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Abstract. Mobile devices often utilize touchscreen keyboards for text input. 

However, due to the lack of tactile feedback and generally small key sizes, 

users often produce typing errors. Key-target resizing, which dynamically 

adjusts the underlying target areas of the keys based on their probabilities, can 

significantly reduce errors, but requires training data in the form of touch points 

for intended keys. In this paper, we introduce Text Text Revolution (TTR), a 

game that helps users improve their typing experience on mobile touchscreen 

keyboards in three ways: first, by providing targeting practice, second, by 

highlighting areas for improvement, and third, by generating ideal training data 

for key-target resizing as a side effect of playing the game. In a user study, 

participants who played 20 rounds of TTR not only improved in accuracy over 

time, but also generated useful data for key-target resizing. To demonstrate 

usefulness, we trained key-target resizing on touch points collected from the 

first 10 rounds, and simulated how participants would have performed had 

personalized key-target resizing been used in the second 10 rounds. Key-target 

resizing reduced errors by 21.4%. 
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1   Introduction 

Mobile devices with capacitive or resistive touch sensors often utilize an on-screen, 

virtual keyboard (see [10] for a survey), or touchscreen keyboard, for text input. 

Without the need for dedicated hardware, touchscreen keyboards facilitate larger 

displays for videos, web pages, email, etc. [11]. As software, touchscreen keyboards 

can easily accommodate different languages, screen orientation, and key layouts. On 

the other hand, touchscreen keyboards lack the tactile affordances of a physical 

keyboard, which have been shown to be critical for touch typing [15]. Due to the lack 

of tactile feedback and generally small key sizes, users often produce typing errors. 

To reduce noisy input, researchers have developed algorithms for dynamically 

adjusting the underlying target areas of keys based on probabilities, a technique called 

key-target resizing. As shown in previous research [8,9], key-target resizing can 

significantly reduce typing errors, but requires labeled training data in the form of 

touch points for intended keys. In this paper, we introduce Text Text Revolution 

(TTR), a game that helps users improve their typing experience on mobile 

touchscreen keyboards in three ways: first, by providing targeting practice, second, by 



highlighting areas for improvement, and third, by generating ideal training data for 

key-target resizing as a side effect of playing the game. This paper is organized as 

follows. In Section 2, we describe how we designed the game to address specific text 

entry goals. In Section 3, we discuss how TTR relates to prior research on leveraging 

human computation. Finally, in Section 4, we evaluate how well TTR accomplishes 

its text entry goals through a user study and simulation experiment. 

2   Game Design and Text Entry Goals 

Because text entry on mobile touchscreen keyboards can be quite challenging, a small 

market has opened up for mobile typing apps, such as SpeedType [17] for the iPhone. 

In most typing apps, users are prompted with text they are required to type. When 

users mistype a character, they are typically notified through auditory and visual 

feedback, such as beeps and squiggly underlines. In some cases, the feedback can be 

more implied. For example, in Turbo Type [18], a race car representing the user slows 

down with typing errors. When users are finished typing, they typically receive 

information about their text entry speed and accuracy, but not information 

highlighting areas for improvement. Instead, users are typically encouraged to 

practice and to beat their personal best scores. 

Inspired by this market for typing apps, we endeavored to design a text entry game 

with three goals in mind. First, like all typing applications, we sought to provide users 

with lots of practice targeting the keys of a mobile touchscreen keyboard. After all, 

the rendered keys can be quite small. For example, on the iPhone, most adult fingers 

easily cover two to three keys. Second, unlike most typing apps, we sought to provide 

users with concrete means to improve their typing by visually highlighting keys they 

tend to mistype. Third, we sought to obtain “ideal” training data for key-target 

resizing. As formalized in [8], key-target resizing employs a probabilistic approach to 

decoding noisy touch input. It combines probabilities from both a language model for 

predicting the likelihood of a next character given previous characters and a touch 

model for predicting the likelihood of observing a touch point (e.g., pixel coordinate 

or ellipsoid) given the intention to hit various keys. 

