

Personal Photo Enhancement using Example

Images

Neel Joshi Wojciech Matusik, Edward H. Adelson, and David J. Kriegman

Microsoft Research, Disney Research, Adobe Research, MERL, MIT CSAIL, and UCSD

Motivation and Approach

It is difficult for most users to fix their images

It's easier for users to rate their good photos

 Use examples of a persons good photos to fix the bad ones automatically

- Our Approach
- Focus on images with faces

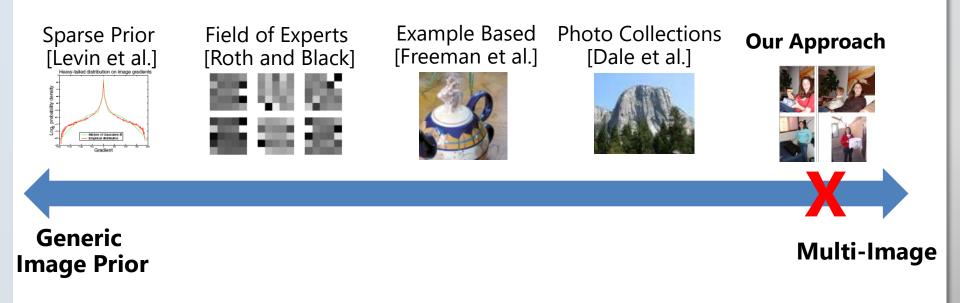
Use a known face as a calibration obje

 Users provide good examples, instead performing manual edits

Previous Work

- Deblurring and Upsampling/Super-Resolution
 - Poisson image/noise models [Richardson 1972; Lucy 1974]; Sparse gradient priors [Fergus et al. 2006; Levin 2006; Levin 2007]; Sparse wavelet coefficients [de Rivaz 2001]; Spatially Varying [Whyte et al. 2010; Gupta et al. 2010]; Baker and Kanade 2000; Freeman et al. 2000; Freeman et al. 2002; Liu et al. 2007; Dai et al. 2007; Fattal 2007
- Denoising
 - Sparse wavelet coefficients [Simoncelli and Adelson 1996; Portilla et al. 2003], Anisotropic diffusion [Perona and Malik 1990], Field of Experts [Roth and Black 2005];, Baker and Kanade 2000; Freeman et al. 2000; Freeman et al. 2002; Liu et al. 2007; Dai et al. 2007; Fattal 2007
- White-Balancing/Color Correction
 - Finlayson et al. 2004, 2005; Weijer et al. 2007
- Using photo collections
 - Baker and Kanade 2000, Liu et al. 2007, Dale et al. 2009
- Hardware Methods
 - Joshi et al. 2010, Raskar et al. 2008, Levin et al. 2008, Veeraraghavan et al. 2007, Levin et al. 2007, Raskar et al. 2006, Ben-Ezra et al. 2005, Ben-Ezra and Nayar

