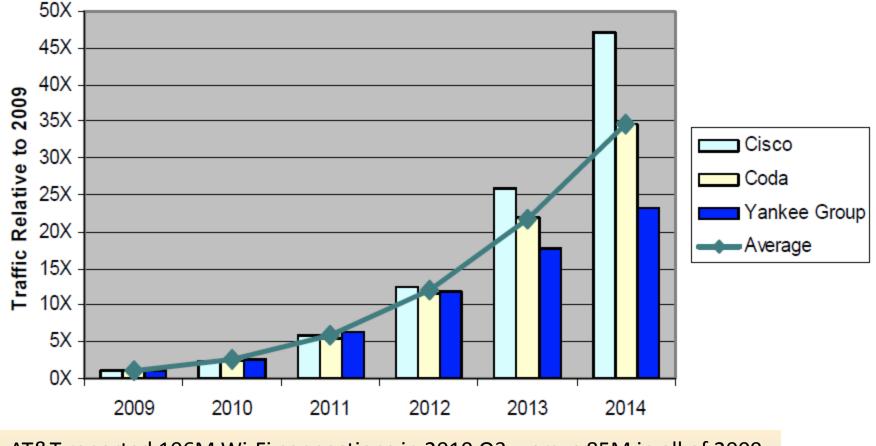
Wireless New ^ Connectivity Paradigms from 600 to 60 GHz living in the unlicensed world

Victor Bahl

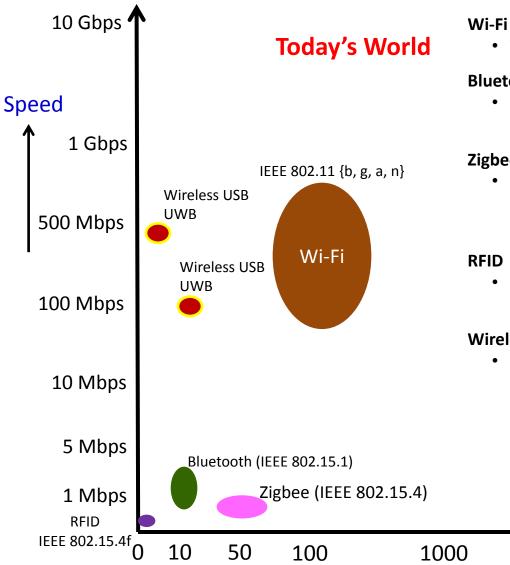

Mobile Computing Research Center

Microsoft Research

Obligatory Slide (1)

Industry Forecasts of Mobile Data Traffic

FCC, Staff Technical Paper, "Mobile Broadband: The Benefits of Additional Spectrum", OBI Technical Paper No. 6 (Oct. 2010),



AT&T reported 106M Wi-Fi connections in 2010 Q3; versus 85M in all of 2009

AT&T's mobile data traffic has experienced a fifty-fold increase over a three year period

VICTOR BAHL, MICROSOFT

Connectivity Options over Unlicensed Freq.