Unfortunately, most of the time, it is not possible to know without inference what 

keys users are intending to hit, unless, of course, we instruct them to hit those keys. 

This is the hidden treasure of typing apps. By giving users text they are supposed to 

type, these apps are acquiring a wealth of labeled touch point data which can be 

leveraged immediately to learn a touch model for every key. For example, if, 

whenever users are instructed to type „g‟, they correctly hit „g‟ with some frequency 

and „v‟ with some other frequency, we are essentially learning a probability 

distribution over likely touch points (mapped to keys) given the intention to type „g‟. 

Furthermore, if we can train touch models on the fly using data from the game, then 

the more users play the game, the more robust key-target resizing will be – which 

translates into reduced typing errors on the soft keyboard (we empirically demonstrate 

this in Section 4). Besides real-time adaptation, we could also aggregate user touch 

data in the cloud (i.e., on web servers) and leverage collaborative filtering to learn 

touch models for similar patterns of touch points for keys. The cloud could then push 



these touch models down to the mobile device. In short, by having a game that allows 

us to collect touch points for intended keys, we can explore opportunities for real-time 

adaptation and collaborative filtering. 

In terms of implementation, we developed TTR using the XNA game development 

language and the Windows Phone 7 SDK [21]. The game runs on any Windows 

Phone 7 device and is available for free in the Windows Phone Marketplace. 

2.1   Game Play 

With the above goals in mind, the game play of TTR proceeds as follows. As shown 

in Figure 1(a), users are prompted with words they are instructed to type. The words 

are randomly selected from a corpus of 10,000 words. Following [15], the corpus was 

generated by minimizing the relative entropy of character bigrams in the corpus with 

respect to a larger source – in our case, over 1 million email messages and transcribed 

voicemail messages. This allows us to provide users with consecutive characters that 

are representative of consecutive characters in email, a common mobile task. When 

users touch the keys we expect, the letters explode forward and fade out, as depicted 

in Figure 1(b). When users touch keys that are immediately adjacent to the keys we 

expect, we still explode the letters (e.g., „q‟, „w‟, „s‟, „z‟ for „a‟). We did this for two 

reasons. First, we noticed that in typing apps where users are not permitted to move 

forward unless they hit the correct key, users tend to change their normal typing 

behavior; in particular, they tended to slow down and more carefully hunt-and-peck 

 

Figure 1. Screenshots of Text Text Revolution: (a) Sample text users are instructed to type; (b) 

Letters exploding when users touch an expected or adjacent key; (c) End screen highlighting 

areas for improvement. 



each key. Because we are interested in collecting “natural” touch points, we decided 

to relax the direct hit requirement. Second, we wanted to simulate an “ideal” typing 

experience. If key-target resizing could accurately infer intended keys despite the user 

hitting adjacent keys, then the experience of typing with unerring key-target resizing 

would be identical to what the game simulates. In essence, the game allows users to 

experience the kind of typing experience we hope to enable by collecting their labeled 

touch points and training key-target resizing on their data. If users hit a key that is 

neither the expected key nor an adjacent key, the text turns red and a beep sound is 

played. This immediately alerts users to their errors. 

As shown in Figure 1(a) and (b), on each side of the presented text are two bars. 

The left bar indicates a running estimate of typing speed expressed in words-per-

minute (WPM), and the right bar indicates a running estimate of typing accuracy. 

Accuracy is simply computed as the number of touch points that directly hit the 

intended key divided by the number of keystrokes. Users complete a word when they 

finish entering all of the word‟s letters. To move to subsequent words, users touch the 

space bar or any of the adjacent keys above the space bar. Because users sometimes 

miss the space bar, we can also learn a probability distribution for the space bar. 

At the end of each game, we present users with a map of all of their accumulated 

touch points on the keyboard layout, as shown in Figure 1(c). The touch points are 

colored for each target key, which allows users to easily see when their touch points 

might be encroaching into unintended keys. For example, in Figure 1(c), most of the 

colored touch points for the letter „l‟ are inside the boundaries of the „l‟ key. 