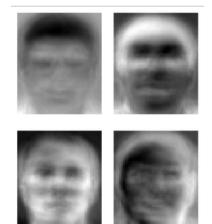
Specific vs. General Priors

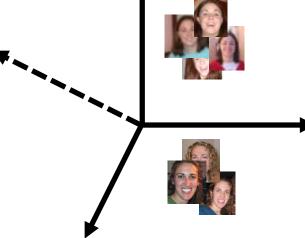


• We use an **identity specific** prior

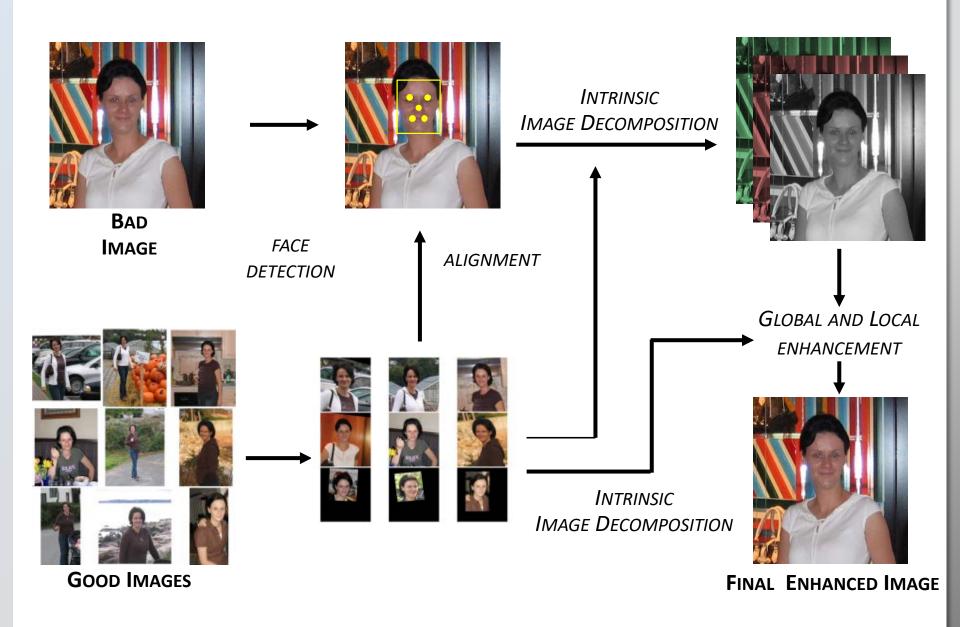
- Faces are a subspace of all images
 - Eigenfaces -- Turk and Petland 1987

 The range of images can be captured with a few good examples



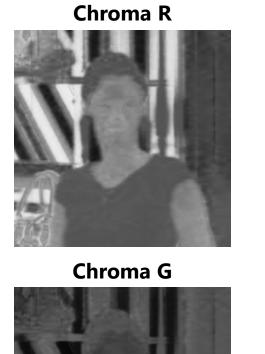


Personal Image Enhancement Pipeline



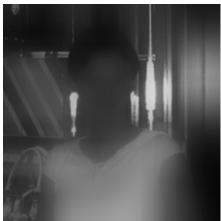
Intrinsic Images [Land and McCann 1971, Barrow and Tenenbaum 1978]

Input Image



Detail/Texture

Lighting



- Separation into Lighting, Texture, Color Layers
- Use base/detail decomposition of Eisemann and Durand 2004

Image Enhancements

Blur (Global)

 Color/Exposure Balance (Global)

 Super-Resolution/Upsampling

Image Enhancements

Blur

Color/Exposure Balance

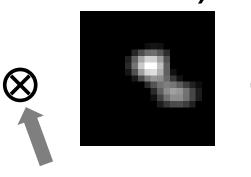
 Super-Resolution/Upsampling

Blur Formation

Blurry image

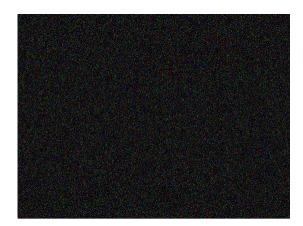
Sharp image

Blur kernel (Point-Spread Function)



