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Abstract

Markov Decision Processes (MDPs) describe a wide variety of planning scenarios
ranging from military operations planning to controlling a Mars rover. However, to-
day’s solution techniques scale poorly, limiting MDPs’ practical applicability. In this
work, we propose algorithms that automatically discover and exploit the hidden struc-
ture of factored MDPs. Doing so helps solve MDPs faster and with less memory than
state-of-the-art techniques.

Our algorithms discover two complementary state abstractions – basis functions
and nogoods. A basis function is a conjunction of literals; if the conjunction holds true
in a state, this guarantees the existence of at least one trajectory to the goal. Conversely,
a nogood is a conjunction whose presence implies the non-existence of any such trajec-
tory, meaning the state is a dead end. We compute basis functions by regressing goal
descriptions through a determinized version of the MDP. Nogoods are constructed with
a novel machine learning algorithm that uses basis functions as training data.

Our state abstractions can be leveraged in several ways. We describe three diverse
approaches — GOTH, a heuristic function for use in heuristic search algorithms such
as RTDP; RETRASE, an MDP solver that performs modified Bellman backups on
basis functions instead of states; and SIXTHSENSE, a method to quickly detect dead-
end states. In essence, our work integrates ideas from deterministic planning and basis
function-based approximation, leading to methods that outperform existing approaches
by a wide margin.

Keywords: Markov Decision Process, MDP, planning under uncertainty,
generalization, abstraction, basis function, nogood, heuristic, dead end.

1. INTRODUCTION

Markov Decision Processes (MDPs) are a popular framework for modeling problems
involving sequential decision-making under uncertainty. Examples range from military-
operations planning to user-interface adaptation to the control of mobile robots [Ab-
erdeen et al. (2004)][Mausam et al. (2005)]. Unfortunately, however, existing tech-
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niques for solving MDPs, i.e. deciding which actions to execute in various situations,
scale poorly, and this dramatically limits MDPs’ practical utility.

Humans perform surprisingly well at planning under uncertainty, largely because
they are able to recognize and reuse abstractions, generalizing conclusions across dif-
ferent plans. For example, after realizing that the walls of a particular Mars crater are
too steep for the rover to escape, a human planner would abandon attempts to collect
any of the rock samples in the crater, while a traditional MDP solver might rediscover
the navigational problem as it considered collecting each sample in turn.

This article presents new algorithms for automatically discovering and exploiting
such hidden structure in MDPs. Specifically, we generate two kinds of abstraction,
basis functions and nogoods, each of which describes sets of states that share a similar
relationship to the planning goal. Both basis functions and nogoods are represented
as logical conjunctions of state variable values, but they encode diametrically oppo-
site information. When a basis function holds in a state, this guarantees that a certain
trajectory of action outcomes has a positive probability of reaching the goal. Our al-
gorithms associate weights with each basis function, encoding the relative quality of
the different trajectories. In contrast, when a nogood holds in a state, it signifies that
the state is a dead-end; no trajectory can reach the goal from this state. Continuing the
Mars rover example, a conjunction that described presence in the steep-walled crater
would be a nogood.

Our notions of basis function and nogood are similar to the rules learned in logi-
cal theories in explanation-based learning and constraint satisfaction [Kambhampati et
al. (1996)][Dechter (2003)], but our work applies them in a probabilistic context (e.g.,
learns weights for basis functions) and provides new mechanisms for their discov-
ery. Previous MDP algorithms have also used basis functions [Gretton and Thiébaux
(2004)][Sanner and Boutilier (2006)], but to perform generalization between differ-
ent problems in a domain rather than during the course of solving a single problem.
Other researchers have used hand-generated basis functions in a manner similar to
ours [Guestrin et al. (2003a)][Guestrin et al. (2003b)][Gordon (1995)], but we present
methods for their automatic generation.

1.1. Discovering Nogoods and Basis Functions

We generate basis functions by regressing goal descriptions along an action outcome
trajectory using a determinized version of the probabilistic domain theory. Thus, the
trajectory is potentially executable in all states satisfying the basis function. This justi-
fies performing Bellman backups on basis functions, rather than states — generalizing
experience across similar states. Since many basis functions typically hold in a given
state, the value of a state is a complex function of the applicable basis functions.

We discover nogoods using a novel machine learning algorithm that operates in two
phases. First it generates candidate nogoods with a probabilistic sampling procedure
using basis functions and previously discovered dead ends as training data. It then
tests the candidates with a planning graph [Blum and Furst (1997)] to ensure that no
trajectories to the goal could exist from states containing the nogood.

2



1.2. Exploiting Nogoods and Basis Functions
We present three algorithms that leverage our basis function and nogood abstractions
to speed MDP solution and reduce memory usage.

• GOTH uses a full classical planner to generate a heuristic function for an MDP
solver for use as an initial estimate of state values. While classical planners have
been known to provide an informative approximation of state value in proba-
bilistic problems, they are too expensive to call from every newly visited state.
GOTH amortizes this cost across multiple states by associating weights to basis
functions and thus generalizing the heuristic computation. Empirical evaluation
shows GOTH to be an informative heuristic that saves MDP solvers considerable
time and memory.

• RETRASE is a self-contained MDP solver based on the same information-sharing
insight as GOTH. However, unlike GOTH, which sets the weight of each basis
function only once to provide the starting guess at states’ values, RETRASE
learns the basis functions’ weights by evaluating each function’s “usefulness” in
a decision-theoretic way. By aggregating the weights, RETRASE constructs a
state value function approximation and, as we show empirically, produces better
policies than the participants of the International Probabilistic Planning Compe-
tition (IPPC) on many domains while using little memory.

• SIXTHSENSE is a method for quickly and reliably identifying dead ends, i.e.,
states with no possible trajectory to the goal, in MDPs. In general, this prob-
lem is intractable — one can prove that determining whether a given state has a
trajectory to the goal is PSPACE-complete [Goldsmith et al. (1997)]; therefore,
it is unsurprising that modern MDP solvers often waste considerable resources
exploring these doomed states. SIXTHSENSE acts as a submodule of an MDP
solver, helping it detect and avoid dead ends. SIXTHSENSE employs machine
learning, using basis functions as training data, and is guaranteed never to gen-
erate false positives. The resource savings provided by SIXTHSENSE are deter-
mined by the fraction of dead ends in the MDP’s state space and reach 90% on
some IPPC benchmark problems.

In the rest of the paper, we present these algorithms, discuss their theoretical prop-
erties, and evaluate them empirically. Section 2 reviews the background material and
introduces relevant definitions, illustrating these with a running example. Sections
3, 4, and 5 present descriptions of and empirical results on GOTH, RETRASE, and
SIXTHSENSE respectively. Section 6 discusses potential extensions of the presented
algorithms. Finally, Section 7 describes the related work and Section 8 concludes the
paper.

2. PRELIMINARIES

2.1. Example
Throughout the paper, we will be illustrating various concepts with the following sce-
nario, called GremlinWorld. Consider a gremlin that wants to sabotage an airplane and
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(define (domain GremlinWorld)
(:types tool)
(:predicates (has ?t - tool)

(gremlin-alive)
(plane-broken))

(:constants Wrench - tool
Screwdriver - tool
Hammer - tool)

(:action pick-up
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)))

(:action tweak
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)))

(:action smack
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(probabilistic 0.9
(and (not (gremlin-alive))))))

)

(define (problem GremlinProb)
(:domain GremlinWorld)
(:init (gremlin-alive))
(:goal (and (gremlin-alive) (plane-broken)))

)

Figure 1: A PPDDL-style description of the example MDP, GremlinWorld, split into
domain and problem parts.

stay alive in the process. To achieve the task, the gremlin can pick up several tools.
The gremlin can either tweak the airplane with a screwdriver and a wrench, or smack
it with a hammer. However, smacking will, with high probability, lead to accidental
detonation of the airplanes fuel, which destroys the airplane but also kills the gremlin.
Figure 1 describes this setting in Probabilistic Planning Domain Description Language
(PPDDL). As we introduce relevant terminology in subsequent subsections, we will
formally define the corresponding MDP.
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2.2. Background
Markov Decision Processes (MDPs). In this paper, we focus on probabilistic planning
scenarios modeled by discrete factored stochastic-shortest-path (SSP) MDPs with an
initial state. In general, MDPs are defined as tuples of the form 〈S,A, T , C〉, where

• S is a set of states.

• A is a set of actions.

• T is a transition function S × A × S → [0, 1] giving the probability of moving
from si to sj by executing action a.

• C is a map S ×A → R specifying action costs.

The MDPs we consider in this paper are a specific kind defined as a tuple 〈X ,A, T , C,G, s0〉,
where A, T , and C are as above and

• X is a set of state variables s.t. every conjunction of literals over all variables in
X is a state of the MDP. Therefore, with a slight abuse of notation, we can set
S = 2X in the general MDP definition.

• G is a set of (absorbing) goal states.

• s0 is the start state.

• All action costs are positive, i.e. C is a map S ×A → R+ 1

We assume that both the state space (2X ) and the action space (A) are finite. An-
other assumption we make is that each action of the MDP has a precondition, a con-
junction of literals describing the states in which the action can be executed.

Our example, GremlinWorld, can be formulated as an MDP using five state vari-
ables, gremlin-alive, plane-broken, has(Hammer), has(Wrench), and has(Screwdriver),
abbreviated asG, P ,H ,W , and S respectively. Therefore, X = {G,P,H,W, S}. The
problem involves five actions, A = {pick-up(Screwdriver), pick-up(Wrench), pick-
up(Hammer), tweak(), smack()}. Each action has a precondition; e.g., the smack()
action’s precondition is a single-literal conjunction (has Hammer), so smack() can only
be used in states where the gremlin has a hammer. Actions’ preconditions and effects
compactly specify the transition function T . For simplicity, we make C assign the cost
of 1 to all actions, which conforms to the restriction on C imposed by the SSP MDP
definition. G is the set of all states where the gremlin is alive and the airplane is bro-
ken. Finally, we assume that the gremlin starts alive with no tools and the airplane is
originally intact, i.e. s0 = (G,¬P,¬H,¬W,¬S).

Solving an MDP means finding a good (i.e., cost-minimizing) policy π : S → A
that specifies the actions the agent should take to eventually reach the goal. The optimal

1This requirement is actually stricter, although much easier to state, than in the original SSP MDP’s
definition [Bertsekas (1995)]. The original statement allows costs to be completely arbitrary as long as each
policy that does not reach the goal incurs an infinite cost. However, the algorithms in this paper apply to all
MDPs falling under that definition as well.
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expected cost of reaching the goal from a state s, termed the optimal value function
V ∗(s), satisfies the following conditions, called Bellman equations:

V ∗(s) = 0 if s ∈ G, otherwise

V ∗(s) = min
a∈A

[
C(s, a) +

∑
s′∈S
T (s, a, s′)V ∗(s′)

]
.

Given V ∗(s), an optimal policy may be computed as follows:

π∗(s) = argmin
a∈A

[
C(s, a) +

∑
s′∈S
T (s, a, s′)V ∗(s′)

]
.

Solution Methods. The above equations suggest a dynamic programming-based way
of finding an optimal policy, called value iteration (VI) [Bellman (1957)]. VI iter-
atively updates state values using Bellman equations in a Bellman backup until the
values converge. VI has given rise to many improvements. Trial-based methods, e.g.,
RTDP [Barto et al. (1995)], try to reach the goal multiple times (in multiple trials) and
update the value function over the states in the trial path, successively improving the
policy during each Bellman backup. A popular variant, LRTDP, adds a termination
condition to RTDP by labeling states whose values have converged as ‘solved’ [Bonet
and Geffner (2003)]. Compared to VI, trial-based methods save space by considering
fewer irrelevant states. LRTDP serves as the testbed in our experiments, but the ap-
proach we present can be used by many other search-based MDP solvers as well, e.g.,
LAO∗ [Hansen and Zilberstein (2001)].

Determinization. Successes of a number of planners starting with FFReplan [Yoon et
al. (2007)] have demonstrated the promise of determinizing the domain (the set of all
actions) of the given MDP, i.e. disregarding the probabilities in the transition function,
and working only with the state transition graph. Our techniques use the all-outcomes
determinization [Yoon et al. (2007)] Dd of the domain D at hand. Namely, note in the
example in Figure 1 that each action a, besides precondition c, has outcomes o1, . . . , on
with respective probabilities p1, . . . , pn. For example, the smack() action has outcomes
o1 = P ∧¬Gwith p1 = 0.9 and o2 = P with p1 = 0.1. The all-outcomes determiniza-
tion Dd, whose example for the GremlinWorld domain is shown in Figure 2, contains,
for every action a in the original domain, the set of deterministic actions a1, . . . , an,
each with a’s precondition c and effect oi. Dd, coupled with a description of the state
space, the initial state, and the goal, can be viewed as a deterministic MDP in which a
plan from a given state to the goal exists if and only if a corresponding trajectory has a
positive probability in the original probabilistic domainD. Importantly, the state of the
art in classical planning makes solving a deterministic problem much faster than solv-
ing a probabilistic problem of a comparable size. Our abstraction framework exploits
these facts to efficiently extract the structure of the given MDP by finding plans in Dd

and processing them as shown in Subsection 2.3.
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(:action pick-up-0
:parameters (?t - tool)
:precondition (and (not (has ?t)))
:effect (and (has ?t)))

(:action tweak-0
:parameters ()
:precondition (and (has Screwdriver)

(has Wrench))
:effect (and (plane-broken)))

(:action smack-0
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)))

(:action smack-1
:parameters ()
:precondition (and (has Hammer))
:effect (and (plane-broken)

(not (gremlin-alive))))

Figure 2: All-outcomes determinization of the GremlinWorld domain

Heuristic Functions. We define a heuristic function, hereafter termed simply as heuris-
tic, as a value function that initializes the state values for an MDP algorithm. Heuristic
values tend to be derived, automatically or otherwise, from the structure of the problem
at hand. The properties of the heuristic determine how quickly a planning algorithm
converges and whether the resulting policy is optimal. Algorithms like VI, which up-
date the value of every state in each iteration, converge to the optimal policy faster the
closer the heuristic is to V ∗. In trial-based algorithms like LRTDP, heuristics help avoid
visiting irrelevant states. To guarantee convergence to an optimal policy, trial-based
MDP solvers typically require the heuristic to be admissible, i.e. to never overestimate
V ∗ (importantly, admissibility is not a requirement for convergence to a policy). How-
ever, inadmissible heuristics tend to be more informative in practice, approximating V ∗

better on average. Informativeness often translates into a smaller number of explored
states (and the associated memory savings) with reasonable sacrifices in optimality. In
this paper, we adopt the number of states visited by a planner under the guidance of a
heuristic as the measure of that heuristic’s informativeness and show how basis func-
tions let us derive a highly informative heuristic, GOTH, at the cost of admissibility.

