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Abstract. Methods that query the state of a data structure often rédemntical
or equivalent values as long as the data structure does angehProgram ver-
ification depends on this fact, but it has been difficult toc#fiyeand verify such
equivalent-results methods and their callers.

This paper presents an encoding from which one can deteeqinealent-results
methods to be deterministic modulo a user-defined equigaleglation. It also
presents a technique for checking that a query method seaquivalent results
and enforcing that the result depends only on a user-defitileeénce set.

The technique is general, for example it supports user-efaguivalence rela-
tions based orfquals methods and it supports query methods that return newly
allocated objects. The paper also discusses the impletitent# the technique
in the context of the Spec# static program verifier.

0 Introduction

Computer programs contain many methods that query theaftatelata structure and
return a value based on that state. As long as the data s&uemains unchanged, one
expects different invocations of the query method to predemuivalent return values.
For methods returning scalar values, the return valuesx@eceed to be the same. For
methods returning object references, the most interegtingvalences are reference
equality and equivalence based on tfiguals method.

A simple and common example of a query method is ¢h:nt method of a col-
lection class, likeList in Fig. 0, where for a given collection the method returns the
number of elements stored in the collection. Obviously, exgectsCount to return
identical values when called twice on the same collectiorother example is shown in
the Calendar class in Fig. 2, where invocations of th@et Earliest Appointment will
yield equivalent results as long as the state of the caleshokes not change. However,
since GetEarliestAppointment returns a newly allocated object, the results will not
be identical. Due to object-allocation, query methods caive expected to be deter-
ministic. Nevertheless, their results are expected to lévakgnt. Therefore, we shall
refer to such query methods eguivalent-results methods

Query methods (also callgore methodsare particularly important in assertion
languages such as JML [15] or Spec# [1] because they allcevtasss to be expressed
in an abstract, implementation-independent way. For im&aCount is used in the
precondition of Getltem (Fig. 0) to refer to the number of elements in the list without
revealing any implementation details. However, reasoabwut assertions that contain
query methods is difficult. The client program in Fig. 1 iliizges the problem. It uses a



class List (T) {
int Count()
ensures 0 < result;

(...}

T Getltem(int n)
requires 0 < n < Count();

(...}

}
Fig.0. A List class whoseCount method returns the number of elements in a given list and
whose Getltem method returns a requested element of the list. The postammaf Count

promises the return value to be non-negative, and the pdétamof Getltem requires param-
eter n to be less than the value returned 6yunt .

List (T) list;

if (n < list.Count()) {
S/l some statement that changes the state, but not the list
t = list.GetItem(n);

}

Fig. 1. A code fragment that uses theist class from Fig. 0. The if statement guards the invoca-
tion of Getltem to ensure thatGetltem s precondition is met. To verify the correctness of this
code, one needs to be able to determine that the two invosatioCount return the same value.

conditional statement to establish the preconditiorzet/tem . We assume that state-
ment S does not change the list structure. Therefore, we expettitaaondition still
holds whenGetltem is called, that is, that the two calls tGount yield the same result.
There are essentially three approaches for a program veafe®nclude this fact.

The first approach is to require that the postcondition ofjihery method is strong
enough for a caller to determine exactly what value is retdriypically, this can be
achieved by having a postcondition of the forasult = E. In our example, this post-
condition would allow the verifier to compare the state afddy S to the state read
by E to determine whether the two calls ©@ount return the same result. However,
requiring such strong postconditions may entail a dramaticase in the complexity
of the specification. FoCount, one would have to axiomatize mathematical lists and
use that mathematical abstraction in the specification @f/ifs¢ class. We consider
this burden too high, in particular for the verification offrar simple properties.