• Wireless local area networking / wireless ethernet

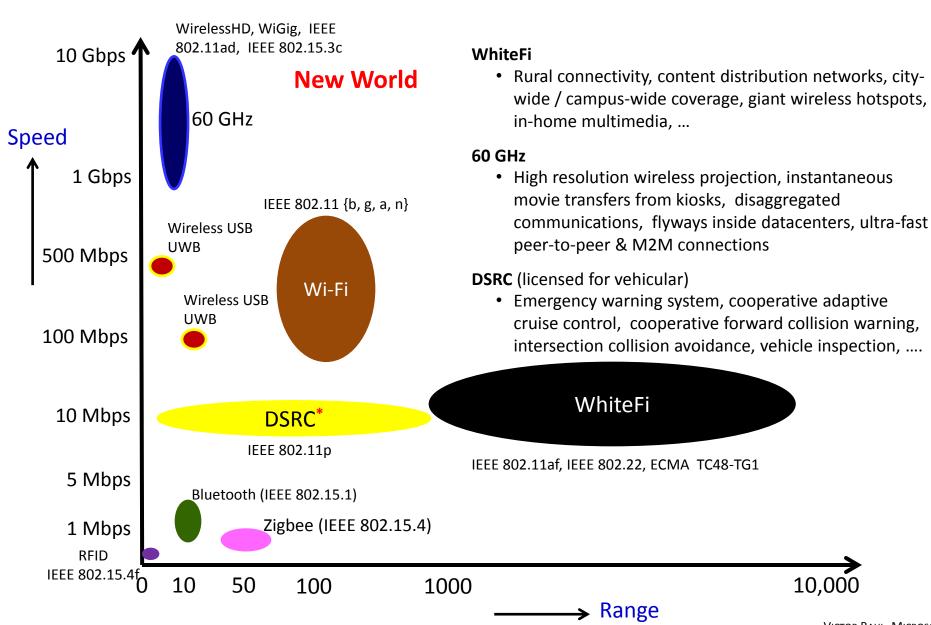
Bluetooth

 Hands free headsets, phone to PC connection, ad hoc connectivity to mouse, keyboard, printer, ...

Zigbee

 Smart appliances, industrial device control, environmental and energy management, machine-tomachine communication, sensors (6LoWPAN), ...

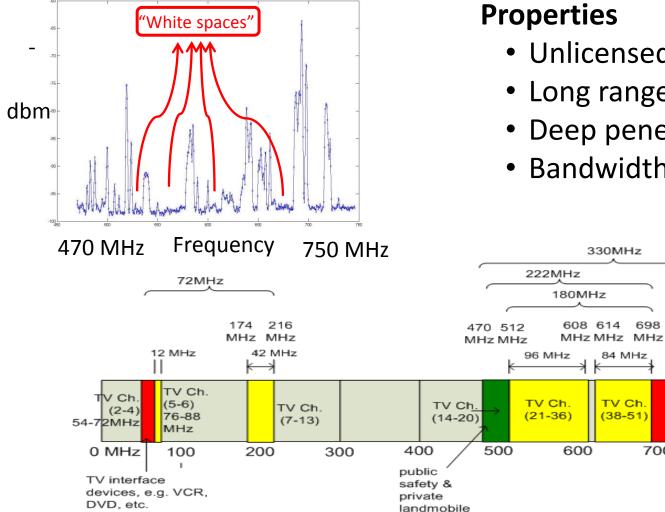
 Identification, IT asset management, product tracking, mobile phone payment, credit transactions, ...


Wireless USB (UWB)

 Game controllers, printers, scanners, digital cameras, MP3 players, hard disks and flash drives

Range

10,000


Connectivity Options over Unlicensed Freq.

VICTOR BAHL, MICROSOFT

10,000

Obligatory Slide (2) (White Spaces: Harvesting Unused Spectrum)

- Unlicensed
- Long range
- Deep penetration

698

700

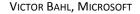
TV Ch.

(52-69)

AT&T.

Verizon.

other 3G


services

806

MHz

800

Bandwidth

900 MHz

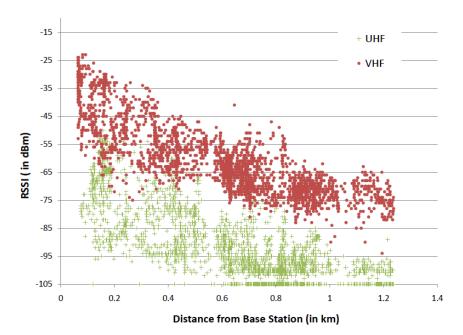
How much spectrum is there?

City Hall	Available Channels	Bandwidth	Capacity Est.	
Redmond	28	168 MHz	672 Mbps	
Bellevue	26	156 Mhz	624 Mbps	
Seattle	26	156 MHz	624 Mbps	
Sammamish	28	168 MHz	672 Mbps	
New York	2	12 MHz	48 Mbps	
Boston	10	60 MHz	240 Mbps	
San Francisco	5	30 MHz	120 Mbps	
Kansas	19	114 MHz	456 Mbps	
Miami	5	30 MHz	120 Mbps	

Sample of bandwidth availability

Smaller cell sizes and frequency reuse is a way to manage densely populated regions with lower no. of available channels

Location of incumbents



What range can we expect?