Convolution

Zero Mean Gaussian Noise

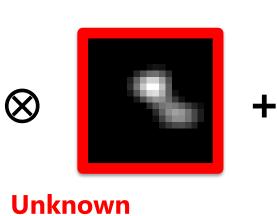


Blur Estimation Goal

Blurry image

Known

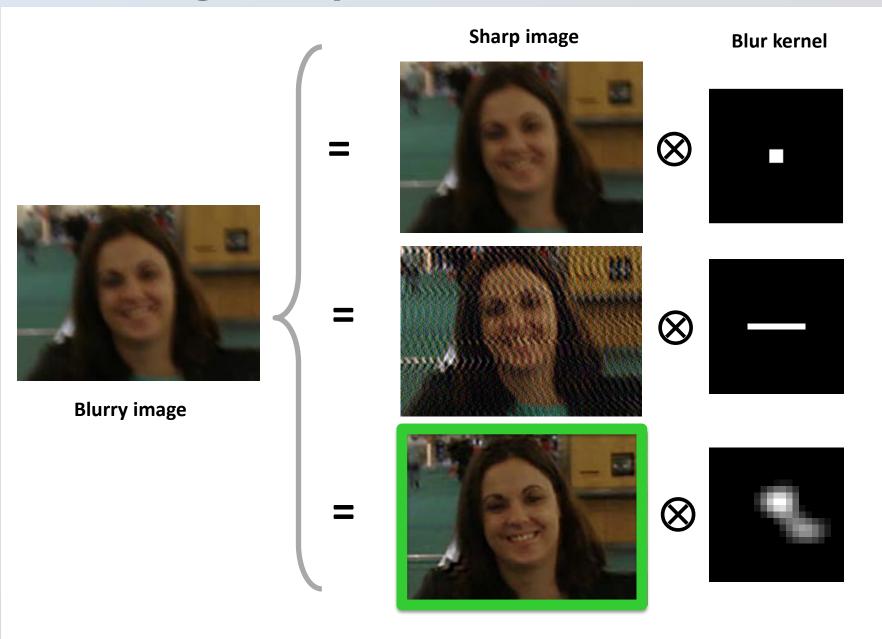
Sharp image



Known σ

Blur kernel Zero Mean Gaussian Noise

Deblurring: Multiple Possible Solutions



Eigenspace

Mean Face

Eigenvectors * 3 * σ + Mean Face

Eigenvectors * -3 * σ + Mean Face

Identity Specific Images are used to build an aligned eigenspace

Eigenspace used for Blind Deconvolution

Data Term Sparse Prior

$$I, \mathcal{K} = \operatorname{argmin}_{I, \mathcal{K}} \rho(\mathcal{B} - I \otimes \mathcal{K}) / \sigma^{2} + \left| \lambda_{1} \right| \nabla \mathcal{I}^{0.8} \qquad B = Blu \\ I = Sha \\ \Lambda = Eig \\ \mu = Mea \\ \rho(.) = R \\ \sigma = No \\ deviation \\ \Omega = R \\ \sigma = No \\$$

B = Blurry Image I = Sharp Prediction Λ = Eigenbasis vectors μ = Mean Vector ρ (.) = Robust Norm σ = Noise standard deviation λ = Regularization parameter p < 1

- Eigenspace used as a linear constraint
- Robust norm
- Sparsity and smoothness priors on the Kernel
- Solved using an Multi-Scale EM style algorithm

Image Enhancements

Blur

Color/Exposure Balance

 Super-Resolution/Upsampling

Image Enhancements

Blur

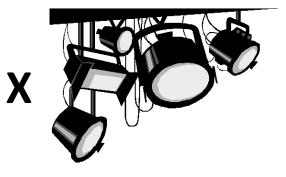
Color/Exposure Balance

 Super-Resolution/Upsampling

Color Correction: Multiple Possible Solutions

Observed image

Lighting Color



White Balance and Exposure Correction

$$C_{r} = \underset{C_{r}}{\operatorname{argmin}} \rho(\mu_{r} - C_{r})$$

$$C_{g} = \underset{C_{g}}{\operatorname{argmin}} \rho(\mu_{g} - C_{g}g)$$

$$C_{L} = \underset{C_{l}}{\operatorname{argmin}} \rho(\mu_{L} - C_{l}L)$$

$$C_r = r \text{ scale}$$

 $C_g = g \text{ scale}$
 $C_L = L \text{ scale}$

 $\mu_r = Mean r Vector$ $\mu_g = Mean g Vector$ $\mu_L = Mean L Vector$

 ρ (.) = Robust Norm

- Diagonal white balancing matrix (scales r and g independently)
- Exposure adjustment scales lighting layer

Image Enhancements

Blur

Color/Exposure Balance

 Super-Resolution/Upsampling

Image Enhancements

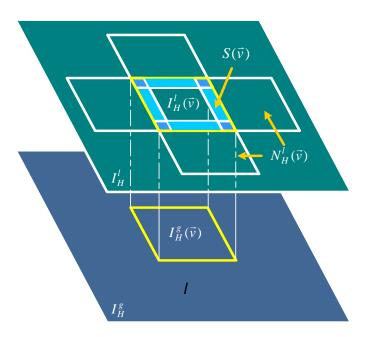
Blur

Color/Exposure Balance

 Super-Resolution/Upsampling

Face Correction: Patch Based [Freeman et al. 2000, Liu et al. 2007]

22

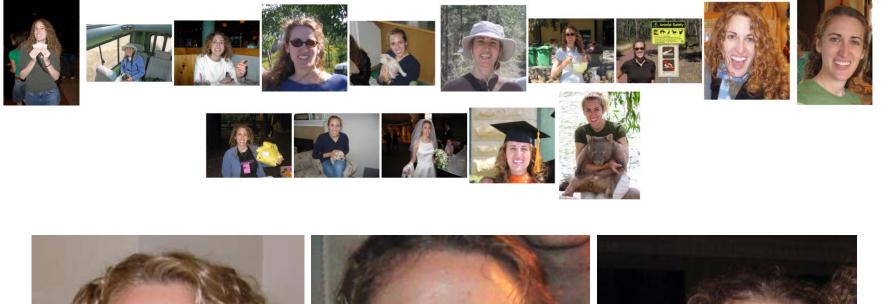


- High-frequencies hallucinated by minimizing the energy of patch-based Markov network
- Two types of energies:
 - external potential to model the connective statistics between two linked patches in and . I_H^L
 - *internal potential* to make adjacent patches in smooth.
- Energy minimization by raster scan [Freeman et al. 2000]