The second approach is to define the return value of the meéthbd a function
of the program state. If the program state has not changetdéebtirhe the method is
invoked again, this approach allows one to conclude thenmetalue is the same as
before. But this approach is too brittle, for two reasonsstfit treats state changes too
coarsely. For example, statemehin Fig. 1 may change the program state, but as long
as it does not change the state of the list, we want to be alglertclude that the result



of Count is unchanged. Second, this approach is too precise abouttilma value.
For example, the object references returned by two callSdt¥arliestAppointment

in Fig. 2 are not identical, yet the data they reference anéatgnt. Queries that return
newly allocated objects are very common, especially in $\vihbdel classes [16].

The third approach is to require that all query methods usexpécifications are
equivalent-results methods whose results depend only daicdeap locations. We
call this set of locations thmfluence sebf a query method. With this approach, the
code in Fig. 1 can be verified by showing that the locations ifireztby S are not
in the influence set olCount. From the equivalent-results property and the fact that
Count returns an integer, we can conclude that the two call§dant yield the same
results.

Existing program verifiers such as the Spec# static progexifier Boogie [0] and
ESC/Java? [14] apply the third approach. However, theseesysdo not enforce that
guery methods actually are equivalent-results methodsreatdheir result actually de-
pends only on the declared influence set. Blindly assumiagetltwo properties is un-
sound. Checking the properties is not trivial, even for rad#hthat return scalar values.
For instance,GetHashCode is an equivalent-results method and should be permitted
in assertions, but returning the hash code of a newly akatabject leads to non-
determinism and must be prevented.

In this paper, we present a simple technique to check thateayquethod is an
equivalent-results method and that its result dependsamiis parameters and the de-
clared influence set. This technique supports user-defigeidaence relations based
on, for instance Fquals methods. We use self-composition [2, 20] to simulate two ex-
ecutions of the method body from start states that coincidae influence set and to
prove that the respective results are indeed equivalenal¥depresent axioms that en-
able reasoning about equivalent-results methods and avgydehey are sound. Our
technique is very general: it supports user-defined ecgriva relations, it does not re-
quire a particular way of specifying influence sets, andésusrelaxed notion of purity.
In particular, implementations of query methods may use-aeterministic language
features and algorithms, and may return newly allocateeaddj We plan to implement
our technique for pure methods in Boogie, but our resultsatoaly on the specifics of
Spec#. Therefore, they can be adopted by other programererifi

Outline. Section 1 provides the background on program verificatiat ik needed
in the rest of this paper. Section 2 presents an encodinguivagnt-results methods
that enables the kind of reasoning discussed above. S&ctigplains our technique for
checking the equivalence of results. Section 4 discussegplication of our technique
to Spec#. The remaining sections summarize related worlb#edconclusions.

1 Background on Program Verification

In this section, we review details of program verificatiotevant to our paper. For
a more comprehensive and tutorial account of this matesialrefer to some recent
Marktoberdorf lecture notes [19].



class Appointment {
int time;
/... more fields here

pure override bool Fquals(object o)
ensures GetType() = typeof (Appointment) =
(result <=
o #null A GetType() = o.GetType() A
time = ((Appointment)o).time A ...more comparisons hete

(...}
}

class Calendar {
pure Appointment GetEarliestAppointment(int day) {
Appointment a;
I/l find earliest appointment on dakuy

return a.Clone();

}

void ScheduleMorningMeeting(int day, List (Person) invitees)
requires 10 < GetEarliestAppointment(day).time;

(...}
}

class Person {
voidInvite( Calendar ¢, ...) {
if (10 < c.GetEarliestAppointment(5).time) {
/l compute invitees
List (Person) invitees = new List { Person)();
while (...) {

invitees. Add(p);

/I schedule those invitees
c.ScheduleMorningMeeting (5, invitees);

}
}
}

Fig. 2. A Calendar program whoseGetFarliestAppointment method returns an equivalent
value as long as the calendar does not change. The correctht®e code fragment at the bot-
tom of the figure depends on that the call @&tEarliestAppointment in the precondition of
ScheduleMorningMeeting returns a value that is equivalent to the one returned by dlieéa
GetEarliestAppointment in the guard of the if statement.