A successful class of MDP heuristics is based on the all-outcomes determinization
of the probabilistic domain D at hand [Bonet and Geffner (2005)]. To obtain a value
for state s in D, determinization heuristics try to approximate the cost of a plan from
s to a goal in Dd (finding a plan itself even in this relaxed version of an MDP is gen-
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erally NP-hard). For instance, the FF heuristic [Hoffman and Nebel (2001)], denoted
hFF , ignores the negative literals (the delete effects) in the outcomes of actions in Dd

and attempts to find the cost of the cheapest solution to this new relaxed problem. As
hFF is, in our experience, the most informative general MDP heuristic, we use it as the
baseline to evaluate the performance of GOTH.

Planning Graph. Our work makes use of the planning graph data structure [Blum and
Furst (1997)], a directed graph alternating between proposition and action “levels”’.
The 0th level contains a vertex for each literal present in an initial state s. Odd levels
contain vertices for all actions, including a special no-op action, whose preconditions
are present (and pairwise “nonmutex”) in the previous level. Subsequent even levels
contain all literals from the effects of the previous action level. Two literals in a level
are mutex if all actions achieving them are pairwise mutex at the previous level. Two
actions in a level are mutex if their effects are inconsistent, one’s precondition is in-
consistent with the other’s effect, or one of their preconditions is mutex at the previous
level. As levels increase, additional actions and literals appear (and mutexes disappear)
until a fixed point is reached. Graphplan [Blum and Furst (1997)] uses the graph as a
polynomial-time reachability test for the goal, and we use it in a procedure to discover
nogoods in Section 5.

2.3. Definitions and Essentials
Let an execution trace e = s, a1, s1, . . . , an, sn, a sequence where s is the trace’s
starting state, a1 is a probabilistic action applied in s that yielded state s1, and so on.
An example of an execution trace from GremlinWorld is e′ = (G,¬P,¬H,¬W,¬S),
pick-up(Hammer), (G,¬P,H,¬W,¬S), smack(), (G,P,H,¬W,¬S).

We define a trajectory of an execution trace e to be a sequence

t(e) = s, out(a1, 1, e), . . . , out(an, n, e)

where s is e’s starting state, and out(ak, k, e) is a conjunction of literals representing
the particular outcome of action ak that was sampled at the k-th step of e’s execution.
E.g., t(e′) = (G,¬P,¬H,¬W,¬S), H, P is a trajectory of the example execution
trace e′.

We say that t(e) is a goal trajectory if the last state sn of e is a goal state; t(e′) just
shown is a goal trajectory. A suffix of t(e) is a sequence

ti(e) = out(ai, i, e), . . . , out(an, n, e)

for some 1 ≤ i ≤ n.
Suppose we are given an MDP and a goal trajectory t(e) of some execution trace

in this MDP. Let prec(a) denote the precondition of a (a literal conjunction) and lit(c)
stand for the set of literals forming conjunction c. Imagine using t to generate the
following sequence of literal conjunctions:

b0 = G
bi =

∧
[[lit(bi−1) ∪ lit(out(an−i+1, n− i+ 1, e))] \ lit(prec(an−i+1))]

8



for 1 ≤ i ≤ n.

This can be done with a simple multistep procedure. We start with b0 = G, the
MDP’s goal conjunction. Afterwards, at step i ≥ 1, we first remove from bi−1 the
literals of action an−i+1’s outcome at the (n− i+1)-th step of e. Then, we conjoin the
result to the literals of an−i+1’s precondition, obtaining conjunction bi. We call this
procedure regression of the goal through trajectory t(e), or regression for short.

As an example, consider regressing trajectory t(e′) from GremlinWorld. In this
case, b0 = G = G ∧ P . First we remove from b0 literal P , the outcome of the last
action, smack(), of e′. The result is G. Then, we add to it the precondition of smack(),
literal H , producing G ∧ H . Thus, b1 = G ∧ H . Similarly, we remove from b1 the
outcome of pick-up(Hammer) and add the precondition of this action, which is empty,
to the result, obtaining b2 = G. At this point regression terminates.

A basis function is defined to be a literal conjunction b produced at some step of
regressing the goal through some trajectory. Whenever all literals of a basis function (or
of a conjunction of literals in general) are present in state s we say that the conjunction
holds in or represents s. For instance, b1 = G ∧ H from the above example holds in
state (G,¬P,H,¬W,S). An alternative view of a basis function b is a mathematical
function fb : S → {0, 1} having the value of 1 in all states in which conjunction b
holds and 0 in all others.

Basis functions are a central concept behind the algorithms in this paper, so it is
important to understand the intuition behind them. Any goal trajectory is potentially
a causally important sequence of actions. Regressing it gives us preconditions for the
trajectory’s suffixes. Basis functions are exactly these trajectory suffix preconditions.
Thus, regression of the trajectories can be thought of as unearthing the relevant causal
structure necessary for the planning task at hand. Moreover, our basis functions are
that causal structure.

There are often many trajectories whose preconditions are consistent with (i.e., are
a subconjunction of) a given basis function. We say that a basis function b enables
a set of goal trajectories T if the goal can be reached from any state represented by
b by following any of the trajectories in T assuming that Nature chooses the “right”
outcome for each action of the trajectory.

Since each basis function is essentially a precondition (for a trajectory), it typically
holds in many states of the MDP at hand. Therefore, obtaining a goal trajectory t(e)
from some state lets us generalize this qualitative reachability information to many
other states via basis functions yielded by regressing the goal through this trajectory.
Moreover, t(e) may have interesting numeric characterizations, e.g. cost, probability
of successful execution, etc. To generalize these quantitative descriptions across many
states as well, we associate a weight with each basis function. The semantics of basis
function weight depends on the algorithm, but in general it reflects the quality of the
set of trajectories enabled by the basis function.

Now, consider the value of an MDP’s state. As preconditions, basis functions tell us
which goal trajectories are possible from that state. Basis function weights tell us how
“good” these trajectories are. Since the quality of the set of goal trajectories possible
in a state is a strong indicator of the state’s value, knowing basis functions with their
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weights allows for approximating the state value function.
As we just showed, a problem’s causal structure can be efficiently derived from its

goal trajectories via regression. Thus, a relatively cheap source of trajectories would
give us a way to readily extract the structure of the problem. Fortunately, at least
two such methods exist. The first one is based on this insight that whenever a trial in
an MDP solver reaches the goal we get a trajectory “for free”, as a byproduct of the
solver’s usual computation. The caveat with using this technique as the primary strat-
egy of getting trajectories is the time it takes an MDP solver’s trials to start attaining
the goal. Indeed, the majority of trials at the beginning of planning terminate in states
with no path to the goal, and it is at this stage that knowing the problem’s structure
would be most helpful for improving the situation. Therefore, our algorithms mostly
rely on a different trajectory generation approach. Note that any trajectory in an MDP
is a plan in the all-outcomes determinization Dd of that MDP and vice versa. Since
classical planners are very fast, we can use them to quickly find goal trajectories in Dd

from several states of our choice.
By definition, basis functions represent only the states from which reaching the

goal is possible. However, MDPs also contain another type of states, dead ends, that
fall outside of the basis function framework as presented so far. Such states, in turn,
can be classified into two kinds; explicit dead ends, in which no actions are applicable,
and implicit ones, which do have applicable actions but no sequence of them leads to
the goal with a positive probability. In GremlinWorld, there are no explicit dead ends
but every state with literal ¬G is an implicit dead end.

To extend information generalization to dead ends as well, we consider another
kind of literal conjunctions that we call nogoods. Nogoods’ defining property is that
any state in which a nogood holds is a dead end. Notice the duality between nogoods
and basis functions: both have exactly the same form but give opposite guarantees
about a state. Whereas a state represented by a basis function provably cannot be a
dead end, a state represented by a nogood certainly is one. Despite the representational
similarity, identifying nogoods is significantly more involved than discovering basis
functions. Fortunately, the duality between the two allows using the latter to derive the
former and collect the corresponding benefits, as one of the algorithms we are about to
present, SIXTHSENSE, demonstrates.

3. GOTH HEURISTIC

3.1. Motivation

Our presentation of the abstraction framework begins with an example of its use in a
heuristic function. As already mentioned, heuristics reduce trial-based MDP solvers’
resource consumption by helping them avoid visiting many states (and memoizing cor-
responding state-value pairs) that are not part of the final policy. The most informative
MDP heuristics, e.g., hFF , are based on the all-outcomes determinization of the do-
main. However, although efficiently computable, such heuristics add an extra level of
relaxation of the original MDP, besides determinizing it. For instance, hFF is liable
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to highly underestimate the state’s true cost because in addition to discarding the do-
main’s probabilities it ignores actions’ delete effects (i.e., negative literals, such as ¬G,
in actions’ outcomes) in the determinized version.

On the other hand, a lot of promise has been shown recently by several probabilistic
planners that solve full (non-relaxed) determinizations, e.g., FFReplan, HMDPP Key-
der and Geffner (2008), and others. It is natural to wonder, then, whether the improved
heuristic estimates of using a full classical planner on non-relaxed determinized do-
mains would provide enough gains to compensate for the potentially increased cost of
heuristic computation.

As we show in this section, the answer is “No and Yes”. We propose a new heuris-
tic called GOTH (Generalization Of Trajectories Heuristic) [Kolobov et al. (2010a)],
which efficiently produces heuristic state values using deterministic planning. The most
straightforward implementation of this method, in which a classical planner is called
every time a state is visited for the first time, does produce better heuristic estimates
and reduces search but the cost of so many calls to the classical planner vastly out-
weighs any benefits. The crucial observation we make is that basis functions provide
a way to amortize these expensive planner calls by generalizing the resulting heuristic
values to give guidance on similar states. By performing this generalization in a careful
manner, one may dramatically reduce the amount of classical planning needed, while
still providing more informative heuristic values than heuristics with more levels of
relaxation.

3.2. GOTH Description

Given a problem P over a probabilistic domain D, an MDP solver using GOTH starts
with GOTH’s initialization. During initialization, GOTH determinizes D into its clas-
sic counterpart, Dd (this operation needs to be done only once). Our implementation
performs the all-outcomes determinization because it is likely to give much better value
estimates than the single-outcome one [Yoon et al. (2007)]. However, more involved
flavors of determinization described in the Related Work section may yield even better
estimation accuracy.

Calling a Deterministic Planner. OnceDd has been computed, the probabilistic plan-
ner starts exploring the state space. For every state s that requires heuristic initializa-
tion, GOTH first checks if it is an explicit dead end. This check is in place for effi-
ciency, since GOTH should not try to use more expensive methods of analysis on such
states.

For state s that is not an explicit dead end GOTH constructs a problem Ps with
the original problem’s goal and s as the initial state, feeding Ps along with Dd to a
classical planner, denoted as DetP lan in the pseudocode of Algorithm 1, and setting
a timeout. If s is an implicit dead end DetP lan either proves this or unsuccessfully
searches for a plan until the timeout. In either case, it returns without a plan, at which
point s is presumed to be a dead end and assigned a very high value taken to be∞. If
s is not a dead end, DetP lan usually returns a plan from s to the goal. The cost of this
plan is taken as the heuristic value of s. Sometimes DetP lan may fail to find a plan
before the timeout, leading the MDP solver to falsely assume s to be a dead end. In
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practice, we have not seen this hurt GOTH’s performance.

Algorithm 1 GOTH Heuristic

1: Input: probabilistic domainD, problem P = 〈init. state s0, goal G〉, determiniza-
tion routine Det, classical planner DetP lan, timeout T , state s

2: Output: heuristic value of s
3:
4: compute global determinization Dd = Det(D)
5: declare global map M from basis functions to weights
6:
7: function computeGOTH(state s, timeout T )
8: if no action a of D is applicable in s then
9: return a large penalty // e.g., 1000000

10: else if a nogood holds in s then
11: return a large penalty // e.g., 1000000
12: else if some member f ′ of M holds in s then
13: return minbasis functions f that subsume s{M [f ]}
14: else
15: declare problem Ps ← 〈init. state s, goal G〉
16: declare plan pl← DetP lan(Dd, Ps, T )
17: if pl == none then
18: return a large penalty // e.g., 1000000
19: else
20: declare basis function f ← goal G
21: declare weight← 0
22: for all i = length(pl) through 1 do
23: declare action a← pl[i]
24: weight← weight+ Cost(s, a)
25: f ← (f ∪ precond(a))− effect(a)
26: if f is not in M then
27: insert 〈f, weight〉 into M
28: else
29: update M [f ] by incorporating weight into M [f ]’s running average
30: end if
31: end for
32: if SchedulerSaysYes then
33: learn nogoods from discovered dead ends
34: end if
35: return weight
36: end if
37: end if

Regression-Based Generalization. By using a full-fledged classical planner, GOTH
produces more informative state estimates than hFF , as evidenced by our experiments.
However, invoking the classical planner for every newly encountered state is costly; as
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it stands, GOTH would be prohibitively slow. To ensure speed, we modify the pro-
cedure based on the insight about basis functions and their properties as shown in the
pseudocode of Algorithm 1. Whenever GOTH computes a deterministic plan, it first
regresses it, as described in Section 2. Then it memoizes the resulting basis functions
with associated weights set to the costs of the regressed plan suffixes. When GOTH
encounters a new state s, it minimizes over the weights of all basis functions stored
so far that hold in s. In doing so, GOTH sets the heuristic value of s to be the cost
of the cheapest currently known trajectory that originates at s. Thus, the weight of
one basis function can become generalized as the heuristic value of many states. This
way of computing a state’s value is very fast, and GOTH employs it before invoking
a classical planner. However, s’s heuristic value may be needed even before GOTH
has any basis function that holds in s. In this case, GOTH uses the classical plan-
ner as described above, computing a value for s and augmenting its basis function set.
Evaluating a state first by generalization and then, if generalization fails, by classical
planning greatly amortizes the cost of each classical solver invocation and drastically
reduces the computation time compared to using a deterministic planner alone.

