
Text Text Revolution: A Game that Improves

Text Entry on Mobile Touchscreen Keyboards

Dmitry Rudchenko, Tim Paek
1
, Eric Badger

1 Microsoft Research and Microsoft Corporation,

One Microsoft Way, Redmond, WA 98052 USA

{dmrudche, timpaek, ebadger}@microsoft.com

Abstract. Mobile devices often utilize touchscreen keyboards for text input.

However, due to the lack of tactile feedback and generally small key sizes,

users often produce typing errors. Key-target resizing, which dynamically

adjusts the underlying target areas of the keys based on their probabilities, can

significantly reduce errors, but requires training data in the form of touch points

for intended keys. In this paper, we introduce Text Text Revolution (TTR), a

game that helps users improve their typing experience on mobile touchscreen

keyboards in three ways: first, by providing targeting practice, second, by

highlighting areas for improvement, and third, by generating ideal training data

for key-target resizing as a side effect of playing the game. In a user study,

participants who played 20 rounds of TTR not only improved in accuracy over

time, but also generated useful data for key-target resizing. To demonstrate

usefulness, we trained key-target resizing on touch points collected from the

first 10 rounds, and simulated how participants would have performed had

personalized key-target resizing been used in the second 10 rounds. Key-target

resizing reduced errors by 21.4%.

Keywords: Game, key-target resizing, text entry, touchscreen keyboard

1 Introduction

Mobile devices with capacitive or resistive touch sensors often utilize an on-screen,

virtual keyboard (see [10] for a survey), or touchscreen keyboard, for text input.

Without the need for dedicated hardware, touchscreen keyboards facilitate larger

displays for videos, web pages, email, etc. [11]. As software, touchscreen keyboards

can easily accommodate different languages, screen orientation, and key layouts. On

the other hand, touchscreen keyboards lack the tactile affordances of a physical

keyboard, which have been shown to be critical for touch typing [15]. Due to the lack

of tactile feedback and generally small key sizes, users often produce typing errors.

To reduce noisy input, researchers have developed algorithms for dynamically

adjusting the underlying target areas of keys based on probabilities, a technique called

key-target resizing. As shown in previous research [8,9], key-target resizing can

significantly reduce typing errors, but requires labeled training data in the form of

touch points for intended keys. In this paper, we introduce Text Text Revolution

(TTR), a game that helps users improve their typing experience on mobile

touchscreen keyboards in three ways: first, by providing targeting practice, second, by

highlighting areas for improvement, and third, by generating ideal training data for

key-target resizing as a side effect of playing the game. This paper is organized as

follows. In Section 2, we describe how we designed the game to address specific text

entry goals. In Section 3, we discuss how TTR relates to prior research on leveraging

human computation. Finally, in Section 4, we evaluate how well TTR accomplishes

its text entry goals through a user study and simulation experiment.

2 Game Design and Text Entry Goals

Because text entry on mobile touchscreen keyboards can be quite challenging, a small

market has opened up for mobile typing apps, such as SpeedType [17] for the iPhone.

In most typing apps, users are prompted with text they are required to type. When

users mistype a character, they are typically notified through auditory and visual

feedback, such as beeps and squiggly underlines. In some cases, the feedback can be

more implied. For example, in Turbo Type [18], a race car representing the user slows

down with typing errors. When users are finished typing, they typically receive

information about their text entry speed and accuracy, but not information

highlighting areas for improvement. Instead, users are typically encouraged to

practice and to beat their personal best scores.

Inspired by this market for typing apps, we endeavored to design a text entry game

with three goals in mind. First, like all typing applications, we sought to provide users

with lots of practice targeting the keys of a mobile touchscreen keyboard. After all,

the rendered keys can be quite small. For example, on the iPhone, most adult fingers

easily cover two to three keys. Second, unlike most typing apps, we sought to provide

users with concrete means to improve their typing by visually highlighting keys they

tend to mistype. Third, we sought to obtain “ideal” training data for key-target

resizing. As formalized in [8], key-target resizing employs a probabilistic approach to

decoding noisy touch input. It combines probabilities from both a language model for

predicting the likelihood of a next character given previous characters and a touch

model for predicting the likelihood of observing a touch point (e.g., pixel coordinate

or ellipsoid) given the intention to hit various keys.

Unfortunately, most of the time, it is not possible to know without inference what

keys users are intending to hit, unless, of course, we instruct them to hit those keys.

This is the hidden treasure of typing apps. By giving users text they are supposed to

type, these apps are acquiring a wealth of labeled touch point data which can be

leveraged immediately to learn a touch model for every key. For example, if,

whenever users are instructed to type „g‟, they correctly hit „g‟ with some frequency

and „v‟ with some other frequency, we are essentially learning a probability

distribution over likely touch points (mapped to keys) given the intention to type „g‟.