Microsoft Redmond Campus

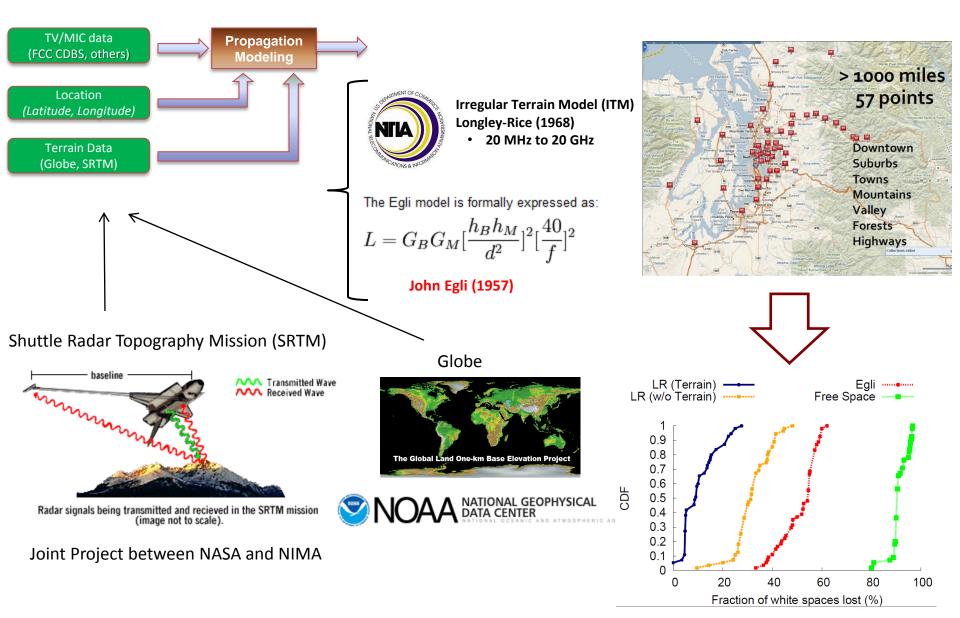
Route taken by the shuttle (0.95 miles x 0.75 miles)

Raw received power at different Distances from the transmitter

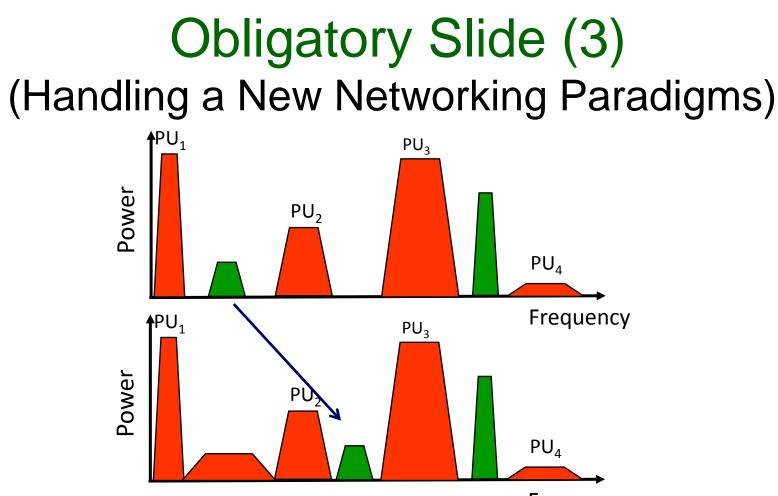
4-5 white space base stations can cover the entire Redmond campus