Weight Updates. Different invocations of the deterministic planner occasionally yield
the same basis function more than once, each time potentially with a new weight.
Which of these weights should we use? The different weights are caused by a vari-
ety of factors, not the least of which are non-deterministic choices made within the
classical planner2. Thus, the basis function weight from any given invocation may be
unrepresentative of the cost of the plans for which this basis function is a precondition.
For this reason, it is generally beneficial to assign a basis function the average of the
weights computed for it by classical planner invocations so far. This is the approach
we take on line 27 of Algorithm 1. Note that to compute the average we need to keep
the number of times the function has been re-discovered.

Dealing with Implicit Dead Ends. The discussion so far has ignored an important
detail. When a classical planner is called on an implicit dead end, by definition no tra-
jectory is discovered, and hence no basis functions. Thus, this invocation is seemingly
wasted from the point of view of generalization: it does not contribute to reducing the
average cost of heuristic computation as described thus far.

As it turns out, we can, in fact, amortize the cost of discovery of implicit dead ends
in a way similar to reducing the average time of other states’ evaluation. To do so, we
use the known dead ends along with stored basis functions to derive the latter’s duals
in our information-sharing framework, nogoods. We remind the reader that nogoods
generalize dead ends in precisely the same way as basis functions do with non-dead
ends and therefore help recognize many dead ends without resorting to classical plan-
ning. The precise nogood learning mechanism is called SIXTHSENSE and is described
in Section 5. It needs to be invoked at several points throughout GOTH’s running time

2For instance, LPG [Gerevini et al. (2003)], which relies on a stochastic local search strategy for ac-
tion selection, may produce distinct paths to the goal even when invoked twice from the same state, with
concomitant differences in basis functions and/or their weights.
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as prescribed by a scheduler that is also described in that section. For now, we abstract
away the operation of SIXTHSENSE on lines 32–34 of Algorithm 1. With nogoods
available, positively deciding whether a state is a dead end is as simple as checking
whether any of the known nogoods subsumes it (lines 8–9 of Algorithm 1). Determin-
istic planning is necessary to answer the question only if none do.

Speed and Memory Performance. To facilitate empirical analysis of GOTH, it is
helpful to look at the extra speed and memory cost an MDP solver incurs while using
it.

Concerning GOTH’s memory utilization, we emphasize that, similar to hFF and
many other heuristics, GOTH does not store any of the states it is given for heuristic
evaluation. It merely returns heuristic values of these states to the MDP solver, which
can then choose to store the resulting state-value pairs or discard them. However,
to compute the values, GOTH needs to memoize the basis functions and nogoods it
has extracted so far. As our experiments demonstrate, the set of basis functions and
nogoods discovered by GOTH throughout the MDP solver’s running time is rather
small and is more than compensated for by the reduction in the explored fraction of the
state space due to GOTH’s informativeness, when compared to hFF .

Timewise, GOTH’s performance is largely dictated by the speed of the employed
deterministic planner(s) and the number of times it is invoked. Another component
that may become significant is determining the “cheapest” basis function that holds
in a state (line 11 of Algorithm 1), as it requires iterating, on average, over a con-
stant fraction of known basis functions. Although faster solutions are possible for this
pattern-matching problem, all that we are aware of (e.g., [Forgy (1982)]) pay for the
increase in speed with degraded memory performance.

Theoretical Properties. Two especially important theoretical properties of GOTH are
the informativeness of its estimates and its inadmissibility. The former ensures that,
compared to hFF , GOTH causes MDP solvers to explore fewer states. At the same
time, like hFF , GOTH is inadmissible. One source of inadmissibility comes from the
general lack of optimality of deterministic planners. Even if they were optimal, how-
ever, employing timeouts to terminate the classical planner occasionally causes GOTH
to falsely assume states to be dead ends. Finally, the basis function generalization
mechanism also contributes to inadmissibility. The set of discovered basis functions
is almost never complete, and hence even the smallest basis function weight known so
far may be an overestimate of the state’s true value, as there may exist an even cheaper
goal trajectory from this state that GOTH is unaware of. In spite of theoretical inad-
missibility, in practice using GOTH usually yields very good policies whose quality is
often better than of those found under the guidance of hFF .

3.3. Experimental Results
Our experiments compare the performance of a probabilistic planner using GOTH to
that of the same planner under the guidance of hFF across a wide range of domains.
In our experience, hFF , included as a part of miniGPT [Bonet and Geffner (2005)],
outperforms all other well-known MDP heuristics on most IPPC domains, e.g., the
min-min and atom-min heuristics supplied in the same package. Our implementation
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Figure 3: GOTH outperforms hFF on Machine Shop, Triangle Tireworld, and
Blocksworld in speed by a large margin.

of GOTH uses a portfolio of two classical planners, FF and LPG. To evaluate a state,
it launches both planners as in line 12 of Algorithm 1 in parallel and takes the heuris-
tic value from the one that returns sooner. The timeout for each deterministic planner
for finding a plan from a given state to a goal was 25 seconds. We tested GOTH and
hFF as part of the LRTDP planner available in the miniGPT package. Our bench-
marks were six probabilistic domains, five of which come from the two most recent
IPPCs with goal-oriented problems: Machine Shop [Mausam et al. (2007)], Trian-
gle Tireworld (IPPC-08), Exploding Blocks World (IPPC-08 version), Blocks World
(IPPC-06 version), Elevators (IPPC-06), and Drive (IPPC-06). All of the remaining
domains from IPPC-06 and IPPC-08 are either easier versions of the above (e.g., Tire-
world from IPPC-06) or have features not supported by our implementation of LRTDP
(e.g., rewards, universal quantification, etc.) so we were not able to test on them. Ad-
ditionally, we perform a brief comparison of LRTDP+GOTH against FFReplan, since
it shares some insights with GOTH. In all experiments except measuring the effect of
generalization, the planners had a 24-hour limit to solve each problem. All experiments
for GOTH, as well as those for RETRASE and SIXTHSENSE, described in sections
4.3 and 5.3 respectively, were performed on a dual-core 2.8 GHz Intel Xeon processor
with 2GB of RAM.

Comparison against hFF . In this subsection, we use each of the domains to illustrate
various aspects and modes of GOTH’s behavior and compare it to the behavior of
hFF . As shown below, on five of the six test domains LRTDP+GOTH substantially
outperforms LRTDP+hFF .

We start the comparison by looking at a domain whose structure is especially in-
convenient for hFF , Machine Shop. Problems in this set involve two machines and
a number of objects equal to the ordinal of the corresponding problem. Each object
needs to go through a series of manipulations, of which each machine is able to do
only a subset. The effects of some manipulations may cancel the effects of others (e.g.,
shaping an object destroys the paint sprayed on it). Thus, the order of actions in a plan
is critical. This domain illuminates the drawbacks of hFF , which ignores delete effects
and does not distinguish good and bad action sequences as a result. Machine Shop has
no dead ends.

Figures 3 and 4 show the speed and memory performance of LRTDP equipped
with the two heuristics on problems from MachineShop (and two other domains) that
at least one these planners could solve without running out of memory. As implied
by the preceding discussion of GOTH’s space requirements, the memory consump-
tion of LRTDP+GOTH is measured by the number of states, basis functions, and no-
goods whose values need to be maintained (GOTH caches basis functions and LRTDP
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Figure 4: GOTH’s advantage over hFF on Machine Shop, Triangle Tireworld, and
Blocksworld in memory is large as well.
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Figure 5: The big picture: GOTH provides a significant advantage on large problems.
(Note that the axes are on a Log scale.)

caches states). In the case of LRTDP+hFF all memory used is only due to LRTDP’s
state caching because hFF by itself does not memoize anything. On Machine Shop,
the edge of LRTDP+GOTH is clearly vast, reaching several orders of magnitude.
In fact, LRTDP+hFF runs out of memory on the three hardest problems, whereas
LRTDP+GOTH is far from that.

Concerning policy quality, we found the use of GOTH to yield optimal or near-
optimal policies on Machine Shop. This contrasts with hFF whose policies were on
average 30% more costly than the optimal ones.

The Triangle Tireworld domain, unlike Machine Shop, does not have structure that
is particularly adversarial for hFF . However, LRTDP+GOTH noticeably outperforms
LRTDP+hFF on it too, as Figures 3 and 4 indicate. Nonetheless, neither heuristic
saves enough memory to let LRTDP solve past problem 8. In terms of solution quality,
both planners find optimal policies on the problems they can solve.

The results on Exploding Blocks World (EBW, Figure 5) are similar to those on
Triangle Tireworld, where the LRTDP+GOTH’s more economical memory consump-
tion eventually translates to a speed advantage. Importantly, however, on several EBW
problems LRTDP+GOTH is superior to LRTDP+hFF in a more illustrative way: it
manages to solve four problems on which LRTDP+hFF runs out of space. The policy
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quality of the planners is similar.
The Drive domain is small, and using GOTH on it may not provide significant

benefit. On Drive problems, planners spend most of the time in decision-theoretic
computation but explore no more than around 2000 states. LRTDP under the guidance
of GOTH and hFF explores roughly the same number of states, but since so few
of them are explored generalization does not play a big role and GOTH incurs the
additional overhead of maintaining the basis functions without getting a significant
benefit from them. Perhaps surprisingly, however, GOTH sometimes leads LRTDP to
find policies with higher success rates (coverage), while never causing it to find worse
policies than hFF . The difference in policy quality reaches 50% on the Drive domain’s
largest problems. Reasons for this are a topic for future investigation.

On the remaining test domains, Elevators and Blocksworld, LRTDP+GOTH dom-
inates LRTDP+hFF in both speed and memory while providing policies of equal or
better quality. Figures 3 and 4 show the performance on Blocksworld as an example.
Classical planners in our portfolio cope with determinized versions of these domains
very quickly, and abstraction ensures that the obtained heuristic values are spread over
many states. Similar to the situation for EBW, the effectiveness of GOTH is such
that LRTDP+GOTH can solve even the five hardest problems of Blocksworld, which
LRTDP+hFF could not.

Figure 5 provides the big picture of the comparison. For each problem we tried, it
contains a point whose coordinates are the logarithms of the amount of time/memory
that LRTDP+GOTH and LRTDP+hFF took to solve that problem. Thus, points that
lie below the Y = X line correspond to problems on which LRTDP+GOTH did better
according to the respective criterion. The axes of the time plot of Figure 5 extend to
log2(86400), the logarithm of the time cutoff (86400s, i.e. 24 hours) that we used.
Similarly, the axes of the memory plot reach log2(10000000), the number of memo-
ized states/basis functions at which the hash tables where they are stored become too
inefficient to allow a problem to be solved within the 86400s time limit. Thus, the
points that lie on the extreme right or top of these plots denote problems that could not
be solved under the guidance of at least one of the two heuristics. Overall, the time plot
shows that, while GOTH ties or is slightly beaten by hFF on Drive and smaller prob-
lems of other domains, it enjoys a comfortable advantage on most large problems. In
terms of memory, this advantage extends to most medium-sized and small problems as
well, and sometimes translates into a qualitative difference, allowing GOTH to handle
problems that hFF cannot.

Why does GOTH’s and hFF ’s comparative performance differ from domain to do-
main? For insight, refer to Table 1. It displays the ratio of the number of states explored
by LRTDP+hFF to the number explored by LRTDP+GOTH, averaged over the prob-
lems that could be solved by both planners in each domain. Thus, these numbers reflect
the relative informativeness of the heuristics. Note the important difference between
the data in this chart and memory usage as presented on the graphs: the information
in the table disregards memory consumption due to the heuristics, thereby separat-
ing the description of heuristics’ informativeness from a characterization of their effi-
ciency. Associating the data in the table with the relative speeds of LRTDP+hFF and
LRTDP+GOTH on the test domains reveals a clear trend; the size of LRTDP+GOTH’s
speed advantage is strongly correlated with its memory advantage, and hence with its
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EBW EL TTW DR MS BW
2.07 4.18 1.71 1.00 14.40 7.72

Table 1: Average ratio of the number of states memoized by LRTDP under the guidance of
hFF to the number under GOTH across each test domain. The bigger these numbers, the more
memory GOTH saves the MDP solver compared to hFF .

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

T
IM

E
 I
N

 S
E

C
O

N
D

S

MACHINE SHOP PROBLEM #

 

 

GOTH/NO GEN.

GOTH

Figure 6: GOTH is much faster with generalization than without.

advantage in informativeness. In particular, GOTH’s superiority in informativeness is
not always sufficient to compensate for its computation cost. Indeed, the 1.71× average
reduction (compared to hFF ) in the number of explored states on Triangle Tireworld is
barely enough to make good the time spent on deterministic planning (even with gener-
alization). In contrast, on domains like Blocksworld, where GOTH causes LRTDP to
visit many times fewer states than hFF , LRTDP+GOTH consistently solves the prob-
lems much faster.

Benefit of Generalization. Our main hypothesis regarding GOTH has been that gen-
eralization is vital for making GOTH computationally feasible. To test it and measure
the importance of basis functions and nogoods for GOTH’s operation, we ran a ver-
sion of GOTH with generalization turned off on several domains, i.e. with the classical
planner being invoked from every state passed to GOTH for evaluation. (As an aside,
note that this is akin to the strategy of FFReplan, with the fundamental difference that
GOTH’s state values are eventually overridden by the decision-theoretic training pro-
cess of LRTDP. We explore the relationship between FFReplan and GOTH further in
the next subsection.)

As expected, GOTH without generalization proved to be vastly slower than full
GOTH. For instance, on Machine Shop LRTDP+GOTH with generalization turned off
is approximately 30-40 times slower (Figure 6) by problem 10, and the gap is growing
at an alarming rate, implying that without our generalization technique the speedup
over hFF would not have been possible at all. On domains with implicit dead ends,
e.g. Exploding Blocks World, the difference is even more dramatic, reaching over two
orders of magnitude.

