It is easy to see that a spherical 
function given by its SH coefficient vector c and then restricted to the z ≥ 
0 hemisphere yields a projection coefficient of 2ci for the odd SH basis 
functions, for which yi(x,y,z) = yi(x,y,-z), and 0 for the even SH basis 
functions, for which yi(x,y,z) = yi(x,y,z) (all SH basis functions are either 
odd or even in z).  
We analyze reflection projection in terms of squared error in the same way 
as for zero-hemisphere projection.  Since the projection should have a 
comparable number (i.e, at least 25) of nonzero projection coefficients, we 
use SH basis functions up to order 8, which includes 28 odd (and thus 
nonzero) basis functions and 36 even ones, for a total of 64.  Using this 
projection method for the same 5th order function space of interest, 
represented by the coefficient vector c, yields error E2 defined as 

E2 = cT [ (D*A – I)T A  (D*A – I) ] c  = cT Q2 c 
where D* is a 64×64 diagonal matrix which scales odd basis functions by 
2 and even ones by 0, and A is the symmetric matrix defined previously 
but now for up to 8th order (64×64).  Using an SVD of the upper left 
25×25 block of the symmetric matrix Q2, the worst case error over all 
unit-length 25D vectors c is given by its largest singular value and equals 
0.145.  The average squared error is given by the average singular value of 
the upper-left block of Q2 and equals 0.044.  In other words, odd reflection 
is worse than zero-hemisphere projection in both worst-case and average-
case, even though it has more projection coefficients. 
A similar analysis can be applied to even reflection, by projecting the even 
reflection extension of f defined as 

{ ( , , ), if 0( , , ) ( , , ), otherwiseeven
f x y z zf x y z f x y z

≥= −  

For 7th order SH basis functions, 28 are even and thus produce nonzero 
coefficients.  An error measure for even reflection is identical to E2 except 
that its diagonal matrix D* scales by 2 the even basis functions and zeroes 
the odd.  This projection provides worst-case error over all unit-length 
signals c of 0.022 and average-case error of 0.0036; still significant but far 
less than either the zero-hemisphere or odd reflection projections.   
Interestingly, even reflection using a smaller 5th order basis with only 15 
relevant basis functions provides 0.193 worst-case and 0.030 average-case 
error – better average-case error than zero-hemisphere projection with 
many fewer coefficients. 

 

 

So even reflection is better than zero-hemisphere which in turn is better 
than odd reflection to approximate functions over the hemisphere.  This 
can be understood because odd reflection produces a discontinuous 
spherical extension, while even reflection is continuous.  Zeroing out the 
hemisphere is at least continuous for a portion of its basis functions – the 
odd ones.  [Westin et al. 1992] also included scaling of the SH basis 
function by z, so that scaled odd reflection provides a continuous spherical 
extension.   But such scaling yields high approximation error unless f 
roughly decreases as z→0 and f(x,y,0)=0.  This is not generally true of our 
exiting radiance functions. 
 

 

 
Figure 9: Translucent+glossy Buddha in two lighting envi-
ronments.  These images were rendered at 27Hz. 

 

 
(a) Head, 58.5Hz (b) Buddha, 42.8Hz 

Figure 8: Glossy phong models.  We get a performance speedup of 16-
20x over the method in [Sloan et al. 2002] without noticeable degrada-
tion, by encoding with CPCA and using least-squares optimal 
projection to reduce matrix rows from 25 to 16. 
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PCA, mc =1, n′=20 

45.7Hz, SE=101304 
VQ, mc=1792, n′=0 

41.8Hz, SE=14799 
CPCA, mc=256, n′=8 

45.5Hz, SE=294.4 
Uncompressed 

3.7Hz, SE=0 

Figure 10: VQ vs. PCA vs. CPCA quality results for matched rendering performance.  The transfer signal encoded was a 24×25 (600D) glossy transfer 
matrix for an anisotropic BRDF.  CPCA achieves much better visual and quantitative accuracy than VQ and pure PCA.  Rendering frame rates and error 
measurements are listed below each of the four columns.  CPCA was encoded using the iterative method of Section 4.2. 

 

 

     
40.4Hz, SE= 40353.5 36.4Hz, SE=21077.5 24.2Hz, SE=8524.1 18.7Hz, SE= 4413.01 3.3Hz, SE=0 

58.9Hz, SE=9510.75 57.1Hz, SE=2353.09 45.5Hz, SE=294.421 31.9Hz, SE=66.7495 3.7Hz, SE=0 

CPCA, n′=2 CPCA, n′=4 CPCA, n′=8 CPCA, n′=12 uncompressed 
Figure 11: Varying the number of representatives per cluster (n′).  Signal is glossy 24×25 transfer with anisotropic BRDF, mc=256. 
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