VICTOR BAHL, MICROSOFT

Database of spectrum availability

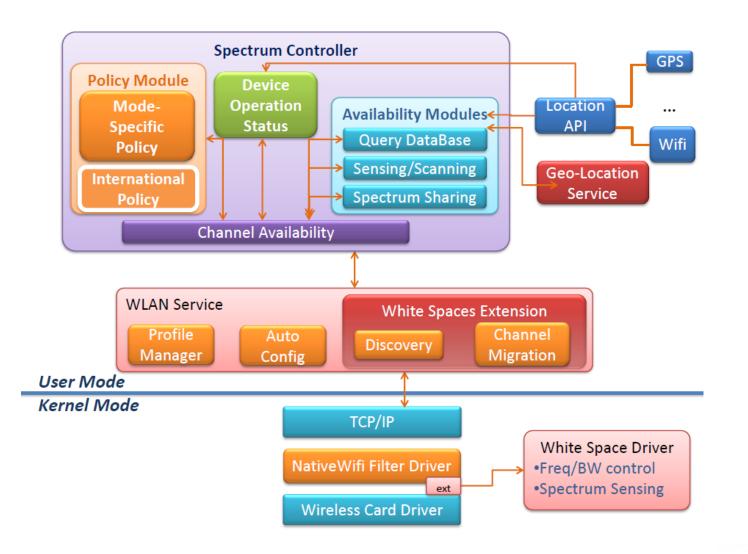

Microsoft Research WhiteSpaceFinder

Current Status = Loaded New Results. Time taken = 1 s


Find Address 36th St and 148th NE, Redmond, WA Show nearby incumbents Signal Strength Distance Elevation CallSign Channel TX Power (kW) BAATLED Propagation Mode Comments (milen) Data Source DIV 25 Salest. KMYQ 19.2 1058 911.2 1,\$54 SETM41 Line-Of-Sight Mode DIV KOM0-TV 38 -32.9 175.9 144.1 10.761 SRTM41 Line-Of-Sight Mode Salect DIV -36.7 21.37 1875 Line-Of-Sight Mode Salact KCTS-TV 9 316.7 SRTM41 -27.4 1.896 SRTM41 Line-Of-Sight Mode Select DIV KSTWtt. 100 904.2 DIV KWDK. 42 -33.1 144.5 2279 12.46 SRTM41 Line-Of-Sight Mode Select 51 12.46 Eme-Of-Sight Mode Select EWPX-IV -35.5 398.1 3348 SETMAL Select DTV KCPO 13 -38.9. 30.19 2000 31.57 SRTM41 Line-Of-Sight Mode Select SUNE-IV 50 -45.5 259.8 2358 12.48 SRTM41 Line-Of-Sight Mode 27 330 776.8 30.4 Line-Of-Sight Mode Select DTV KBTC-TV -42.3 SETM41 Select DIV S.PST 44 43.5 239.5 2328 12.45 SRIMH Line-Of-Sight Mode

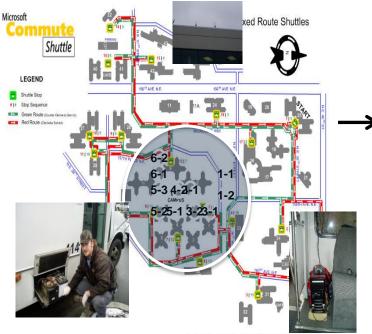
mosofi

What makes Microsoft's DB great?


VICTOR BAHL, MICROSOFT

Frequency

- Opportunistic use of spectrum
 - Secondary must give up to primary
- Query database to determine available channels
 - Every WS device must communicate with a DB