However, some touch points bleed into the boundaries of the „k‟. As highlighted by 

the orange squares, the user in this case can immediately see areas for improvement; 

namely, avoid mistyping „k‟ for „l‟, and „b‟ and „n‟ for the space bar. When the user 

presses the “Submit Score” button, the score is sent to the cloud and the user receives 

a screen displaying a scoreboard containing the user‟s best WPM and accuracy scores 

as well as the top scores from any user. However, even before users have the 

opportunity to submit their scores it is important to note that we send all of their data 

to the cloud for training key-target resizing. This is done with the user‟s permission 

via a privacy dialog box that is presented the first time the user launches the game. 

3   Related Research 

The problem of attaining touch point data to train key-target resizing can be viewed as 

part of the larger challenge of leveraging human computation for useful purposes. 

One method that has been gaining momentum in the research community is the online 

platform Amazon Mechanical Turk [1], which allows developers to incorporate paid 

human intelligence via crowdsourcing into their applications. Indeed, due to the 

generally low cost of data, researchers have begun to exploit Mechanical Turk for 

natural language processing tasks related to text entry, such as transcribing native [14] 

and non-native speech [6]. Another method is to exchange human computation for 

entertainment in the context of a computer game. According to the Entertainment 

Software Association, 67% of American households play computer or videogames 

[5]. This has prompted researchers, most notably Luis Von Ahn and colleagues, to 



design clever games with a purpose (GWAP), in which human players perform tasks 

which computers cannot automate easily as part of the game (see [19] for a survey). 

For example, in The ESP Game [20], players generate meaningful, accurate labels for 

images on the Web as they try to guess what their game partners are thinking. In 

essence, they are producing labeled training data for an object recognition system. 

Amazingly, as of July 2008, 200,000 players contributed more than 50 million labels. 

While TTR falls under the rubric of a GWAP, it is also very akin to training 

wizards that not only teach users how to perform a task, but gather adaptation data 

along the way. For example, in the Windows 7 Speech Recognition Tutorial [22], 

users not only learn and practice voice commands for accessing features of the 

Windows 7 operating system by voice, but they also contribute example 

pronunciations for various phonemes, or segmental units of sound, that make up a 

language. In fact, the Tutorial has a section where users are presented with text they 

are instructed to read aloud. When they pronounce each word correctly, they are 

allowed to proceed. The acoustic data generated by the Tutorial is then used to adapt 

speech engine parameters. The entire setup of the Tutorial is more or less the same as 

what we use for TTR, except that we use a game instead of a wizard to entice users. 

4   Evaluation 

In order to evaluate TTR, we conducted a user study in which we recruited 6 

participants, half of whom were female, to play the game. The participants played 20 

rounds of TTR on a 3.5 inch WVGA, capacitive touchscreen device. Each round 

consisted of 250 characters, or approximately 50 words. Participants were told to use 

whatever posture for inputting text on the keyboard felt comfortable (e.g., two 

thumbs, one thumb, etc.) so long as they consistently used that posture for all 

subsequent rounds. Any time participants needed a break, they could pause after 

completing a word during a round of TTR, or they could relax before the next round. 

Participants were all employees of Microsoft and were compensated for their time. 

Before assessing how well TTR achieves its text entry goals, one important 

question to ask is whether or not the game is engaging. Since the game was released, 

it has been downloaded by over 25,000 unique users. 134 provided ratings [2], with 

an average score of 4.5/5 stars. The vast majority of raters posted positive comments 

about both its gameplay and usefulness, such as “This is so much FUN! I can't stop 

playing, I think I'm addicted”, “The leaderboard feature makes it a lot of fun”, and 

“Very additive game. Very useful as well. My mobile typing is ten times faster now.”  