Architecture of Program Verifiers. To verify a program, the program’s proof obliga-
tions (e.g, that preconditions are met) are encoded as logical forsreddedverifica-
tion conditions The verification conditions are valid formulas if and orflhie program
is correct with respect to the properties being verified Ragification condition is fed
to a theorem prover, such as an SMT solver or an interactvef@ssistant, which at-
tempts to ascertain the validity of the formula or constoaetnterexample contexts that
may reveal errors in the source program. As has been noteeMeyad state-of-the-art
verifiers, it is convenient to generate verification cormdisi in two steps: first encode
the source program in an intermediate verification languageéthen generate input for
the theorem prover from the intermediate language [0,1Bidte the second step con-
cerns issues that are orthogonal to our focus in this paeio@k only at the first step.
The notation we will use for the intermediate verificationdaage is BoogiePL [0,10].
A BoogiePL program consists of a first-order logic theoryjahitin particular specifies
the heap model of the source language, and an encoding obtieesprogram. We
explain these two parts in the following subsections.

Heap Model. We model the heap as a two-dimensional array that maps adtt
tities and field names to values [23], so a field selection@sgiono.f is modeled as
$Heaplo, f]. By making the heap explicit, we correctly handle objecsds, as is well
known [3, 23]. In the encoding, we use a boolean figldloc in each object to model
whether or not the object has been allocated. The subtyagareis denoted by:.

For any setS of locations (that is, of object-field pairs), we define atiela=g that
relates two heaps if they have the same values for all lagsifin.S . More precisely:

(VH,K,S e (H=3 K < (Yo,fe (0,f) €S = Hlo,f]=K|o,f])))

Note that=g is an equivalence relation: it is reflexive, symmetric, arahsitive. If
H =5 K, we say thatd and K areequivalent modula'.

We assume that pure methods do not modify the state of angtdhp is allocated
in the pre-state of the method execution. This definitioovedla pure method to allocate
and modify new objects such as iterators [24]. More pregiselH0 and H1 denote
the heaps immediately before and after the call to a pureodetind S is a set of
locations of objects that are allocated/f, the following property holds:

HO=s H1 ©)

Encoding of Source Programs.Each source-language method is encoded as a proce-
dure in the intermediate verification language. To undadsthe basic encoding, con-
sider a methodV/ in a classC' with a field y, shown in Fig. 3.

The specification ofM/ has a precondition that obligates the callers\éfto pass
a non-negative argument value. In turn, the precondititetlee implementation o/
assumez to be non-negative on entry. The specification also has afrasdilause
and a postcondition that obligate the implementation toersake that its return value,
parameterz, and they field of the method’s receiver object are related as specified
and to modify onlythis.y . A caller can assume these properties upon return of a call.



class C'{
int y;
int M (int z)
requires 0 < z;
modifies this.y;
ensures result + z < this.y;

(...}

Fig. 3. An example class in the source language, showing an instaidey and a method\/
with a method specification.

procedure C.M (this, =) returns (result);
requires this # null;
free requires $ Heap|this, $alloc] A Stypeof (this) <: C;
ensures result + z < $Heap[this, C.y);
ensures (Yo, f e o # this A old($Heap)|o, $alloc] =
$Heaplo, f] = old($Heap)[o, f] V (o = this A f = y) );
free ensures (Vo e old($Heap)[o, $alloc] = $Heap|o, $alloc] );

Fig. 4. A BoogiePL procedure declaration that encodes the sigaand specification of the
example method”'. M .

A representative encoding af/ as a BoogiePL procedure is shown in Fig. 4.
The procedure declaration makes the implicit receivermpatarthis explicit, and the
anonymous return value is encoded as a hamed out-paraffteddypes in BoogiePL
are more coarse-grained than those in the source languatyirahe purposes of this
paper, they are only a distraction, so we omit them altogefiteee things are worth
noting about the procedure specification.

First, methodM 's pre- and postconditions have direct analogs in the Bdtlgie
procedure, where the implicit dereferencing of the heapfield selection expression
is made explicit in the BoogiePL encoding.