Furthermore, at least on the relatively small problems on which we managed to run
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LRTDP+GOTH without generalization, we found the quality of policies (measured
by the average plan length) yielded by generalized GOTH to be typically better than
with generalization off. This result is somewhat unexpected, since generalization is an
additional layer of approximation on top of determinizing the domain. We attribute this
phenomenon to our averaging weight update strategy. As pointed out earlier, the weight
of a basis function (i.e., the length of a plan, in the case of non-generalized GOTH)
from any single classical planner invocation may not be reflective of the basis function’s
quality, and non-generalized GOTH will suffer from such noise more than regular
GOTH. In any event, even if GOTH without generalization yielded better policies, its
slowness would make its use unjustifiable in practice.

One may wonder whether generalization can also benefit hFF the way it helped
GOTH. While we have not conducted experiments to verify this, we believe the an-
swer is no. Unlike full deterministic plan construction, finding a relaxed plan sought by
hFF is much easier and faster. Considering that the generalization mechanism involves
iterating over many of the available basis functions to evaluate a state, any savings that
may result from avoiding hFF ’s relaxed plan computation will be negated by this iter-
ation.

Computational Profile. An interesting aspect of GOTH’s modus operandi is the
fraction of the computational resources an MDP solver uses that is due to GOTH.
E.g., across the Machine Shop domain, LRTDP+GOTH spends 75-90% of the time in
heuristic computation, whereas LRTDP+hFF only 8-17%. Thus, GOTH is computa-
tionally much heavier but causes LRTDP to spend drastically less time exploring the
state space.

Comparison against FFReplan. One can find similarities between the techniques
used by GOTH and FFReplan. Indeed, both employ deterministic planners, FFReplan
— for action selection directly, while GOTH — for state evaluation. One key differ-
ence again lies in the fact that GOTH is not a complete planner, and lets a dedicated
MDP solver correct its judgment. As a consequence, even though GOTH per se ig-
nores probabilistic information in the domain, probabilities are (or can be) nonetheless
taken into account during the solver’s search for a policy. FFReplan, on the other hand,
ignores them entirely. Due to this discrepancy, performance of FFReplan and a plan-
ner guided by GOTH is typically vastly distinct. For instance, FFReplan is faster than
most decision-theoretic planners. On the other hand, FFReplan has difficulty dealing
with probabilistic subtleties. It is known to come up with very low success rate poli-
cies on probabilistically interesting problems, e.g., on almost all problems of Triangle
Tireworld’06 [Little and Thiébaux (2007)]. LRTDP+GOTH can handle such domains
much better. E.g., as stated above, it produces optimal, 100% success-rate policies on
the first eight out of ten problems of the even harder version of Triangle Tireworld that
appeared at IPPC’08.

3.4. Summary
GOTH is a heuristic function that provides an MDP solver with informative state value
estimates using costs of plans in the deterministic version of the given MDP. Computing
such plans is expensive. To amortize the time spent on their computation, GOTH

19



employs basis functions, which generalize the cost of one plan to many states. As the
experiments show, this strategy and the informativeness of state value estimates make
GOTH into a more effective heuristic than the state of the art, hFF .

4. RETRASE

4.1. Motivation

In GOTH, the role of information transfer via basis functions and nogoods was primar-
ily to reuse computation in the form of classical planner invocations and thus save time.
In this section, we present an MDP solver called RETRASE, Regressing Trajectories
for Approximate State Evaluation, initially described in [Kolobov et al. (2009)] that
employs basis functions in a similar way but this time chiefly for the purpose of drasti-
cally reducing the memory footprint.

Many dynamic programming-based MDP algorithms, e.g. VI and (L)RTDP, suffer
from the same critical drawback — they represent the state value function extension-
ally, i.e., as a table, thus requiring memory (and time) exponential in the number of
MDP variables. Since this extensional representation grows very rapidly, these ap-
proaches do not scale to handle real-world problems. Indeed, VI and RTDP typically
exhaust memory when applied to large problems from the IPPC.

Two broad approaches have been proposed for avoiding creation of a state/value
table. One method consists in computing the policy online with the help of a domain
determinization, such as the all-outcomes one. In online settings, the policy needs to be
decided on-demand, only for the current state at each time step. This makes maintain-
ing a state-value table unnecessary (although potentially useful). Running a classical
planner on a domain determinization helps choose an action in the current state with-
out resorting to this table. Determinization-based planners, e.g., FFHop [Yoon et al.
(2008)], are often either slow due to invoking a classical planner many times or, as
in the case of FFReplan, disregard the probabilistic nature of actions and have trouble
with probabilistically interesting [Little and Thiébaux (2007)] domains, in which short
plans have a low probability mass.

The other method, dimensionality reduction, maps the MDP state space to a pa-
rameter space of lower dimension. Typically, the mapping is done by constructing a
small set of basis functions, learning weights for them, and combining the weighted
basis function values into the values of states. Researchers have successfully applied
dimensionality reduction by manually defining a domain-specific basis function set in
which basis functions captured some human intuition about the domain at hand. It is
relatively easy to find such a mapping in domains with ordinal (e.g., numeric) state
variables, especially when the numeric features correlate strongly with the value of the
state, e.g., gridworlds, “SysAdmin” and “FreeCraft” [Guestrin et al. (2003a,b); Gordon
(1995)]. In contrast, dimensionality reduction is difficult to use in nominal (e.g., “dis-
crete” or “logical”) domains, such as those used in the IPPC. Besides not having metric
quantities, there is often no valid distance function between states (indeed, the distance
between states is usually asymmetric and violates the triangle equality). It is extremely
hard for a human to devise basis functions or a reduction mapping in nominal domains.
The focus of section is an automatic procedure for doing so.
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To our knowledge, there has been little work on mating decision theory, deter-
minization, and dimensionality reduction. With the RETRASE algorithm, we are
bridging the gap, proposing a fusion of these ideas that removes the drawbacks of
each. RETRASE learns a compact value function approximation successful in a range
of nominal domains. Like GOTH, it does so by first obtaining a set of basis functions
automatically by planning in a determinized version of the domain at hand. However,
being a full probabilistic planner, unlike GOTH, it also learns the weights for these
basis functions by the decision-theoretic means and aggregates them to compute state
values as other dimensionality-reduction methods do. Thus, as opposed to GOTH,
RETRASE tries to incorporate the probabilistic information lost at the determinization
stage back into the solution. The set of basis functions is normally much smaller than
the set of reachable states, thus giving our planner a large reduction in memory require-
ments as well as in the number of parameters to be learned, while the implicit reuse of
classical plans thanks to basis functions makes it fast.

We demonstrate the practicality of RETRASE by comparing it to the top IPPC-04,
06 and 08 performers and other state-of-the-art planners on challenging problems from
these competitions. RETRASE demonstrates orders of magnitude better scalability
than the best optimal planners, and frequently finds significantly better policies than
the state-of-the-art approximate solvers.

4.2. RETRASE Description

The main intuition underlying RETRASE is that extracting basis functions in an MDP
is akin to mapping the MDP to a lower-dimensional parameter space. In practice,
this space is much smaller than the original state space, since only the relevant causal
structure is retained3, giving us large reduction in space requirements. Solving this new
problem amounts to learning weights, a quantitative measure of each basis function’s
quality. There are many imaginable ways to learn them; in this paper, we explore one
such method — a modified version of RTDP.

The weights reflect the fact that basis functions differ in the total expected cost of
goal trajectories they enable as well as in the total probability of these trajectories. At
this point, we stress that RETRASE makes two approximations on its way to comput-
ing an MDP’s value function, and the first of them is related to the semantics of basis
function weights and importance. Any given basis function enables only some subset
T of the goal trajectories in a given state, and is oblivious to all other trajectories in that
state. The other trajectories may or may not be preferable to the ones in T (e.g., be-
cause the former may lead the agent to the goal with 100% probability). Therefore, the
importance of the trajectories (and hence of corresponding basis functions!) depends
on the state. Our intuitive notion of weights ignores this subtlety, since the weight of
a basis function does not vary with states in which this basis function holds. Thus, a
weight is in effect the reflection of an “average” importance of a basis function across
the states it represents.

3We may approximate this further by putting a bound on the number of basis functions we are willing to
handle in this step.
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Algorithm 2 ReTrASE

1: Input: probabilistic domain D, problem P = 〈init. state s0, goal G〉, trial length
L, determinization routine Det, classical planner DetP lan, timeout T

2: declare global map M from basis functions to weights
3: declare global set DE of dead ends
4: compute global determinization Dd of D
5:
6: // Do modified RTDP over the basis functions
7: for all i = 1 :∞ do
8: declare state s← s0
9: declare numSteps← 0

10: while numSteps < L do
11: declare action a′ ← argmina{ExpActCost(a, s)}
12: ModifiedBellmanBackup(a′, s)
13: s←execute action a’ in s
14: numSteps← numSteps+ 1
15: end while
16: end for
17:
18: function ExpActCost(action a, state s)
19: declare array So ← successors of s under a
20: declare array Po ← probs of successors of s under a
21: return cost(a) +

∑
i Po[i]V alue(So[i])

22:
23: function Value(state s)
24: if s ∈ DE then
25: return a large penalty // e.g., 1000000
26: else if some member f ′ of M holds in s then
27: return minbasis functions f that hold in s{M [f ]}
28: else
29: GetBasisFuncsForS(s)
30: return V alue(s)
31: end if
32:
33: function ModifiedBellmanBackup(action a, state s)
34: for all basis functions f in s that enable a do
35: M [f ]← ExpActCost(a, s)
36: end for
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Algorithm 3 Generating Basis Functions

1: Input: probabilistic domainD, problem P = 〈init. state s0, goal G〉, determiniza-
tion routine Det, classical planner DetP lan, timeout T

2: declare global map M from basis functions to weights
3: declare global set DE of dead ends
4: compute global determinization Dd of D
5:
6: function GetBasisFuncsForS(state s)
7: declare problem Ps ← 〈init. state s, goal G〉
8: declare plan pl← DetP lan(Dd, Ps, T )
9: if pl == none then

10: insert s into DE
11: else
12: declare basis function f ← goal G
13: declare cost← 0
14: for all i = length(pl) through 1 do
15: declare action a← pl[i]
16: cost← cost+ cost(a)
17: f ← (f ∪ precond(a))− effect(a)
18: insert 〈f, cost〉 into M if f is not in M yet
19: end for
20: end if

The above details notwithstanding, the differences among basis function weights
exist partly because each trajectory considers only one outcome for each of its actions.
The sequence of outcomes the given trajectory considers may be quite unlikely. In
fact, getting some action outcomes that the trajectory does not consider may prevent
the agent from ever getting to the goal. Thus, it may be much “easier” to reach the goal
in the presence of some basis functions than others.

Now, given that each state is generally represented by several basis functions, what
is the connection between the state’s value and their weights? In general, the relation-
ship is quite complex: under the optimal policy, trajectories enabled by several basis
functions may be possible, causing some trajectories to factor into weights of several
basis functions simultaneously. However, determining the subset of basis functions
enabling these trajectories is at least as hard as solving the MDP exactly. Instead, we
approximate the state value by the minimum weight of all basis function that represent
the state. This amounts to saying that the “better” a state’s “best” basis function is, the
“better” is the state itself, and is the second approximation RETRASE makes.

Thus, deriving useful basis functions and their weights gives us an approximation
to the optimal value function.

Algorithm’s Operation. For a step-by-step example of operation of RETRASE, whose
pseudo code is presented in Algorithm 2, please refer to the proof of Theorem 1. RE-
TRASE starts by computing the determinization Dd of the domain. As in GOTH, we
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(a) Actions (b) Transition graph

Figure 7: An example MDP on which RETRASE fails to converge.

use Dd to rapidly compute the basis functions. The algorithm explores the state space
by running modified RTDP trials, memoizing all the dead ends and basis functions it
learns along the way. Whenever during state evaluation (line 21) RETRASE finds a
state that is neither a known dead-end nor has any basis function that holds in it, RE-
TRASE uses the regression procedure GetBasisFuncsForS(.) presented in Algorithm
3 to generate a basis function for it. Regression yields not only the basis functions but
also an approximate cost of reaching the goal in Dd from any state with the given basis
function via the given plan. We use this value to initialize the corresponding basis func-
tion’s weight. As in GOTH, if the deterministic planner can prove the non-existence of
a plan or simply cannot find a plan before some timeout, the state in question is deemed
to be a dead end (line 10 of Algorithm 3).

For each state s visited by the modified RTDP, the ModifiedBellmanBackup(.)
routine updates the weight of each basis function that enables the execution of the cur-
rently optimal action a′ (line 33). The new weight of each such basis function becomes
the expected cost of action a′. The intuitive reason for updating the basis functions
enabling a′ is that a′ can be executed in any state where basis functions hold; hence,
the quality of a′ should be reflected in these basis functions’ weights. Analogously,
other a′ cannot be executed wherever basis functions that do not enable it hold, so the
expected cost of those actions is irrelevant to determining their weights.

Theoretical Properties. A natural question about RETRASE is that of convergence.
To answer it, we proved the following negative result:

Theorem 1. There are problems on which RETRASE may not converge.

Proof. By failing to converge we mean that, on some problems, depending on the order
in which basis functions are discovered RETRASE may indefinitely oscillate over a
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set of several policies with different expected costs. One such MDP M is presented
in Figure 7, which shows M ’s transition graph and action set. Solving M amounts to
finding a policy of minimum expected cost that takes the agent from state s0 to state g
and uses actions a1 — a5. The optimal solution to M is a linear plan s0 − a1 − s1 −
a4 − s4 − a5 − g.

To see that RETRASE fails to converge on M , we simulate RETRASE’s operation
on this MDP. Recall that RETRASE executes a series of trials, all originating at s0.

Trial 1. To choose an action in s0, RETRASE needs to evaluate states s1 and s2. It
does not yet have any basis functions to do that, so it uses the procedure in Algorithm
3 to generate them, together with initial estimates for their weights.