Furthermore, if we can train touch models on the fly using data from the game, then

the more users play the game, the more robust key-target resizing will be – which

translates into reduced typing errors on the soft keyboard (we empirically demonstrate

this in Section 4). Besides real-time adaptation, we could also aggregate user touch

data in the cloud (i.e., on web servers) and leverage collaborative filtering to learn

touch models for similar patterns of touch points for keys. The cloud could then push

these touch models down to the mobile device. In short, by having a game that allows

us to collect touch points for intended keys, we can explore opportunities for real-time

adaptation and collaborative filtering.

In terms of implementation, we developed TTR using the XNA game development

language and the Windows Phone 7 SDK [21]. The game runs on any Windows

Phone 7 device and is available for free in the Windows Phone Marketplace.

2.1 Game Play

With the above goals in mind, the game play of TTR proceeds as follows. As shown

in Figure 1(a), users are prompted with words they are instructed to type. The words

are randomly selected from a corpus of 10,000 words. Following [15], the corpus was

generated by minimizing the relative entropy of character bigrams in the corpus with

respect to a larger source – in our case, over 1 million email messages and transcribed

voicemail messages. This allows us to provide users with consecutive characters that

are representative of consecutive characters in email, a common mobile task. When

users touch the keys we expect, the letters explode forward and fade out, as depicted

in Figure 1(b). When users touch keys that are immediately adjacent to the keys we

expect, we still explode the letters (e.g., „q‟, „w‟, „s‟, „z‟ for „a‟). We did this for two

reasons. First, we noticed that in typing apps where users are not permitted to move

forward unless they hit the correct key, users tend to change their normal typing

behavior; in particular, they tended to slow down and more carefully hunt-and-peck

Figure 1. Screenshots of Text Text Revolution: (a) Sample text users are instructed to type; (b)

Letters exploding when users touch an expected or adjacent key; (c) End screen highlighting

areas for improvement.

each key. Because we are interested in collecting “natural” touch points, we decided

to relax the direct hit requirement. Second, we wanted to simulate an “ideal” typing

experience. If key-target resizing could accurately infer intended keys despite the user

hitting adjacent keys, then the experience of typing with unerring key-target resizing

would be identical to what the game simulates. In essence, the game allows users to

experience the kind of typing experience we hope to enable by collecting their labeled

touch points and training key-target resizing on their data. If users hit a key that is

neither the expected key nor an adjacent key, the text turns red and a beep sound is

played. This immediately alerts users to their errors.

As shown in Figure 1(a) and (b), on each side of the presented text are two bars.

The left bar indicates a running estimate of typing speed expressed in words-per-

minute (WPM), and the right bar indicates a running estimate of typing accuracy.

Accuracy is simply computed as the number of touch points that directly hit the

intended key divided by the number of keystrokes. Users complete a word when they

finish entering all of the word‟s letters. To move to subsequent words, users touch the

space bar or any of the adjacent keys above the space bar. Because users sometimes

miss the space bar, we can also learn a probability distribution for the space bar.

At the end of each game, we present users with a map of all of their accumulated

touch points on the keyboard layout, as shown in Figure 1(c). The touch points are

colored for each target key, which allows users to easily see when their touch points

might be encroaching into unintended keys. For example, in Figure 1(c), most of the

colored touch points for the letter „l‟ are inside the boundaries of the „l‟ key.

However, some touch points bleed into the boundaries of the „k‟. As highlighted by

the orange squares, the user in this case can immediately see areas for improvement;

namely, avoid mistyping „k‟ for „l‟, and „b‟ and „n‟ for the space bar. When the user

presses the “Submit Score” button, the score is sent to the cloud and the user receives

a screen displaying a scoreboard containing the user‟s best WPM and accuracy scores

as well as the top scores from any user. However, even before users have the

opportunity to submit their scores it is important to note that we send all of their data

to the cloud for training key-target resizing. This is done with the user‟s permission

via a privacy dialog box that is presented the first time the user launches the game.

3 Related Research

The problem of attaining touch point data to train key-target resizing can be viewed as

part of the larger challenge of leveraging human computation for useful purposes.

One method that has been gaining momentum in the research community is the online

platform Amazon Mechanical Turk [1], which allows developers to incorporate paid

human intelligence via crowdsourcing into their applications. Indeed, due to the

generally low cost of data, researchers have begun to exploit Mechanical Turk for

natural language processing tasks related to text entry, such as transcribing native [14]

and non-native speech [6]. Another method is to exchange human computation for

entertainment in the context of a computer game. According to the Entertainment

Software Association, 67% of American households play computer or videogames

[5]. This has prompted researchers, most notably Luis Von Ahn and colleagues, to

design clever games with a purpose (GWAP), in which human players perform tasks

which computers cannot automate easily as part of the game (see [19] for a survey).