Second, the method’s modifies clause is encoded as a Boog@ftondition that
dictates which locations in the heap are allowed to chanbe |atter says that for any
non-null objecto allocated on entry to the method and for any fi¢gldthe heap at
location o.f is unchanged except possibly at locatiduis.y .

Third, to verify a program, one often needs to know some pitgsethat are guar-
anteed by the source language. For example, the static fyibe oeceiver parameter
of methodM is C' and the source-language type checker thus guaranteeketetd-
cated type of the receiver is some subtypeCbf The source language also guarantees
that all object references in use by a program are allocatddthanks to the fiction
created by the garbage collector) remain allocated for@8eeincorporate these guar-
anteed conditions in the encoding, BoogiePL convenierftgrefree pre- and post-
conditionsas part of a procedure declaration. Free preconditionssatezed on entry
to a procedure implementation, but not checked at call,sited analogously for free
postconditions.



Proof Obligations and Soundness.Proving the correctness of a BoogiePL program
amounts to statically verifying that the program does nairadue to a violated as-
sertion (such as a precondition or postcondition). To do, #ech assertion is turned
into a proof obligation. One can then use an appropriaterprodogic to show that the
assertions hold. For the proof, one may assume the consligiquressed as free precon-
ditions, free postconditions, and explieissume statements. The verification is sound
if all of these assumptions actually hold.

2 Encoding of Equivalent-Results Methods

Our idea is to define an equivalence class of return valuesdoh equivalent-results
method. We define the equivalence class via a programmeredifimilarity rela-
tion. Typical choices for the similarity relation are referemzpiality and theEquals
method. Rather than letting the similarity relation be theiealence relation, we define
the equivalence class to be those values that are relatduebsinilarity relation to a
particular element, called trchor elemen(This has the advantage that the similarity
relation need not be symmetric and transitive, which in ficache Fquals method
often is not [25]. Another advantage is that using an anclenent allows us to state
axioms that are handled more efficiently by the theorem prove

In this section, we explain similarity relations, anchagreknts, and the influence
sets that define the dependencies of method results.

Similarity Relations. For a methodM , we let Ry (H, r, H',r') denote M’s sim-
ilarity relation, relatingr whose state is evaluated in he&p and ' whose state is
evaluated in heagi’. For example, ifR; denotes equality of scalar values or refer-
ence equality for object values, we have:

Ru(H,r,H',7") <= r=1 1)
and if R, uses theEquals method, we have:
Ru(H,r,H',v") <= QFEquals(H,r,H' ") 2)

where@ Equals is a function automatically generated from the specificatioFquals .
Value r is always a return value of the methad;is either a return value, in which case
H = H’ or the anchor element, in which cag¥ is a special heaplnchorHeap (p)
where we evaluate anchor elements. The similarity relatefimes an equivalence class
of values that are related to the anchor element.

For the Appointment. Equals method in Fig. 2, the following axiom is automati-
cally generated for functio® Fquals :

(VH,this, K,0 e
this # null A $typeof (this) <: Appointment A $typeof (o) <: Object =
(QFquals(H, this, K, 0) < 3)
o # null A $typeof (this) = $typeof (0) A
H{this, time] = Ko, time] A ...more comparisons herg



where, here and throughout, quantifications o¥erand K range over well-formed
heaps. It is not the subject of our paper to describe how axifmmpure methods are
described, but see our previous work wildam Darvas [9, 8]; the difference is that
here we use one heap argument for each of the two parametBrs.tts .

Influence Sets. The influence set is a set of locations in the heap.Egt(H, p) de-
note the influence set af/ as computed for parametegsin a heapH . Note that
the computation of the influence set may depend on the heamxample, consider
a classSchedule with an Appointment field a. Suppose the influence set for some
method applied to a scheduds given by the set of path expressiofisa, s.a.time}.
Viewed in the intermediate-language notation, these paitessions denote the follow-
ing object-field pairs{s, a), ($Heap]s, a|, time).