With respect to text entry goals, the first goal of TTR was to provide users with 

targeting practice so they could improve over time by sheer repetition. Not 

surprisingly, participants improved in both speed and accuracy over the 20 rounds, as 

shown by the trend lines in Figure 2(a) and (b). The second goal of TTR was to 

provide users with areas for improvement. TTR accomplishes this by visually 

displaying where users tended to mistype keys on a map of touch points overlaid on 

the keyboard. According to a post-hoc questionnaire, 4/6 participants found the touch 

point map to be useful. Of the 2 participants who did not find it useful, they claimed 

to have not even noticed the map. We are considering methods to make suggestions 

inherent in the touch point map more salient (e.g., written suggestions).  

4.1   Simulation Experiment 

Finally, in order to assess the third goal of TTR, generating useful training data for 

key-target resizing, we trained key-target resizing on touch points collected from the 

first 10 rounds of the participants‟ data, and simulated how participants would have 

performed had key-target resizing been used in the second 10 rounds. We are able to 

simulate performance by taking the touch points collected from TTR and seeing if 

key-target resizing would have changed the key assigned to each touch point. For 

example, suppose the user was attempting to type an „a‟ and touched an (x,y) 

coordinate on the keyboard “normally” corresponding to an „s‟, where “normally” 

means using a key mapping that is based on fixed key boundaries which are 

equidistant in both the vertical and horizontal axis from neighboring keys. Recall that 

key-target resizing dynamically adjusts the key boundaries based on probabilities. It 

does this by simply taking an (x,y) coordinate and returning a key assignment. As 

long as key-target resizing is constrained to have convex target regions [9], it will 

assign the same key to any two touch points contained within the target region. We 

can now investigate whether key-target resizing would have assigned an (x,y) 

coordinate that was incorrectly assigned to an „s‟ to an „a‟ instead. If key-target 

resizing would have assigned the (x,y) coordinate to an „a‟, then the number of direct 

hits, and hence accuracy, would have increased. Likewise, suppose the user had 

touched an (x,y) coordinate normally corresponding to a direct hit. If key-target 

 

Figure 2. Targeting practice improving (a) speed and (b) accuracy over time (multiple rounds of 

TTR). Trend line has been added in. 



resizing would have assigned a different key to that (x,y) coordinate, then the number 

of direct hits, and hence accuracy, would have decreased. 

Figure 3 displays the simulation results for the 6 participants. Overall, no 

participant would have achieved an average accuracy higher than 89% in the last 10 

rounds. However, if we had applied key-target resizing, using parameters trained on 

general data, the average accuracy would have jumped up from 78.2% to 82.4% 

(t(5)=10.0, p<.001), a relative error reduction of 18.9%. In all cases, key-target 

resizing would have been beneficial and for some participants (viz., user 5 and 6) it 

would have resulted in a dramatic increase in accuracy, pushing user 5 into the 90% 

range. For “personalized” key-target resizing, we trained the algorithms on each 

user‟s touch points from the first 10 rounds of TTR and only that user‟s data. As 

evident in Figure 3, personalized key-target resizing consistently improves accuracy 

across all participants. The average accuracy of personalized key-target resizing is 

82.9%, which constitutes a relative error reduction of 21.4% over key-target resizing 

(t(5)=-9.8, p<.001). Note that the personalized data we used for training was smaller 

than the general data for key-target resizing. As such, it is possible that with further 

rounds of TTR, personalized key-target resizing would continue to increase accuracy. 

Conclusion and Future Directions 

In this paper, we introduced TTR with three text entry goals in mind: 1. Provide 

beneficial targeting practice, 2. Provide useful highlighting of areas for improvement, 

and 3. Generate beneficial training data for key-target resizing. Through a user study 

and simulation experiment, we demonstrated that the game indeed achieves these 

 

Figure 3. Simulation results showing how well users would have done on the 11-20th rounds of 

TTR in accuracy had key-target resizing been on (green) and had key-target resizing been 

personalized to each user‟s data (red). 



three goals. As a future direction, we plan to explore using the game for real-time 

adaptation and collaborative filtering, as discussed in Section 2. We also plan to 

investigate adapting the text presented to users so that we can gather more data for 

areas in which our touch models have a significant amount of variance or where users 

simply need more practice. Finally, we are expanding the language coverage of TTR 

to enable widespread localization of our key-target resizing soft keyboard solution. 
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