Suppose the procedure first looks for a basis function for s1 and finds plan s1 −
a4 − s4 − a5 − g. Regressing it yields the following basis function-weight pairs:
W (A ∧ B ∧ C ∧D) = 0, W (A ∧ B ∧ C) = 1, W (A ∧ B) = 2. A ∧ B is the only
basis functions that holds in s1 so far. Therefore, the current estimate for the value
of s1, V (s1), is 2. Accordingly, the current estimate for the value of action a1 in s0,
Q-value(s0, a1), becomes C(a1) + V (s1) = 4.

Next, suppose that for state s2, GetBasisFuncsForS finds plan s2−a3−g. Regress-
ing it yields one basis function-weight pair in addition to the already discovered ones,
W (A∧D) = 1. Function A∧D is the only one that holds in s2, so we get V (s2) = 1
and Q-value(s0, a2) = 2.

Now RETRASE can choose an action in s0. Since at the moment Q-value(s0, a1) >
Q-value(s0, a2), it picks a2 and executes it, transitioning to s2.

In s2, RETRASE again needs to evaluate two actions, a3 and a4. Notice that a4
leads to s5, which is a dead end. GetBasisFuncsForS discovers this fact by failing
to produce any basis functions. Thus, V (s5) is a very large dead-end penalty, e.g.
1000000, yielding Q-value(s2, a4) = 1000001. However, a3 may also lead to dead end
s3 with P = 0.5, so Q-value(s2, a3) = 500001. Nonetheless, a3 is more preferable,
so this is the action that RETRASE picks in s2.

At this time, RETRASE performs a modified Bellman backup in s2. The only
known basis function that holds in s2 and enables the chosen action a3 is A ∧ D.
Therefore, RETRASE sets W (A ∧D) = Q-value(s2, a3) = 500001.

Executing a3 in s2 completes the trial with a transition either to goal g or to dead
end s3.

Trial 2. This time, RETRASE can select an action in s0 without resorting to regression.
Currently, V (s1) = 2, since A ∧B with W (A ∧B) = 2 is the minimum-weight basis
function in s1. However, V (s2) = 500001 due to the backup performed during trial 1.
Therefore, Q-value(s0, a1) = 4 but Q-value(s0, a2) = 500002, making a1 look more
attractive. So, RETRASE chooses a1, causing a transition to s1.

In s1, the choice is between a3 and a4. The values of both are easily calculated
with known basis functions, Q-value(s1, a3) = 500001 and Q-value(s1, a4) = 2.

The natural choice is a4, and RETRASE performs the corresponding backup. The
basis functions enabling a4 in s1 are A ∧ B and A ∧ D. Their weights become Q-
value(s1, a4) = 2 after the update.
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The rest of the trial does not change any weights and is irrelevant to the proof.

Trial n. Crucially, basis function A ∧D, whose weight changed in the previous trials,
holds both in state s1 and in state s2. Due to the update in s2 during trial 1, W (A∧D)
became large and made s1 look beneficial. On the other hand, thanks to the update in
s1 during trial 2, W (A ∧ D) became small and made s2 look beneficial. It is easy to
see that this cycle will continue in subsequent trials. As a result, RETRASE will keep
on switching between two policies, one of which is suboptimal.

Overall, the classes of problems on which RETRASE may diverge are hard to
characterize generally. Predicting whether RETRASE may diverge on a particular
problem is an area for future work. We maintain, however, that a lack of theoretical
guarantees is not indicative of a planner’s practical performance. Indeed, several IPPC
winners, including FFReplan, have a weak theoretical profile. The experimental results
show that RETRASE too performs very well on many of the planning community’s
benchmark problems.

4.3. Experimental Results

Our goal in this subsection is to demonstrate two important properties of RETRASE
– (1) scalability and (2) quality of solutions in complex, probabilistically interesting
domains. We start by showing that RETRASE easily scales to problems on which the
state-of-the-art optimal and non-determinization-based approximate planners run out
of memory. Then, we illustrate RETRASE’s ability to compute better policies for hard
problems than state-of-the-art approximate planners.

Implementation Details. RETRASE is implemented in C++ and uses miniGPT [Bonet
and Geffner (2005)] as the base RTDP code. Our implementation is still in the proto-
type stage and does not yet fully support some of the PPDDL language features used to
describe IPPC problems (e.g. universal quantification, disjunctive goals, rewards, etc.)

Experiment Setup. We report results on six problem sets — Triangle Tire World
(TTW) from IPPC-06 and -08, Drive from IPPC-06, Exploding Blocks World (EBW)
from IPPC-06 and -08, and Elevators from IPPC-06. In addition, we ran RETRASE
on a few problems from IPPC-04. Since our implementation does not yet support such
PPDDL features as universal quantification, we were unable to test on the remaining
domains from these competitions. However, we emphasize that most of the six domains
we evaluate on are probabilistically interesting and hard. Even the performance of the
best IPPC participants on most of them leaves a lot of room for improvement, which
attests to their informativeness as testbeds for our planner.

To provide a basis for comparison, for the above domains we also present the re-
sults of the best IPPC participants. Namely, we give the results of the IPPC win-
ner on that domain, of the overall winner of that IPPC, and ours. For the memory
consumption experiment, we run two VI-family planners, LRTDP with inadmissible
hFF (LRTDP+hFF ), and LRTDP+OPT — LRTDP with Atom-Min-1-Forward|Min-
Min heuristic [Bonet and Geffner (2005)]. Both are among the best-known and top-
performing planners of their type.
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We ran RETRASE on the test problems under the restrictions resembling those
of IPPC. Namely, for each problem, RETRASE had a maximum of 40 minutes for
training, as did all the planners whose results we present here. RETRASE then had
30 attempts to solve each problem. In IPPC, the winner is decided by the success rate
— the percentage of 30 trials in which a particular planner managed to solve the given
problem. Accordingly, on the relevant graphs we present both RETRASE’s success
rate and that of its competitors.

While analyzing the results, it is important to be aware that our RETRASE imple-
mentation is not optimized. Consequently, RETRASE’s efficiency is likely even better
than indicated by the experiments.

Comparing Scalability. We begin by showcasing the memory savings of RETRASE
over LRTDP+OPT and LRTDP+hFF on the Triangle Tire World domain. Figure 8
demonstrates the savings of RETRASE to increase dramatically with problem size. In
fact, neither LRTDP variant is able to solve past problem 8 as both run out of memory,
whereas RETRASE copes with all ten problems. Scalability comparisons for other
domains we tested on yield generally similar results.
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Figure 8: Memory usage on logarithmic scale: RETRASE is dramatically more efficient than
both LRTDP+OPT and LRTDP+hFF .

Other popular approximate algorithms (aside from LRTDP+hFF ) do not suffer
from the scalability issues as much as LRTDP. Thus, it is more meaningful to com-
pare RETRASE against them on the quality of solutions produced. As we show, RE-
TRASE’s scalability allows it to successfully compete on IPPC problems with any
participant.

Comparing Solution Quality: Success Rate. Continuing with the Triangle Tire
World domain, we compare the success rates of RETRASE, RFF [Teichteil-Königsbuch
et al. (2010)] — the overall winner of IPPC-08, and HMDPP [Keyder and Geffner
(2008)] — the winner on this particular domain. Note that Triangle Tire World, per-
haps, the most famous probabilistically interesting domain, was designed largely to
confound solvers that rely on domain determinization [Little and Thiébaux (2007)],
e.g., FFReplan; therefore, performance on it is particularly important for evaluating a
new planner. Indeed, as Figure 9 shows, on this domain RETRASE ties with HMDPP
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Figure 9: RETRASE achieves perfect success rate on Triangle Tire World-08.
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Figure 10: RETRASE is at par with the competitors on Drive.

by achieving the maximum possible success rate, 100%, on all ten problems and out-
performs the competition winner, which cannot solve problem 10 at all and achieves
only 83%-success rate on problem 9.

On the IPPC-06 Drive domain, RETRASE also fares well (Figure 10). Its average
success rate is just ahead of the unofficial domain winner (FFReplan) and of the IPPC-
06 winner (FPG), but the differences among all three are insignificant.

For the Exploding Blocks World domain on the IPPC-06 version (Figure 11), RE-
TRASE dominates every other planner by a wide margin on almost every problem.
Its edge is especially noticeable on the hardest problems, 11 through 15. On the most
recent EBW problem set, from IPPC-08 (Figure 12), RETRASE performs very well
too. Even though its advantage is not as apparent as in IPPC-06, it is nonetheless ahead
of its competition in terms of the average success rate.

The Elevators and Triangle Tire World-06 domains are easier than the ones pre-
sented above. Surprisingly, on many of the Elevators problems RETRASE did not
converge within the allocated 40 minutes and was outperformed by several planners.
We suspect this is due to bad luck RETRASE has with basis functions in this domain.
However, on TTW-06 RETRASE was the winner on every problem.

Comparing Solution Quality: Expected Cost. On problems where RETRASE achieves
the maximum success rate it is interesting to ask how close the expected trajectory cost
that its policy yields is to the optimal. The only way we could find out the expected
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Figure 11: RETRASE dominates on Exploding Blocks World-06.
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Figure 12: RETRASE outmatches all competitors on Exploding Blocks World-08, although by
a narrow margin.

cost of an optimal policy for a problem is by running an optimal planner on it. Un-
fortunately, the optimal planner we used, LRTDP+OPT, scales enough to solve only
relatively small problems (at most a few million states). On such problems we found
RETRASE to produce trajectories of expected cost within 5% of the optimal.

Comparison to FFHop. FFReplan has been a very powerful planner and a winner of at
least one IPPC. However, recent benchmarks defeat it by exploiting its near-complete
disregard for probabilities when computing a policy. Researchers have proposed a
powerful improvement to FFReplan, FFHop [Yoon et al. (2008)], and demonstrated
its capabilities on problems from IPPC-04. Unfortunately, due to the current lack of
support for some PPDDL language features we were not able to run RETRASE on
most IPPC-04 domains. Table 2 compares the success rates of the two planners on
the IPPC-04 problems we did test. Even though RETRASE performs better on these
problems, the small size of the experimental base makes the comparison of RETRASE
and FFHop inconclusive.

While we do not test on all IPPC domains our current experimental evaluation
clearly demonstrate RETRASE’s scalability improvements over the VI-family planners
and its at-par or better performance on many competition problems compared to state-
of-the-art systems.

29



Problem name FFHop RETRASE
exploding-block 93.33% 100%
g-tire-problem 60% 70%

Table 2: Success rates on some IPPC-04 problems.

4.4. Summary
RETRASE is an MDP solver based on a combination of state abstraction and dimen-
sionality reduction. It automatically extracts basis functions, which provide a compact
representation of the given MDP while retaining its causal structure. Simultaneously
with discovering basis functions, it learns weights for the already discovered ones us-
ing modified Bellman backups. These weights let RETRASE evaluate states without
memoizing state values explicitly. Such an approach allows RETRASE to solve larger
problems than the best performers of several recent IPPCs.

5. SIXTHSENSE

5.1. Motivation
Although basis functions efficiently generalize information about states from which
reaching the goal is possible, they have nothing to say about dead ends. As a result,
algorithms that use only basis functions for information transfer cannot avoid either
caching dead ends or rediscovering them every time they run into them. In fact, the
issue of quickly and reliably recognizing dead ends plagues virtually all modern MDP
solvers. For instance, in IPPC-2008 [Bryce and Buffet (2008)], the domains with a
complex dead-end structure, e.g., Exploding Blocks World, have proven to be the most
challenging. Surprisingly, however, there has been little research on methods for effec-
tive discovery and avoidance of dead ends in MDPs. Of the two types of dead ends,
implicit ones confound planners the most, since they do have executable actions. How-
ever, explicit dead ends can be a resource drain as well, since verifying that none of the
available actions are applicable in a state can be costly if the number of actions is large.

Broadly speaking, existing planners use one of two approaches for identifying dead
ends. When faced with a yet-unvisited state, many planners (e.g., LRTDP) apply a
heuristic value function (such as hFF ), which hopefully assigns a high cost to dead-
end states. This method is fast to invoke but often fails to catch many implicit dead ends
due to the problem relaxation inevitably used by the heuristics. Failure to detect them
causes the planner to waste much time in exploring the states reachable from implicit
dead ends, these states being dead ends themselves. Other MDP solvers use state value
estimation approaches that recognize dead ends reliably but are very expensive; for
example, RFF, HMDPP, and RETRASE employ full deterministic planners. When
a problem contains many dead ends, these MDP solvers may spend a lot of their time
launching classical planners from dead ends. Indeed, most probabilistic planners would
run faster if recognizing dead ends was not so computationally expensive.

In this section, we complete our abstraction framework by presenting a novel mech-
anism, SIXTHSENSE, to do exactly this — quickly and reliably identify dead-end states
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in MDPs. Underlying SIXTHSENSE, pioneered in [Kolobov et al. (2010b)], is a key
insight: large sets of dead-end states can usually be characterized by a compact logical
conjunction, a nogood, which “explains” why no solution exists. For example, a Mars
rover that flipped upside down will be unable to achieve its goal, regardless of its loca-
tion, the orientation of its wheels, etc. Knowing this explanation lets a planner quickly
recognize millions of states as dead ends. Crucially, dead ends in most MDPs can be
described with a small number of nogoods.

SIXTHSENSE learns nogoods by generating candidates with a bottom-up greedy
search (resembling that used in rule induction [Clark and Niblett (1989)]) and tests
them to avoid false positives with a planning graph-based procedure. A vital input to
this learning algorithm are basis functions, derived as shown in the previous sections.
SIXTHSENSE is provably sound — every nogood output represents a set of true dead
ends. We empirically demonstrate that SIXTHSENSE speeds up two different types of
MDP solvers on several IPPC domains with implicit dead ends and show the perfor-
mance improvements SIXTHSENSE gives to GOTH and RETRASE. Overall, SIXTH-
SENSE tends to identify most of the dead ends that the solvers encounter, reducing
memory consumption by as much as 90%. Because SIXTHSENSE runs quickly, it also
gives a 30-50% speedup on large problems. With these savings, it enables planners to
solve problems they could not previously handle.

5.2. SIXTHSENSE Description
An MDP may have an exponential number of dead end states, but often there are just
a few “explanations” for why a state has no goal trajectory. A Mars rover flipped
upside down is in a dead-end state, irrespective of the values of the other variables.
In the Drive domain of IPPC-06, all states with the (not (alive)) literal are dead ends.
Knowing these explanations obviates the dead-end analysis of each state individually
and the need to store the explained dead ends in order to identify them later.