We require every influence set to belf-protectind13], which means that any two
heaps equivalent modulo the influence set compute the irftuset the same way:

(VH7K7P. HE]:M(H,I))K = fM(H7p):‘7:M(K7p)) (4)

Self-protection can be enforced by requiring the set of patitessions that specify the
influence set to be prefix closed: if it contains a path expoasg.z.y, then it must
also contain the path expressidhz. Therefore, the expressiof.z.y denotes the
same location in heapd and K .

The influence set specifies which parts of the program statallwed to influence
the return value. To a first order of approximation, the infeeeset is theead setor
read effectof the method [5], but, technically, we actually allow metkdo read any
part of the state, as long as the values of things outsidefluence set have no bearing
on the return value.

Anchor Elements. The encoding of equivalent-results methods has to allow pedve
that two calls to an equivalent-results methdf return equivalent results if the two
heaps before the calls are equivalent modulo the influericefsg/ . We reach this
conclusion in two steps. First, we encode by an axiom thaatiobor element remains
the same as long as the program state indicated by the infissiaoes not change.
Second, we encode by a free postcondition that the actuahrealue of M is related
to the anchor element by the similarity relation. Hence,rtwailts of the two calls to
M are in the same equivalence class.

Step A: In our intermediate-language encoding, we introduce atfomcAnchory,
that yields an anchor element for the equivalence classeofeturn values of\/ . We
axiomatizeAnchor,; as follows:

(Vp,H,K o H=z g, K = Anchory(H,p) = Anchory(K,p) ) 5)

The axiom says that we pick the same anchor element wherévierinvoked with the
same arguments in two heapsH and K that are equivalent modul@y,(H, p). In
other words, the anchor element is a function of the progitae grojected onto the
influence set.



HO:= $Heap;
call r:= GetFEarliestAppointment(c, 5);
H1:= $Heap;
if (10 < $Heap[r, time]) {
/I code to computénvitees . ..
KO0:= $Heap;
call v’ := GetEarliestAppointment(c, 5);
K1:= $Heap;
assert 10 < $Heap[r’, time];

.-

Fig. 5. A sketch of the code fragment from the bottom of Fig. 2, givthg namesHO0, H1,

K0, and K1 to the intermediate values of the heap, and giving the natasd r’ to the return
values of the two calls td7etFEarliestAppointment . The assert statement at the end shows the
condition that we want to prove.

Step B: We add to our encoding the following free postcondition:
free ensures R ($Heap, result, AnchorHeapu (p), Anchory ($Heap, p)); (6)

To make sure the anchor object always denotes the same leq@ealass, we evaluate
its state in a special, constant hedpchorHeap), . We postpone until Section 3 how
to justify this free postcondition.

Example. To prove the correctness of methddvite in Fig. 2, it suffices to show
that the two invocations ofZetFEarliestAppointment return equivalent values. Re-
call, the second invocation takes place during the evaloadf the precondition of
ScheduleMorningMeeting . Fig. 5 shows a BoogiePL encoding of that fragment. As
illustrated by the assert statement in Fig. 5, we wish to @toat H1[r, time] equals
K1[r', time].

The influence set ofzet Earliest Appointment contains the fields that make up the
representation of th€'alendar object. LetH0 and H1 denote the heaps immediately
before and after the first call t&'ct Farliest Appointment , and let K0 and K1 denote
the heaps immediately before and after the second call.