For example, in The ESP Game [20], players generate meaningful, accurate labels for

images on the Web as they try to guess what their game partners are thinking. In

essence, they are producing labeled training data for an object recognition system.

Amazingly, as of July 2008, 200,000 players contributed more than 50 million labels.

While TTR falls under the rubric of a GWAP, it is also very akin to training

wizards that not only teach users how to perform a task, but gather adaptation data

along the way. For example, in the Windows 7 Speech Recognition Tutorial [22],

users not only learn and practice voice commands for accessing features of the

Windows 7 operating system by voice, but they also contribute example

pronunciations for various phonemes, or segmental units of sound, that make up a

language. In fact, the Tutorial has a section where users are presented with text they

are instructed to read aloud. When they pronounce each word correctly, they are

allowed to proceed. The acoustic data generated by the Tutorial is then used to adapt

speech engine parameters. The entire setup of the Tutorial is more or less the same as

what we use for TTR, except that we use a game instead of a wizard to entice users.

4 Evaluation

In order to evaluate TTR, we conducted a user study in which we recruited 6

participants, half of whom were female, to play the game. The participants played 20

rounds of TTR on a 3.5 inch WVGA, capacitive touchscreen device. Each round

consisted of 250 characters, or approximately 50 words. Participants were told to use

whatever posture for inputting text on the keyboard felt comfortable (e.g., two

thumbs, one thumb, etc.) so long as they consistently used that posture for all

subsequent rounds. Any time participants needed a break, they could pause after

completing a word during a round of TTR, or they could relax before the next round.

Participants were all employees of Microsoft and were compensated for their time.

Before assessing how well TTR achieves its text entry goals, one important

question to ask is whether or not the game is engaging. Since the game was released,

it has been downloaded by over 25,000 unique users. 134 provided ratings [2], with

an average score of 4.5/5 stars. The vast majority of raters posted positive comments

about both its gameplay and usefulness, such as “This is so much FUN! I can't stop

playing, I think I'm addicted”, “The leaderboard feature makes it a lot of fun”, and

“Very additive game. Very useful as well. My mobile typing is ten times faster now.”

With respect to text entry goals, the first goal of TTR was to provide users with

targeting practice so they could improve over time by sheer repetition. Not

surprisingly, participants improved in both speed and accuracy over the 20 rounds, as

shown by the trend lines in Figure 2(a) and (b). The second goal of TTR was to

provide users with areas for improvement. TTR accomplishes this by visually

displaying where users tended to mistype keys on a map of touch points overlaid on

the keyboard. According to a post-hoc questionnaire, 4/6 participants found the touch

point map to be useful. Of the 2 participants who did not find it useful, they claimed

to have not even noticed the map. We are considering methods to make suggestions

inherent in the touch point map more salient (e.g., written suggestions).

4.1 Simulation Experiment

Finally, in order to assess the third goal of TTR, generating useful training data for

key-target resizing, we trained key-target resizing on touch points collected from the

first 10 rounds of the participants‟ data, and simulated how participants would have

performed had key-target resizing been used in the second 10 rounds. We are able to

simulate performance by taking the touch points collected from TTR and seeing if

key-target resizing would have changed the key assigned to each touch point. For

example, suppose the user was attempting to type an „a‟ and touched an (x,y)

coordinate on the keyboard “normally” corresponding to an „s‟, where “normally”

means using a key mapping that is based on fixed key boundaries which are

equidistant in both the vertical and horizontal axis from neighboring keys. Recall that

key-target resizing dynamically adjusts the key boundaries based on probabilities. It

does this by simply taking an (x,y) coordinate and returning a key assignment. As

long as key-target resizing is constrained to have convex target regions [9], it will

assign the same key to any two touch points contained within the target region. We

can now investigate whether key-target resizing would have assigned an (x,y)

coordinate that was incorrectly assigned to an „s‟ to an „a‟ instead. If key-target

resizing would have assigned the (x,y) coordinate to an „a‟, then the number of direct

hits, and hence accuracy, would have increased. Likewise, suppose the user had

touched an (x,y) coordinate normally corresponding to a direct hit. If key-target

Figure 2. Targeting practice improving (a) speed and (b) accuracy over time (multiple rounds of

TTR). Trend line has been added in.

resizing would have assigned a different key to that (x,y) coordinate, then the number

of direct hits, and hence accuracy, would have decreased.