Our method, SIXTHSENSE, strives to induce explanations as above in the factored
MDP setting and use them to help the planner recognize dead ends quickly and reliably.
Formally, its objective is to find nogoods, conjunctions of literals with the property that
all states in which such a conjunction holds are dead ends. After at least one nogood
is discovered, whenever the planner encounters a new state, SIXTHSENSE notifies the
planner if the state is represented by a known nogood and hence is a dead end.

To discover nogoods, we devise a machine learning generate-and-test algorithm
that is an integral part of SIXTHSENSE. The “generate” step proposes a candidate con-
junction, using some of the dead ends the planner has found so far as training data.
For the testing stage, we develop a novel planning graph-based algorithm that tries to
prove that the candidate is indeed a nogood. Nogood discovery happens in several at-
tempts called generalization rounds. First we outline the generate-and-test procedure
for a single round in more detail and then describe the scheduler that decides when a
generalization round is to be invoked. Algorithm 4 contains the learning algorithm’s
pseudocode.

Generation of Candidate Nogoods. There are many ways to generate a candidate but
if, as we conjecture, the number of explanations/nogoods in a given problem is indeed
very small, naive hypotheses, e.g., conjunctions of literals picked uniformly at random,
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are very unlikely to pass the test stage. Instead, our procedure makes an “educated
guess” by employing basis functions according to one crucial observation. Recall that,
by definition, basis functions are preconditions for goal trajectories. Therefore, no state
represented by them can be a dead end. On the other hand, any state represented by a
nogood, by the nogoods’ definition, must be a dead end. These facts combine into the
following observation: a state may be generalized by a basis function or by a nogood
but not both.

Of more practical importance to us is the corollary that any conjunction that has no
conflicting pairs of literals (a literal and its negation) and contains the negation of at
least one literal in every basis function (i.e., defeats every basis function) is a nogood.
This fact provides a guiding principle — form a candidate by going through each basis
function in the problem and, if the candidate does not defeat it, picking the negation of
one of the basis function’s literals. By the end of the run, the candidate provably defeats
all basis functions in the problem. The idea has a big drawback though: finding all
basis functions in the problem is prohibitively expensive. Fortunately, it turns out that
making sure the candidate defeats only a few randomly selected basis functions (100-
200 for the largest problems we encountered) is enough in practice for the candidate to
be a nogood with reasonably high probability (although not for certain, motivating the
need for verification). Therefore, before invoking the learning algorithm for the first
time, our implementation acquires 100 basis functions by running the classical planner
FF. Candidate generation is described on lines 5-11.

So far, we have not specified how exactly defeating literals should be chosen. Here
as well we can do better than naive uniform sampling. Intuitively, the frequency of
a literal’s occurrence in the dead ends that the MDP solver has encountered so far
correlates with the likelihood of the literal’s presence in nogoods. The algorithm’s
sampleDefeatingLiteral subroutine samples a literal defeating basis function b with a
probability proportionate to the literal’s frequency in the dead ends represented by the
constructed portion of the nogood candidate. The method’s strengths are twofold: not
only does it take into account information from the solver’s experience but also lets
literals’ co-occurrence patterns direct creation of the candidate.

Nogood Verification. If in the above candidate generation procedure we used the set of
all basis functions that exist for a given MDP, verifying the resulting candidate would
not be necessary. The set of states represented by at least one basis function from this
exhaustive set would itself be the exhaustive set of non-dead-end states. Therefore, any
generated candidate would only represent dead-end states, and thus would be a true
nogood.

However, in general we do not have all possible basis functions at our disposal.
Consequently, we need to verify that the candidate created by the algorithm from the
available basis functions is indeed a nogood. Let us denote the problem of establishing
whether a given conjunction is a nogood as NOGOOD-DECISION.

Theorem 2. NOGOOD-DECISION is PSPACE-complete.

Proof. First, we show that NOGOOD-DECISION ∈ PSPACE. To verify that a con-
junction is a nogood, we can verify that each state this conjunction represents is a dead
end. For each state, such verification is equivalent to establishing plan existence in the
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Algorithm 4 SIXTHSENSE

1: Input: training set of known non-generalized dead ends setDEs, set of basis
functions setBFs, set of nogoods setNG, goal g, set of all domain literals setL

2:
3: function learnNogood(setDEs, setBFs, setNGs, g)
4: // construct a candidate
5: declare candidate conjunction c = {}
6: for all b ∈ setBFs do
7: if c does not defeat b then
8: declare literal L = sampleDefeatingLiteral(setDEs, b, c)
9: c = c ∪ {L}

10: end if
11: end for
12: // check candidate with planning graph, and prune it
13: if checkWithPlanningGraph(setL, c, g) then
14: for all literals L ∈ c do
15: if checkWithPlanningGraph(setL, c \ {L}, g) == success then
16: c = c \ {L}
17: end if
18: end for
19: else
20: return failure
21: end if
22: // if we got here then the candidate is a valid nogood
23: empty setDEs
24: add c to setNG
25: return success
26:
27: function checkWithPlanningGraph(setL, c, g)
28: for all literals G in (g \ c) do
29: declare conjunction c′ = c ∪ ((setL \ (¬c)) \ {G})
30: if PlanningGraph(c’) == success then
31: return failure
32: end if
33: end for
34: return success
35:
36: function sampleDefeatingLiteral(setDEs, b, c)
37: declare counters C¬L for all L ∈ b \ c
38: for all d ∈ setDEs do
39: if c generalizes d then
40: for all L ∈ b s.t. ¬L ∈ d do
41: C¬L ++
42: end for
43: end if
44: end for
45: return a literal L′ sampled according to P (L′) ∼ CL′
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all-outcomes determinization of the MDP. This problem is PSPACE-complete [By-
lander (1994)], i.e., is in PSPACE. Thus, nogood verification can be broken down
into a set of problems in PSPACE and is in PSPACE itself.

To complete the proof, we point out that the already mentioned problem of estab-
lishing deterministic plan existence is an instance of NOGOOD-DECISION, providing
a trivial reduction to NOGOOD-DECISION from a PSPACE-complete problem.

In the light of Theorem 2, we may realistically expect an efficient algorithm for
NOGOOD-DECISION to be either sound or complete, but not both. A sound algo-
rithm would never conclude that a candidate is a nogood when it is not. A complete
one would pronounce a candidate to be a nogood whenever the candidate is in fact a
nogood. A key contribution of this paper is a sound algorithm for identifying nogoods.
It is based on the observation that all the per-state checks in the naive scheme above
can be replaced by only a few whose running time is polynomial in the problem size.
Although sound, the operation is incomplete, i.e. may reject some candidates that are
in fact nogoods. Nonetheless, this check is effective at identifying nogoods in practice.

To verify a candidate c efficiently, we group all non-goal states represented by c into
several superstates of c. We define a superstate of a candidate c to be a set consisting
of c’s literals, of the negation of one of the goal literals that are not present in c, and of
all literals over all other variables in the domain. As an example, suppose the complete
set of literals in our problem is {A,¬A,B,¬B,C,¬C,D,¬D,E,¬E}, the goal is
A∧¬B∧E, and the candidate is A∧C. Then the superstates our algorithm constructs
for this candidate are {A,B, C,D,¬D,E,¬E} and {A,B,¬B,C,D,¬D,¬E} (the
negation of a goal literal in each superstate is highlighted in bold).

The intuition behind this definition of superstates of c is as follows. Every non-goal
state s represented by c is “contained” in one of superstates of c in the sense that there is
a superstate of c containing all of s’s literals. Moreover, if a superstate has no trajectory
to the goal, no such trajectory exists for any state contained in the superstate, i.e. these
states are all dead ends. Combining these two observations, if no goal trajectory exists
from any superstate of c then all the states represented by the candidate are dead ends.
By definition, such a candidate is a nogood.

Accordingly, to find out whether the candidate is a nogood, our procedure runs the
planning graph algorithm on each of the candidate’s superstates using determinized
actions. Each instance returns success if and only if it can reach the goal literals and
resolve all mutexes between them. The initial set of mutexes it feeds to the planning
graph are just the mutexes between each literal and its negation.

Theorem 3. The candidate conjunction is a nogood if each of the planning graph
expansions on the superstates either a) fails to achieve all of the goal literals or b) fails
to resolve mutexes among any two of the goal literals.

Proof. Since the planning graph is sound, failure on all superstate expansions indi-
cates the candidate is a true nogood (lines 27-34).

Our procedure is incomplete for two reasons. First, since each superstate has more
literals than any single state it contains, it may have a goal trajectory that is impossible
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to execute from any state. Second, the planning graph algorithm is incomplete by itself;
it may declare plan existence when no plan actually exists.

At the cost of incompleteness, our algorithm is only polynomial in the problem size.
To see this, note that each planning graph expansion from a superstate is polynomial
in the number of domain literals, and the number of superstates is polynomial in the
number of goal literals.

If the verification test is passed, we try to prune away unnecessary literals (lines
13-18) that may have been included into the candidate during sampling. This analog
of Occam’s razor strives to reduce the candidate to a minimal nogood and often gives
us a much more general conjunction than the original one at little extra verification
cost. At the conclusion of the pruning stage, compression empties the set of dead ends
that served as the training data so that the MDP solver can fill it with new ones. The
motivation for this step will become clear once we discuss scheduling of compression
invocations.

Scheduling. Since we do not know a priori the number of nogoods in the problem,
we need to perform several generalization rounds. Optimally deciding when to do that
is hard, if not impossible, but we have designed an adaptive scheduling mechanism
that works well in practice. It tries to estimate the size of the training set likely suffi-
cient for learning an extra nogood, and invokes learning when that much data has been
accumulated. When generalization rounds start failing, the scheduler calls them expo-
nentially less frequently. Thus, very little computation time is wasted after all nogoods
that could reasonably be discovered have been discovered. (There are certain kinds of
nogoods whose discovery by SIXTHSENSE, although possible, is highly improbable.
We elaborate on this point in the Discussion section.)

Our algorithm is inspired by the following tradeoff. The sooner a successful round
happens, the earlier SIXTHSENSE can start using the resulting nogood, saving time and
memory. On the other hand, trying too soon, with hardly any training data available, is
improbable to succeed. The exact balance is difficult to locate even approximately, but
our empirical trials indicate three helpful trends: (1) The learning algorithm is capable
of operating successfully with surprisingly little training data, as few as 10 dead ends.
The number of basis functions does not play a big role provided there is more than
about 100 of them. (2) If a round fails with statistics collected from a given number of
dead ends, their number usually needs to be increased drastically. However, because
learning is probabilistic, such a failure could also be accidental, so it is justifiable to
return to the “bad” training data size occasionally. (3) A typical successful generaliza-
tion round saves the planner enough time and memory to compensate for many failed
ones. These three regularities suggest the following algorithm.

• Initially, the scheduler waits for a small batch of basis functions, setBFs in Al-
gorithm 4, and a small number of dead ends, setDEs, to be accumulated before
invoking the first generalization round. For reasons above, in our implementation
used the initial settings of |setBFs| = 100 and |setDEs| = 10 for all problems.

• After the first round and including it, whenever a round succeeds the scheduler
waits for a number of dead ends unrecognized by known nogoods equal to half
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of the previous batch size to arrive before invoking the next round. Decreasing
the batch size is usually worth the risk according to observations (2) and (3) and
because the round before succeeded. If a round fails, the scheduler waits for the
accumulation of twice the previous number of unrecognized dead ends before
trying generalization again.

Perhaps unexpectedly, in many cases we have seen very large training sets decrease
the probability of learning a nogood. This phenomenon can be explained by training
sets of large sizes sometimes containing subcollections of dead ends caused by different
nogoods. Consequently, the literal occurrence statistics induced by such a mix make it
hard to generate reasonable candidates. This finding has led us to restrict the training
batch size (setDEs in Algorithm 4) to 10, 000. If, due to exponential backoff, the
scheduler is forced to wait for the arrival of n > 10, 000 dead ends, it skips the first
(n − 10, 000) and retains only the latest 10, 000 for training. For the same locality
considerations, each training set is emptied at the end of each round (line 23).
Theoretical Properties. Before presenting the experimental results, we analyze SIXTH-
SENSE’s properties. The most important one is that the procedure of identifying dead
ends as states in which at least one nogood holds is sound. It follows directly from the
nogood’s definition.

Importantly, SIXTHSENSE puts no bounds on the nogood length, being theoreti-
cally capable of discovering any nogood. One may ask: are there any nontrivial bounds
on the amount of training data for SIXTHSENSE to generate a nogood of a given length
with at least a given probability? As the following argument indicates, even if such
bounds exist they are likely to be of no use in practice. For SIXTHSENSE to generate
any given nogood, the training data must contain many dead ends caused by this no-
good. However, depending on the structure of the problem, most such dead ends may
be unreachable from the initial state. If the planning algorithm that uses SIXTHSENSE
never explores those parts of the state space (e.g., LRTDP), no amount of practically
collectable training data will help SIXTHSENSE discover some of the nogoods with
high probability.

At the same time, we can prove another important property of SIXTHSENSE:

Theorem 4. Once a nogood has been discovered and memoized by SIXTHSENSE,
SIXTHSENSE will never discover it again.

Proof. This fact is a consequence of using only dead ends that are not recognized by
known nogoods to construct the training sets, as described in the Scheduling subsection,
and erasing the training data after each generalization attempt. According to Algorithm
4, each nogood candidate is built up iteratively by sampling literals from a distribution
induced by training dead ends that are represented by the constructed portion of the
candidate. Also, we know that no training dead end is represented by any known
nogood. Therefore, the probability of sampling a known nogood (lines 5-11) is 0.

Regarding SIXTHSENSE’s speed, the number of frequently encountered nogoods in
any given problem is rather small, which makes identifying dead ends by iterating over
the nogoods a very quick procedure. Moreover, a generalization round is polynomial
in the training data size, and the training data size is linear in the size of the problem
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Figure 13: Time and memory savings due to nogoods for LRTDP+hFF (representing
the “Fast but Insensitive” type of planners) on 3 domains, as a percentage of resources
needed to solve these problems without SIXTHSENSE (higher curves indicate bigger
savings; points below zero require more resources with SIXTHSENSE). The reduction
on large problems can reach over 90% and even enable more problems to be solved
(their data points are marked with a ×).
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Figure 14: Resource savings from SIXTHSENSE for LRTDP+GOTH/NO 6S (repre-
senting the “Sensitive but Slow” type of planners).