Since GetEarliestAppointment is pure, it does not change the values of any pre-
viously allocated locations (see condition (0)), 6 and H1 are equivalent modulo
F(HO,c¢,5),and K0 and K1 are equivalent moduld (KO0, ¢,5) (we drop the sub-
script GetEarliestAppointment in this example). Assuming that the code that com-
putesinvitees has no effect on the values of the locations in the influengensealso
have that// 1 and K0 are equivalent moduld=(H 1, ¢,5). By self-protection (4), we
know that the three influence sets are equal. Thus, we caucknioy transitivity:

H1 =r1,05 K1 (7

By axiom (5) and equation (7), we conclude that the anchanetgs for the two calls
are the same:

Anchor(H1, ¢,5) = Anchor(K1, ¢, 5) (8)



procedure M (p) returns (result)
requires P($Heap, p);
free requires Q($Heap, p);
ensures S(old($Heap), $Heap, p, result);
free ensures 7 (old($Heap), $Heap, p, result);
free ensures R ($Heap, result, AnchorHeapu (p), Anchory ($Heap, p));

{

var locals;
Body

}

Fig. 6. A procedure in the intermediate verification languagestHating the general form of the
procedure into which the method translates.

Now let » and r’ denote (as indicated in Fig. 5) the values returned by thecilis
to GetFEarliestAppointment . The similarity relation is given by th&quals method.
Thus, we conclude from postcondition (6):

QFEquals(H1, r, AnchorHeap(c,5), Anchor(H1, c,5)) and
Q@QFEquals(K1, v, AnchorHeap(c,5), Anchor(K1, ¢, 5))

By axiom (3) and property (8), we have

H1[r, time] = AnchorHeap(c, 5)[Anchor(H1, ¢,5), time] A
K1[r', time] = AnchorHeap(c, 5)[Anchor(H1, ¢, 5), time]

from which we concludeH 1[r, time] = K1[r’, time], as required to establish the
precondition of the call tachedule MorningMeeting .

3 Verifying Equivalence of Results

As we mentioned in Section 1, soundness of a verificatioreaystomes down to jus-
tifying every assumption that the proof system allows a ptoanake use of. In the
previous section, we introduced three conditions that vea s assumptions in the
proof. The first assumption is the axiom of self-protectidh (t can be justified by a
syntactic check on the path expressions used to define thenti# set. The second
assumption is the axiom aboutnchory, (5). It is justified on the basis that there ex-
ists a functionAnchory, that satisfies the axiom, for example any constant function.
The third assumption is the free postcondition (6). In tkesti®n, we present a proof
technique based on self-composition that justifies thigragsion.

Ordinarily, a methodM gives rise to a verification condition prescribed by a Boo-
giePL procedure implementation like proceduYg in Fig. 6, wherep denotes the
in-parametersP and S denote some checked pre- and postconditiéhsnd 7 de-
note some free pre- and postconditiocisFig. 4), locals are local variables, anBody
is the BoogiePL encoding of the implementation of mettidd

For every equivalent-results methdd, we will now prescribe a second BoogiePL
procedure, whose validity will justify the free postcoinalit (6). The key idea is to



procedure M'(p) returns (result) {
var locals;

var $oldHeap := $ Heap;

assume P($Heap, p) A Q($Heap, p);

Body’

assume S(SoldHeap, $Heap, p, result) N\ T ($oldHeap, $Heap, p, result);

assume Anchory ($Heap, p) = result N AnchorHeapy (p) = $Heap; 1/ LO

havoc $Heap, locals, result;
assume $Heap =gz, (soldHeap,p) S0ldHeap;

$oldHeap := $ Heap;

assume P($Heap, p) A Q($Heap, p);

Body’

assume S(SoldHeap, $Heap, p, result) N\ T ($oldHeap, $Heap, p, result);

assert R ($Heap, result, AnchorHeapn (p), Anchory ($Heap, p)); I/ L1

}

Fig. 7. A procedure that checks by assertion (L1) thdtsatisfies its free postcondition (6).

execute the method body twice starting in states that agnethe values of the in-
parameters and all objects in the influence set. We then ghatehe two executions
yield equivalent results. This second procedure has tme $biown byA/’ in Fig. 7 and
is described as follows:

— The body of M’ starts off with$ Heap, locals, and result set to arbitrary values,
saves the value df Heap in $oldHeap, and assumes the preconditichsand Q.