Figure 3 displays the simulation results for the 6 participants. Overall, no

participant would have achieved an average accuracy higher than 89% in the last 10

rounds. However, if we had applied key-target resizing, using parameters trained on

general data, the average accuracy would have jumped up from 78.2% to 82.4%

(t(5)=10.0, p<.001), a relative error reduction of 18.9%. In all cases, key-target

resizing would have been beneficial and for some participants (viz., user 5 and 6) it

would have resulted in a dramatic increase in accuracy, pushing user 5 into the 90%

range. For “personalized” key-target resizing, we trained the algorithms on each

user‟s touch points from the first 10 rounds of TTR and only that user‟s data. As

evident in Figure 3, personalized key-target resizing consistently improves accuracy

across all participants. The average accuracy of personalized key-target resizing is

82.9%, which constitutes a relative error reduction of 21.4% over key-target resizing

(t(5)=-9.8, p<.001). Note that the personalized data we used for training was smaller

than the general data for key-target resizing. As such, it is possible that with further

rounds of TTR, personalized key-target resizing would continue to increase accuracy.

Conclusion and Future Directions

In this paper, we introduced TTR with three text entry goals in mind: 1. Provide

beneficial targeting practice, 2. Provide useful highlighting of areas for improvement,

and 3. Generate beneficial training data for key-target resizing. Through a user study

and simulation experiment, we demonstrated that the game indeed achieves these

Figure 3. Simulation results showing how well users would have done on the 11-20th rounds of

TTR in accuracy had key-target resizing been on (green) and had key-target resizing been

personalized to each user‟s data (red).

three goals. As a future direction, we plan to explore using the game for real-time

adaptation and collaborative filtering, as discussed in Section 2. We also plan to

investigate adapting the text presented to users so that we can gather more data for

areas in which our touch models have a significant amount of variance or where users

simply need more practice. Finally, we are expanding the language coverage of TTR

to enable widespread localization of our key-target resizing soft keyboard solution.

References

1. Amazon‟s Mechanical Turk. https://www.mturk.com

2. Appsfuse.com. http://www.appsfuze.com/games/windowsphone.boardandclassic/text-text-

revolution,758, retrieved 3/13/2011.

3. Brewster, S., Chohan, F., & Brown, L. Tactile feedback for mobile interactions. Proc. of

CHI, 159-162 (2007)

4. Chao, D. Doom as an interface for process management. Proc of CHI, 152-157 (2001).

5. Entertainment Software Association. Industry facts,

http://www.theesa.com/facts/index.asp, retrieved 9/24/2010.

6. Evanini, K., Higgins, D., and Zechner, K. Using Amazon Mechanical Turk for

Transcription of Non-Native Speech. Proc. of NAACL Workshop on Creating Speech and

Language Data With Amazon's Mechanical Turk (2010)

7. Games with a Purpose, http://www.gwap.com/gwap/

8. Goodman, J., Venolia, G., Steury, K., & Parker, C. Language modeling for soft keyboards.

Proc.of AAAI, 419-424 (2002)

9. Gunawardana, A., Paek, T. and Meek, C. Usability guided key-target resizing for soft

keyboards. Proc. of IUI, 111-118 (2010)

10. Kölsch, M. & Turk, M. Keyboards without keyboards: A survey of virtual keyboards.

Technical Report 2002-21. University of California, Santa Barbara (2003)

11. Hoggan, E., Brewster, S., and Johnston, J. Investigating the effectiveness of tactile

feedback for mobile touchscreens. Proc. of CHI, 1573-1582 (2008)

12. MacKenzie, I. S. and Tanaka-Ishii, K. Text Entry Systems: Mobility, Accessibility,

Universality. Morgan Kaufmann (2007)

13. Malone, T. M. What makes things fun to learn? Heuristics for designing instructional

computer games. Proc. of SIGSMALL, 162-169 (1980)

14. Marge, M., Banerjee, S. and Rudnicky, R. Using the Amazon Mechanical Turk for

transcription of spoken language. Proc. of ICASSP, March (2010)

15. Paek, T. and Hsu, B. Sampling representative phrase sets for text entry experiments: A

procedure and public resource. In Proc. of CHI, (2011)

16. Rabin, E. & Gordon, A.M. Tactile feedback contributes to consistency of finger

movements during typing. Experimental Brain Research, 155(3), 1432-1106 (2004)

17. SpeedType. http://itunes.apple.com/us/app/speedtype/id287255484?mt=8

18. Turbo Type – The typing game to type fast.

http://itunes.apple.com/app/turbo-type-the-typing-game/id374229839?mt=8

19. von Ahn, L. Designing games with a purpose. Communications of the ACM, 51(8), 58-67

(2005)

20. von Ahn, L. and Dabbish, L. Labeling images with a computer game. Proc. of CHI, 319-

326 (2004)

21. Windows Phone 7 Developer Tools. http://developer.windowsphone.com/windows-phone-

7

22. Windows 7 Speech Recognition Tutorial.

http://www.microsoft.com/enable/training/windowsvista/srtrain.aspx

http://www.theesa.com/facts/index.asp
http://www.gwap.com/gwap/
http://itunes.apple.com/us/app/speedtype/id287255484?mt=8
http://itunes.apple.com/app/turbo-type-the-typing-game/id374229839?mt=8