(due to the length of the dead ends and basis functions). We point out, however, that
obtaining the training data theoretically takes exponential time. Nevertheless, since
training dead ends are identified as a part of the usual planning procedure in most
MDP solvers, the only extra work to be done for SIXTHSENSE is obtaining a few basis
functions. Their required number is so small that in nearly every probabilistic problem,
they can be quickly obtained by invoking a speedy deterministic planner from several
states. This explains why in practice SIXTHSENSE is very fast.

Last but not least, we believe that SIXTHSENSE can be incorporated into nearly any
existing trial-based factored MDP solver, since, as explained above, the training data
SIXTHSENSE requires is either available in these solvers and can be cheaply extracted,
or can be obtained independently of the solver’s operation by invoking a deterministic
planner.

5.3. Experimental Results
Our goal in the experiments was to explore the benefits SIXTHSENSE brings to differ-
ent types of planners, as well as to gauge the effectiveness of nogoods and the amount
of computational resources taken to generate them. We used three IPPC domains
as benchmarks: Exploding Blocks World-08 (EBW-08), Exploding Blocks World-06
(EBW-06), and Drive-06. IPPC-06 and -08 contained several more domains with dead
ends, but their structure is similar to that of the domains we chose. In all experiments,
we restricted each MDP solver to use no more than 2 GB of memory.
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Structure of Dead Ends in IPPC Domains. Among the IPPC benchmarks, we found
domains with only two types of implicit dead ends. In the Drive domain, which ex-
emplifies the first of them, the agent’s goal is to stay alive and reach a destination by
driving through a road network with traffic lights. The agent may die trying but, be-
cause of the domain formulation, this does not necessarily prevent the car from driving
and reaching the destination. Thus, all of the implicit dead ends in the domain are
generalized by the singleton conjunction (not alive). A few other IPPC domains, e.g.,
Schedule, resemble Drive in having one or several exclusively single-literal nogoods
representing all the dead ends. Such nogoods are typically easy for SIXTHSENSE to
derive.

EBW-06 and -08’s dead ends are much more complex, and their structure is unique
among the IPPC domains. In the EBW domain, the objective is to rearrange a num-
ber of blocks from one configuration to another, and each block might explode in
the process. For each goal literal, EBW has two multiple-literal nogoods explain-
ing when this literal cannot be achieved. For example, if block b4 needs to be on
block b8 in the goal configuration then any state in which b4 or b8 explodes be-
fore being picked up by the manipulator is a dead end, represented either by no-
good (not (no − destroyed b4)) ∧ (not (holding b4)) ∧ (not (on b4 b8)) or by
(not (no − destroyed b8)) ∧ (not (on b4 b8)). We call such nogoods immediate
and point out that EBW also has other types of nogoods, described in the Discussion
section. The variety and structural complexity of EBW nogoods makes them challeng-
ing to learn.

Planners. As pointed out earlier, MDP solvers can be divided into two groups accord-
ing to the way they handle dead ends. Some of them identify dead ends using fast but
unreliable means like heuristics, which miss a lot of dead ends, causing the planner to
waste time and memory exploring useless parts of the state space. We will call such
planners “fast but insensitive” with respect to dead ends. Most others use more accu-
rate but also more expensive dead-end identification means. We term these planners
“sensitive but slow” in their treatment of dead ends. The monikers for both types apply
only to the way these solvers handle dead ends and not to their overall performance.
With this in mind, we demonstrate the effects SIXTHSENSE has on each type.

Benefits to Fast but Insensitive. This group of planners is represented in our experi-
ments by LRTDP with the hFF heuristic. We will call this combination LRTDP+hFF ,
and LRTDP+hFF equipped with SIXTHSENSE — LRTDP+hFF +6S for short. Im-
plementationwise, SIXTHSENSE is incorporated into hFF . When evaluating a newly
encountered state, hFF first consults the available nogoods produced by SIXTHSENSE.
Only when the state fails to match any nogood does hFF resort to its traditional means
of estimating the state value. Without SIXTHSENSE, hFF misses many dead ends,
since it ignores actions’ delete effects.

Figure 13 shows the time and memory savings due to SIXTHSENSE across three do-
mains as the percentage of the resources LRTDP+hFF took to solve the corresponding
problems (the higher the curves are, the bigger the savings). No data points for some
problems indicate that neither LRTDP+hFF nor LRTDP+hFF +6S could solve them
with only 2GB of RAM. There are a few large problems that could only be solved by
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LRTDP+hFF +6S. Their data points are marked with a × and savings for them are set
at 100% (e.g., on problem 14 of EBW-06) as a matter of visualization, because we do
not know how much resources LRTDP+hFF would need to solve them. Additionally,
we point out that as a general trend, problems grow in complexity within each domain
with the increasing ordinal. However, the increase in difficulty is not guaranteed for
any two adjacent problems, especially in domains with a rich structure, causing the
jaggedness of graphs for EBW-06 and -08.

As the graphs demonstrate, the memory savings on average grow very gradually
but can reach a staggering 90% on the largest problems. In fact, on the problems
marked with a ×, they enable LRTDP+hFF +6S to do what LRTDP+hFF cannot. The
crucial qualitative distinction of LRTDP+hFF +6S from LRTDP+hFF explaining this
is that since nogoods help the former recognize more states as dead ends it does not
explore (and hence memoize) their descendants. Notably, the time savings are lagging
for the smallest and some medium-sized problems (approximately 1-7). However, each
of them takes only a few seconds to solve, so the overhead of SIXTHSENSE may be
slightly noticeable. On large problems, SIXTHSENSE fully comes into its element and
saves 30% or more of the planning time.

Benefits to Sensitive but Slow. Planners of this type include top IPPC performers
RFF and HMDPP, as well as RETRASE and others. Most of them use a deterministic
planner, e.g., FF, on a domain determinization to find a plan from the given state to
the goal and use such plans in various ways to construct a policy. Whenever the de-
terministic planner can prove nonexistence of a path to the goal or fails to simply find
one within a certain time, these MDP solvers consider the state from which the planner
was launched to be a dead end. Due to the properties of classical planners, this method
of dead-end identification is reliable but expensive. To model it, we employed LRTDP
with the GOTH heuristic. GOTH evaluates states with classical planners, so includ-
ing or excluding SIXTHSENSE from GOTH allows for simulating the effects SIXTH-
SENSE has on the above algorithms. As SIXTHSENSE is part of the standard GOTH
implementation, GOTH without it is denoted as GOTH/NO 6S. Figure 14 illustrates
LRTDP+GOTH’s behavior. Qualitatively, the results look similar to LRTDP+hFF +6S
but there is a subtle critical difference — the time savings in the latter case grow faster.
This is a manifestation of the fundamental distinction of SIXTHSENSE in the two set-
tings. For the “Sensitive but Slow”, SIXTHSENSE helps recognize implicit dead ends
faster (and obviates memoizing them). For the “Fast but Insensitive”, it also obviates
exploring many of the implicit dead ends’ descendants, causing a faster savings growth
with problem size.

Benefits to ReTrASE. RETRASE is perhaps the most natural of MDP solver to be
augmented with SIXTHSENSE. It already uses basis functions to store information
about non-dead-end states, and utilizing nogoods would allow it to capitalize on the
abstraction framework even more, providing additional insights into the benefits for
other planners that might employ the abstraction framework to serve all of their state
space representation needs.

To measure the effect of SIXTHSENSE on RETRASE and get a different perspec-
tive on the role of SIXTHSENSE than in the previous experiments, we ran RETRASE
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Figure 15: SIXTHSENSE speeds up RETRASE by as much as 60% on problems with dead
ends. The plot shows this trend on the example of problem 12 of EBW-06.

and RETRASE+6S for at most 12 hours on each of the 45 problems of the EBW-06,
-08, and Drive sets, and noted the policy quality, as reflected by the success rate, at
fixed time intervals. For smaller problems, we measured policy quality every few sec-
onds, whereas for larger ones — every 5-10 minutes. Qualitatively, the trends on all the
problems were similar, so here we study them on the example of problem 12 from the
EBW-06 set, one of the hardest problems attempted. For this problem, after 12 hours of
CPU running time RETRASE+6S extracted and learned weights for 62267 basis func-
tions; it also discovered 79623 dead ends states. Out of these dead ends, 18392 were
identified by RETRASE+6S running a deterministic planner starting at them having
this planner fail to find a path to the goal. The remainder, i.e. 77%, were discovered
with 15 nogoods that SIXTHSENSE derived. Since every deterministic planner call
from a non-dead-end state typically yields several basis functions, SIXTHSENSE saved
RETRASE at least (79623 − 18392)/(62267 + 79623) ≈ 43% of classical planner
invocations, with accompanying time savings. On the other hand, RETRASE’s run-
ning time is not occupied solely by basis function extraction — a significant fraction
of it consists of basis function weight learning and state space exploration. Besides,
SIXTHSENSE, although fast, was not instantaneous. Therefore, based on this model
we expected the overall speedup caused by SIXTHSENSE to be less than 40% and
likely also less than 30%.

With this in mind, please refer to Figure 15 showing the plots of policy quality
yielded by RETRASE and RETRASE+6S versus time. As expected intuitively, the
use of SIXTHSENSE does not change RETRASE’s pattern of convergence, and the
shape of the two plots are roughly similar. (If allowed to run for long enough both
planners should converge to policies of the same quality, although the plots do not show
this.) However, surprisingly, the time it takes RETRASE+6S to arrive at a policy of
the quality RETRASE gets after 12 hours of execution turns out to be about 5.5 hours.
Thus, the speedup SIXTHSENSE has yielded is considerably larger than predicted by
our model, roughly 60% versus the expected 30 or less.

Additional code instrumentation revealed an explanation for this discrepancy. The
model just sketched implicitly assumes that the time cost of a successful deterministic
planner call (one that yields basis functions) and one that proves the state to be a dead
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end to be the same. This appears to be far from reality; the latter, on average, was over
4 times more expensive. With this factor taken into account, the model would forecast a
77% time savings on classical planner calls due to employment of SIXTHSENSE. With
the adjustments we described earlier that need to be made to this figure, it agrees well
with the actual data.

Regarding memory savings, SIXTHSENSE helps RETRASE as well, but the picture
here is much clearer. Indeed, since RETRASE memoizes only basis functions (with
weights), dead ends, and nogoods, a 43% reduction in the total number of these as pre-
dicted by our model straightforwardly translates to the corresponding memory reduc-
tion our experiments showed. We point out, however, that even without SIXTHSENSE,
RETRASE’s memory requirements are very low compared to other MDP solvers, and
reducing them even further is a less significant performance gain than the boost in
speed.

Last but not least, we found that SIXTHSENSE almost never takes more than 10%
of LRTDP+hFF +6S’s or LRTDP+GOTH’s running time. For LRTDP+hFF +6S, this
fraction includes the time spent on deterministic planner invocations to obtain the ba-
sis functions, whereas in LRTDP+GOTH, the classical plans are available to SIXTH-
SENSE for free. In fact, as the problem size grows, SIXTHSENSE eventually gets to
occupy less than 0.5% of the total planning time. As an illustration of SIXTHSENSE’s
operation, we found out that it always finds the single nogood in the Drive domain after
using just 10 dead ends for training, and manages to acquire most of the statistically
significant immediate dead ends in EBW. In the available EBW problems, their num-
ber is always less than several dozens, which, considering the space savings they bring,
attests to nogoods’ high efficiency.

5.4. Summary

GOTH is a machine learning algorithm for discovering the counterpart of basis func-
tions, nogoods. The presence of a nogood in a state guarantees the state to be a dead
end. Thus, nogoods help a planner quickly identify dead ends without memoizing
them, helping save memory and time. GOTH serves as a submodule of a planner that
periodically attempts to “guess” nogoods using dead ends the planner visited and basis
functions the planner discovered as training data. It checks each guess using a sound
planning graph-based verification procedure. Depending on the type of MDP solver,
GOTH vastly speeds it up, reduces its memory footprint, or both, on MDPs with dead-
end states.

6. DISCUSSION

The experiments indicate that the proposed abstraction framework is capable of ad-
vancing the state of the art in planning under uncertainty. Nonetheless, there are several
promising directions for future improvement.

Making structure extraction faster. Even though employment of basis functions in
GOTH renders GOTH much faster than otherwise, the relatively few classical planner
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invocations that have to be made are still expensive, and GOTH’s advantage in infor-
mativeness is not always sufficient to secure an overall advantage in speed for the MDP
solver that uses it. Incidentally, we noticed that on some of the domains RETRASE
spends a lot of time discovering basis functions that end up having high weights (i.e.,
are not very “important”). We see two ways of handling the framework’s occasional
lack of speed in discovering useful problem structure.

The first approach is motivated by noticing that the speed of basis function ex-
traction depends critically on how fast the available deterministic planners are on the
deterministic version of the domain at hand. Therefore, the speed issue can be allevi-
ated by adding more modern classical planners to the portfolio and launching them in
parallel in the hope that at least one will be able to cope quickly with the given domain.
Of course, this method may backfire when the number of employed classical planners
exceeds the number of cores on the machine where the MDP solver is running, since
the planners will start contending for resources. Nonetheless, up to that limit, increas-
ing the portfolio size should only help. In addition, using a reasonably-sized portfolio
of planners may help reduce the variance and the average of the time it takes to arrive
at a deterministic plan.

The above idea is an extensional approach to accelerate the domain structure ex-
traction, one that increases the performance of the algorithm by making more compu-
tational resources available to it. There is also an intensional one, that improves the
algorithm itself. The ultimate reason for frequent discovery of “useless” basis func-
tions via deterministic planning is the fact that a basis function’s importance is largely
determined by the probabilistic properties of the corresponding trajectory, something
the all-outcomes determinization completely discards. An alternative would be to give
classical planners a domain determinization that retains at least some of its probabilis-
tic structure. Although seemingly paradoxical, such determinizations exist, e.g. the
one proposed by the authors of HMDPP. Its use could improve the quality of obtained
basis functions and thus reduce the deterministic planning time spent on discovering
subpar ones. Different determinization strategies may also ease the task of the classical
planners provided that the determinization avoids enumerating all outcomes of every
action without significant losses in solution quality.