— ltthen performsBody’, which is Body with occurrences obld($Heap) replaced
by $oldHeap and occurrences of assert statemenes, Cchecked conditions) re-
placed by assume statements. These assume statemengdifieel joy the fact that
procedureM already prescribes checks for them, so if the conditionsaidnald,
the program verifier will generate appropriate errors wheamapting to verify M .

— Upon termination ofBody’ , the postconditionsS and7 are assumed. Agairfy
can be assumed here because it is checketfby

— We explain the assume statement (LO) below.

— Next, the code prepares for another executioBofly’ . The second execution of
Body' is to start in a state where all locations of the influence sgelthe same
values as in the first execution. Th$d/eap, locals, andresult are set to arbitrary
values (using dhavoc statement) and the value ®Heap is constrained (using an
assume statement) to be equivalen$tddHeap modulo the influence set.

— The preconditions are assumdghdy’ is executed a second time, and the postcon-
ditions are assumed.

— We explain the assert statement (L1) below.

The first half of M’ culminates in assume statement (L0O), which has the effect of
defining Anchory (3 Heap, p) and AnchorHeapys (p) to be the result value and result



heap of an arbitrary execution of the method (namely, thediscution ofBody’). In
fact, by axiom (5), (LO) defineslnchory ($Heap, p) for all heaps that are equivalent
to $ Heap modulo the influence set. The second halfldéf checks that (6) is indeed a
postcondition of the method for all those equivalent heaps.

With that, we have justified all the assumptions that ournéple introduces, and
thus we have established that our technique is sound.

4  Application to Spec#

In verifying Spec# programs, we have run across scores ahpbes like the one in
Fig. 0, where in Spec# th€ount method tends to be@operty getteywhich is a form
of parameter-less method. By default, property getter¢raeted as pure methods that
read only the ownership cone of the receiver object. dlvaership con®f an object
is the set of locations that make up the object’s repredentf]. Previously, our best
solution for dealing with this situation in the Spec# pragneerifier was to introduce an
axiom that says the return value of the method is a functicgh@bwnership cone. But
such an axiom is not sound if a pure method returns newly a@tatobject or values
that are derived from such objects. Our technique in thigpgwes a sound solution
to the problem, and we intend to implement it. In this sectiea describe some issues
that pertain to the practical implementation of equivalersults methods in Spec#.

We intend to restrict the choices f@&,; in Spec# to support only the two choices
(1) and (2). This will simplify the implementation while spgrting the most common
similarity relations. (The only other useful similarity vieund puts all non-null refer-
ences in one equivalence class.) To select between the wiocesh we will introduce
a default choice and a method annotatiorc{gtom attributg that can override the
default.

For the influence set, we will only support the union of the evahip cones for
some subset of the parameters. Ownership provides a forbstgation, allowing one
to specify influence sets without being specific about imgetation details. There is
already a notion ofonfinedn Spec# that says that a pure method reads the ownership
cone of a parameter. Moreover, the Spec# program verifieadyrhas an encoding that
lets one deduce, foralid objects, whether or not the ownership cone of the object has
changed. The encoding is simply to inspect the object’s field snapshot [8]. An
object is valid when its object invariant holds [18]. Sinbéstis the precondition of
almost all methods, we will not attempt to prove ownershipasto be the same other
than via thesnapshot field. Because of the snapshot encoding, we can write axidm (5
as:

(Vp,H,K o Hp,valid]| N K[p,valid] A H[p, snapshot] = K[p, snapshot]
= Anchory (H, p) = Anchory (K, p) )

(We have abused notation slightly: B¥[p, valid] and H[p, snapshot], we really mean

to refer to thevalid and snapshot fields of all the parameters ip that contribute to
the influence set, and likewise fd@f¢ .) In fact, there is an alternative way to encode this
property that is significantly more efficient for the SMT sa\because it avoids quan-
tification over pairs of heaps. The alternative encodingri8pduces an uninterpreted



function A, and uses it to more directly say thatchory (H, p) is a function ofp
and H [p, snapshot]:

(Vp,H e Hlp,valid] = Anchory(H,p)= Au(p, H[p, snapshot]) )

With the restriction to influence sets based on ownershigs@md our focus on rea-
soning about these via snapshots, axiom (4) becomes tsaale omit it.