Results

Camera Motion Blur (Global Correction)

Exposure Correction and White-Balancing



Defocus Blur (Local Correction)

Upsampling (Local Correction)



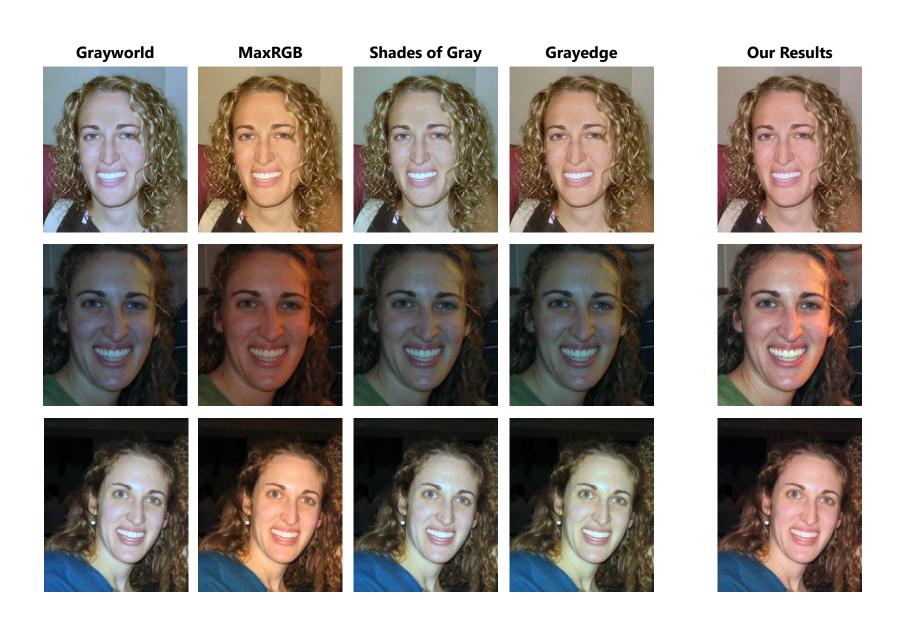
Comparisons

Comparisons to Previous Work

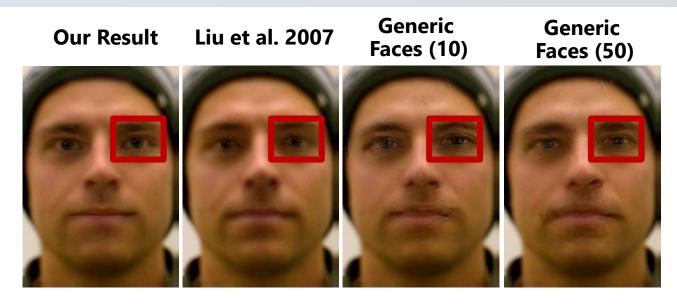
Fergus et al. 2006

Our Result

Comparisons to Color Constancy [Weijer et al. 2007] 30



Using Generic Faces



Our Result

Generic (10)

Liu et al.

Generic (50)

Using Generic Faces

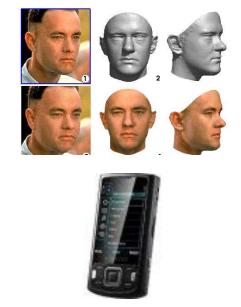
Input

Our ResultLiu et al. 2007Generic Faces (10)Generic Faces (50)Image: Comparison of the sector of

Discussion/Future Work

- Latent photo may not be well modeled by the Eigenspace
- All parts of the Eigenspace may not be equally likely
- A prior on the distribution within the Eigenspace
- Better non rigid alignment/morphable model

 Personalized Enhancement on camera/phone



Contributions

- We use good examples of known face images for corrections
- Faces are used as calibration objects for global corrections

We can further improve the faces in images

 Identity-specific priors out-perform generic priors

Thank You!

http://research.microsoft.com/enus/um/people/neel/personal_photos/