Lifting representation to first-order logic. Another potentially fruitful research di-
rection is increasing the power of abstraction by lifting the representation of basis func-
tions and nogoods to first-order logic. Such representation’s benefits are apparent, for
example, in the EBW domain. In EBW, besides the immediate nogoods, there are oth-
ers of the form “block b is not in its goal position and has an exploded block somewhere
in the stack above it”. Indeed, to move b one would first need to remove all blocks, in-
cluding the exploded one, above it in the stack, but in EBW exploded blocks can not
be relocated. Expressed in first-order logic, the above statement would clearly capture
many dead ends. In propositional logic, however, it would translate to a disjunction
of many ground conjunctions, each of which is a nogood. Each such ground nogood
separately accounts for a small fraction of dead ends in the MDP and is almost unde-
tectable statistically, preventing SIXTHSENSE from discovering it.

Handling conditional effects. So far, we have assumed that an action’s precondition
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is a simple conjunction of literals. PPDDL’s most recent versions allow for a more
expressive way to describe an action’s applicability via conditional effects. Figure 16
shows an action with this feature. In addition to the usual precondition, this action has
a separate precondition controlling each of its possible effects. Depending on the state,
any subset of the action’s effects can be executed.

(:action be-evil
:parameters ()
:precondition (and (gremlin-alive))
:effect (and

(if (and (has Screwdriver) (has Wrench))
(and (plane-broken)))

(if (and (has Hammer))
(and (plane-broken)

(probabilistic 0.9
(and (not (gremlin-alive))))))))

Figure 16: Action with conditional effects

The presented algorithms currently do not handle problems with this construct for
two reasons.

First, regression as defined in the Section 2.2 does not work for conditional effects.
However, its definition can be easily extended to such cases. As a starting step, consider
a goal trajectory t(e) and suppose that outcome out(ai, i, e), part of t(e), is the result
of applying action ai in state si−1 of e. Denote the precondition of k-th conditional
effect of ai as cond preck(ai). When e was sampled, conjunction out(ai, i, e) was
generated in the following way. For every k, it was checked whether cond preck(ai)
holds in si−1. If it did, the dice were rolled to select the outcome of the correspond-
ing conditional effect. Denote this outcome as cond outk(ai, i, e). Furthermore, let
lit(cond outk(ai, i, e)) = ∅ (i.e., let cond outk(ai, i, e) be an empty conjunction) if
cond preck(ai) does not hold in si.

By definition, cond preck(ai) can be empty in either of two cases:

• If cond preck(ai) does not hold in si−1;

• If cond preck(ai) holds in si−1 but while sampling cond outk(ai, i, e) we hap-
pened to pick an outcome that does not modify si−1.

In the light of this fact, define the cumulative precondition of out(ai, i, e) as

cu prec(out(ai, i, e)) = prec(ai)∧

[∧
k

{cond preck(ai) | lit(cond outk(ai, i, e)) 6= ∅}

]
and observe that

out(ai, i, e) =
∧
k

{cond outk(ai, i, e)}.
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Thus, cu prec(out(ai, i, e)) is a conjunction of preconditions of those conditional ef-
fects of ai that contributed at least one literal to out(ai, i, e). In other words, it is the
minimum necessary precondition of out(ai, i, e). Therefore, to extend regression to ac-
tions with conditional effects we simply substitute cu prec(out(ai, i, e)) for prec(ai)
into the formulas for generating basis functions from Section 2.2 to obtain

b0 = G
bi =

∧
[[lit(bi−1) ∪ lit(out(an−i+1, n− i+ 1, e))] \ lit(cu prec(out(ai, i, e)))]

for 1 ≤ i ≤ n.

Unfortunately, there is a second, practical difficulty with making GOTH, RE-
TRASE, and SIXTHSENSE work in the presence of conditional effects. Recall that our
primary way of obtaining goal trajectories for regression is via deterministic planning.
Determinizing an ordinary probabilistic action yields the number of deterministic ac-
tions equal to the number of original action’s outcomes. In the presence of conditional
effects this statement needs qualification. Each conditional effect can be thought of as
describing an “action within an action” with its own probabilistic outcomes. These “in-
side actions” need not be mutually exclusive. Therefore, the number of outcomes of an
action with conditional effects is generally exponential in the latter’s number. As a con-
sequence, determinizing such actions may lead to a blowup in problem representation
size. Further research is needed to identify special cases in which the determinization
of conditional effects can be done efficiently.

Beyond stochastic shortest path MDPs. So far, the probabilistic planning commu-
nity has predominantly concentrated on stochastic shortest path (SSP) MDPs and its
subclasses (e.g., the discounted cost MDPs). However, there are interesting problems
beyond SSP MDPs as well. As an example, consider the SysAdmin domain [Bryce and
Buffet (2008)], in which the goal is to keep a network of computers running for as long
as possible. This type of reward maximization problems has received little attention up
till now, although there has been a recent attempt to tackle it efficiently with heuristic
search [Kolobov et al. (2011)].

Extending the abstraction framework to reward-maximization MDPs is a poten-
tially impactful research direction. However, it meets with a serious practical as well
as theoretical difficulty. Recall that the natural deterministic analog of SSP MDPs are
shortest path problems. Researchers have studied them extensively and developed a
wide range of very efficient tools for solving them, such as FF, LPG, LAMA, and
others. As shown earlier, techniques presented here critically rely on these tools for ex-
tracting the basis functions and estimating their weights. However, the closest classical
counterpart of probabilistic reward-maximization scenarios are longest path problems.
Known algorithms for various formulations of this setting are at best exponential in
the state space size, explaining the lack of fast solvers for them. In their absence, the
invention of alternative efficient ways of extracting important causal information is the
first step on the way to extending abstraction beyond SSP MDPs.
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Abstraction framework and existing planners. Despite improvements being possi-
ble, our abstraction framework is useful even in its current state, as evidenced by both
the experimental and theoretical results. Moreover, it has a property that makes its use
very practical; the framework is complementary to the other powerful ideas incorpo-
rated in successful solvers of the recent years, e.g., HMDPP, RFF, FFHop, and others.
Thus, abstraction can greatly benefit many of these solvers with no or few sacrifices
on their part, and also inspire new ones. As an example, note that FFReplan could be
enhanced with abstraction in the following way. It could extract basis functions from
deterministic plans it is producing while trying to reach the goal and store each of them
along with their weight and the last action regressed before obtaining that particular
basis function. Upon encountering a state subsumed by at least one of the known basis
functions, “generalized FFReplan” would select the action corresponding to the basis
function with the smallest weight. Besides an accompanying speed boost, which is a
minor point in the case of FFReplan since it is very fast as is, FFReplan’s robustness
could be greatly improved, since this way its action selection would be informed by
several trajectories from the state to the goal, as opposed to just one. Employed analo-
gously, basis functions could speed up FFHop, an MDP solver that has great potential
but is somewhat slow in its current form. In fact, we believe that virtually any algo-
rithm for solving SSP MDPs could have its convergence accelerated if it regresses the
trajectories found during policy search and carries over information from well explored
parts of the state space to the weakly probed ones with the help of basis functions and
nogoods. We hope to verify this conjecture in the future. At the same time, solvers
of discounted-reward MDPs are unlikely to gain much from the kind of abstraction
proposed in this paper, even though mathematically the described techniques will work
even on this MDP class. Discounted-reward MDPs can be viewed as SSP MDPs where
each action has some probability of leading directly to the goal [Bertsekas and Tsitsik-
lis (1996)]. As a result, any sequence of actions in a discounted-reward MDP is a goal
trajectory. This leads to an overabundance of basis functions, potentially making their
number comparable to the number of states in the problem.

A different approach for having abstraction benefit existing planners is to let RE-
TRASE produce a value function estimate and to allow another planner, e.g. LRTDP,
complete the solution of the problem starting from this estimate. This idea is motivated
by the fact that it is hard to know when RETRASE has converged on a given problem
(and whether it ever will). Therefore, it makes sense to have an algorithm with conver-
gence guarantees take over from RETRASE at a certain point. Empirical research is
needed to determine when the switch from RETRASE to another solver should happen.

7. RELATED WORK

In spirit, the concept of extracting useful state information in the form of basis functions
is related to explanation-based learning (EBL) [Knoblock et al. (1991)][Kambhampati
et al. (1996)]. In EBL, the planner would try to derive control rules for action selection
by analyzing its own execution traces. In practice, EBL systems suffer from accumu-
lating too much of such information, whereas the approaches we have presented do
not. The idea of using determinization followed by regression to obtain basis functions
has parallels to some research on relational MDPs, which uses first-order regression on
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optimal plans in small problem instances to construct a policy for large problems in a
given domain [Gretton and Thiébaux (2004); Sanner and Boutilier (2006)]. However,
our function aggregation and weight learning methods are completely different from
theirs.

RETRASE, in essence, exploits basis functions to perform dimensionality reduc-
tion, but basis functions are not the only known alternative to serve this purpose.
Other flavors of dimensionality reduction include algebraic and binary decision dia-
gram (ADD/BDD), and principle component analysis (PCA) based methods. SPUDD,
Symbolic LAO*, and Symbolic RTDP are optimal algorithms that exploit ADDs and
BDDs for a compact representation and efficient backups in an MDP [Hoey et al.
(1999); Feng and Hansen (2002)]. While they are a significant improvement in effi-
ciency over their non-symbolic counterparts, these optimal algorithms still do not scale
to large problems. APRICODD, an approximation scheme developed over SPUDD
[St-Aubin et al. (2000)], showed promise, but it is not clear whether it is competitive
with today’s top methods since it has not been applied to the competition domains.

Some researchers have applied non-linear techniques like exponential-PCA and
NCA for dimensionality reduction [Roy and Gordon (2003); Keller et al. (2006)].
These methods assume the original state space to be continuous and hence are not
applicable to typical planning benchmarks.

In fact, most basis function-based dimensionality reduction techniques are not ap-
plied in nominal domains. A notable exception is FPG [Buffet and Aberdeen (2009)],
which performs policy search and represents the policy compactly with a neural net-
work. Our experiments demonstrate that RETRASE outperforms FPG consistently on
several domains.

The use of determinization for solving MDPs in general was inspired by advances
in classical planning, most notably the FF solver [Hoffman and Nebel (2001)]. The
practicality of the new technique was demonstrated by FFReplan [Yoon et al. (2007)]
that used the FF planner on an MDP determinization for direct selection of an action
to execute in a given state. More recent planners to employ determinization that are, in
contrast to FF-Replan, successful at dealing with probabilistically interesting problems
include RFF-RG/BG [Teichteil-Königsbuch et al. (2010)]. At the same time, the latter
kind of algorithms typically invokes a deterministic planner many more times than
our techniques do. This forces them to avoid all-outcomes determinization as these
invocations would be too costly otherwise. Other related planners include Temptastic
[Younes and Simmons (2004)], precautionary planning [Foss et al. (2007)], and FFHop
[Yoon et al. (2008)].

The employment of determinization for heuristic function computation was made
famous by the FF heuristic, hFF [Hoffman and Nebel (2001)], originally part of a clas-
sical planner by the same name. LRTDP [Bonet and Geffner (2003)] and HMDPP
[Keyder and Geffner (2008)] adopted this heuristic with no modifications as well. In
particular, HMDPP runs hFF on a “self-loop determinization” of an MDP, thereby
forcing hFF ’s estimates to take into account some of the problem’s probabilistic infor-
mation.

To our knowledge, there have been no previous attempts to handle identification of
dead ends in MDPs. The “Sensitive but Slow” and “Fast but Insensitive” mechanisms
were not actually designed specifically for the purpose of identifying dead ends and are
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unsatisfactory in many ways. One possible reason for this omission may be that most
MDPs studied by the Artificial Intelligence and Operations Research communities un-
til recently had no dead ends. However, MDPs with dead ends have been receiving
attention in the past few years as researchers realized their probabilistic interestingness
[Little and Thiébaux (2007)]. Besides the analogy to EBL, SIXTHSENSE can also be
viewed as a machine learning algorithm for rule induction, similar in purpose, for ex-
ample, to CN2 [Clark and Niblett (1989)]. While this analogy is valid, SIXTHSENSE
operates under different requirements than most such algorithms, because we demand
that SIXTHSENSE-derived rules (nogoods) have zero false-positive rate. Last but not
least, our term “nogood” shares its name with and closely mirrors the concept from
the areas of truth maintenance systems (TMSs) [de Kleer (1986)] and constraint sat-
isfaction problems (CSPs) [Dechter (2003)]. However, our methodology for finding
nogoods has little in common with algorithms used in that literature.

8. CONCLUSIONS

A central issue that limits practical applicability of automated planning under uncer-
tainty is scalability of available techniques. In this article, we have presented a powerful
approach to tackle this fundamental problem — an abstraction framework that extracts
problem structure and exploits it to spread information gained by exploring one part of
the MDP’s state space to many others.

The components of the framework are the elements of problem structure called ba-
sis functions and nogoods. The basis functions are preconditions for those sequences
of actions (trajectories) that take the agent from some state to the goal with positive
probability. As such, each applies in many of the MDP’s states, sharing associated
reachability information across them. Crucially, basis functions are easy to come by
via fast deterministic planning or even as a byproduct of the normal probabilistic plan-
ning process. While basis functions describe only MDP states from which reaching
the goal is possible, their counterparts, nogoods, identify dead ends, from which the
goal cannot be reached. Crucially, the number of basis functions and nogoods needed
to characterize the problem space is typically vastly smaller than the problem’s state
space. Thus, the framework can be used in a variety of ways that increase the scalability
of the state of the art methods for solving MDPs.

We have described three approaches illustrating the framework’s operation, GOTH,
RETRASE, and SIXTHSENSE. The experimental results show the promise of the out-
lined abstraction idea. Although we describe several ways to enhance our existing
framework, even as is it can be utilized to qualitatively improve scalability of virtually
any modern MDP solver and inspire the techniques of tomorrow.
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