5 Related Work

The Java Modeling Language (JML) requires pure methods tdeberministic [17].
This requirement is not practical since pure methods oftsdrto return newly allo-
cated objects, which is illustrated by many pure method#/4b'si model library [16].
Our notion of equivalent-results methods allows pure mgsghio return newly allo-
cated objects. Since our axioms are based on a user-defigariy relation such as
an Equals method, determinism is not required for soundness.

The axiomatization of pure methods consists of two groupaxidms: method-
specific axioms that specify the behavior of each individnethod and general axioms
that describe common properties of all pure methods. Pusweork by Darvas and
Muller [9] focuses on the method-specific axioms, but dassdiscuss the general ax-
ioms that we provide in this paper. Their axiomatizatioroisred, but too weak for many
interesting examples. Darvas and Leino [8] present gemgrains that are used in the
Spec# verifier Boogie. Some of their work assumes that a petbad is deterministic
and that its result depends only on a specified influence sethbése assumptions are
not checked. Therefore, their axiomatization is unsoumctoe methods that return
newly allocated objects or whose result depends on locataiside the influence set.
Our work eliminates both sources of unsoundness.

Jacobs developed SpecLeuven, a variant of Spec# for rhodtatied programs. In
his work [12],inspector methodare syntactically enforced to be deterministic, which
is sound but overly restrictive. Influence sets are checlyaahtextension of the Boogie
methodology [18], which requires an object to be unpackddrbdts state is read.
Our verification technique based on self-composition dags@quire any particular
methodology.

ESC/Java2 [14, 7] also operates under the unchecked asenrtiyzt pure methods
are deterministic, which is unsound if they are not. Morepsi@ace JML specifications
typically do not declare an influence set, ESC/Java2 hasrbitet support for reason-
ing about the effect of a heap modification on the result ofra puethod.

The influence sets we use in this paper are similar to readtsffelowever, read
effects constrain the whole execution of a method, whereasniluence sets only
constrain the method result. We allow methods to read arifiocations as long as
the result depends only on the declared influence set. ClmileDrossopoulou [5]
show how to declare and check read effects in an ownershigpdystem. We use self-
composition to verify influence sets, which is in general enfine-grained than type
checking and does not require a particular ownership scheme

Self-composition has been applied to prove secure infaomébw [2, 20]. In fact,
proving that a method result depends only on a specified imfliset can be seen as an



instance of secure information flow, where the method rethdt method parameters,
and the locations in the influence set have a low securityl kevé all other locations
have a high security level. In addition to information flone wse self-composition to
prove that two executions of a method yield equivalent tesul

Separation logic [21] provides a powerful and elegant wagetson about the ef-
fects of heap modifications. The effect of pure methods caach&ved by introducing
abstract predicates [22]. The influence set of a pure methiwdsponds to the footprint
of the predicate. The frame rule can be used to show thaficérap modifications do
not affect the truth value of the abstract predicate. Howeaeen if pure methods are
not used in contracts, the correctness of some progranas i@ti the equivalent-results
property. We believe that our verification technique is algplicable to separation logic
in order to verify such programs.

6 Conclusions

In this paper, we introduced the notion of equivalent-rissoiethods and explained
their usefulness for program specification: equivalestits methods are expressive,
for instance, they may return newly-allocated objects, thieg permit an axiomatiza-
tion that is sound and strong enough to verify interestirggpams. We showed that the
equivalent-results property can be checked by an automatgram verifier using self-
composition. Our technique is very flexible: it does not iiegja particular program-
ming methodology, uses a relaxed notion of purity, and erles non-deterministic
language features and algorithms. As future work, we plamfdement our technique
in the Spec# verifier Boogie.
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