Implications on the Networking Stack

VICTOR BAHL, MICROSOFT

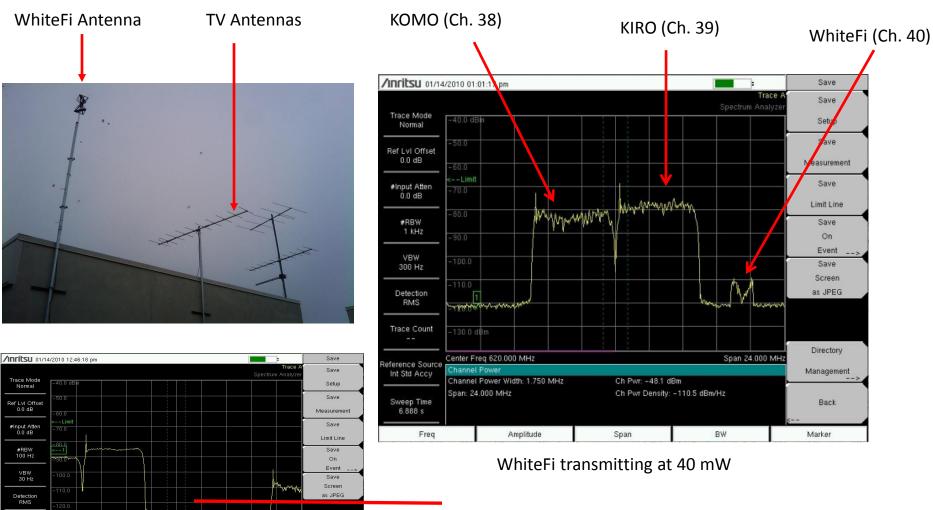
Putting it together The world's First Urban White Space Network

A giant white space hot-spot network on Microsoft campus

Visit http://commute or Email Shuttle for more information

Accessing from the office

WS antenna on MS Shuttle



Oct. 16, 2009

Accessing from inside a MS Shuttle

Winning over skeptics Coexistence with TV Broadcasters

WhiteFi (Ch. 40)

Directory

Management

Back

Marker

Span 24.000 MH

BW

Ch Pwr: -87.6 dBm Ch Pwr Density: -150.0 dBm/Hz

Span

Trace Count

eference Source

Int Std Accy

Sweep Time 66.483 s

Freq

130.0 dl

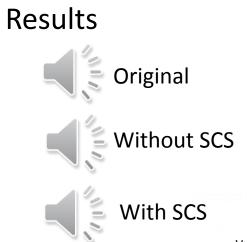
Center Freg 629,000 MH;

Span: 24.000 MHz

hannel Power Width: 1.750 MHz

Amplitude

Influencing critics **Co-existing with Wireless Microphones**


Subcarrier Suppression setup

Microphone recording in Anechoic Chamber

Results ∕inritsu **Subcarrier Suppression**

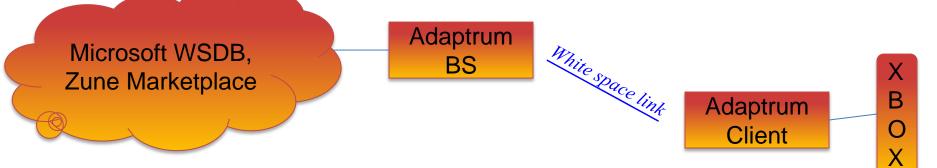
VICTOR BAHL, MICROSOFT

Victory at last!

MAY 11, 2010, 6:59 P.M. ET

FCC Officials Visit Microsoft To Examine Experimental Network

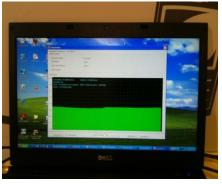
Chairman Genachowski & Cincrosoft's CTO Craig Mundie, August 14, 2010


Chairman Genachowski and FCC Managing Director Steven VanRoekel Climb aboard the MS Shuttle to look at our WhiteFi Network

FCC Chairman Genachowski looks at our wireless Microphone demo In Bldg. 99, Anechoic Chamber (Room 1651)

Aug 14, 2010

Maintaining the Momentum White Space at NAB 2011


Streaming HD Video to an XBOX over White Spaces

Aspects Demonstrated: FCC TVBD Mask compliant > 5 Mbps over 0.8 miles Interoperability with White Space DB Spectrum Agility with MIC entries

VICTOR BAHL, MICROSOFT

Global Advocacy & Evangelism

India Oct. 22, 2009 Federal Communications Commission Apr. 28, 2010

Radiocommunication Sector

Brazil (Feb. 2, 2010)

Singapore Apr. 8, 2010

China Jan. 11, 2010 WWW.SARFT.GOV.CN

Standards

Fisher Communications Inc. Jan. 14, 2010

Industry Partners Jan. 5, 2010

Accolades

The project, dubbed "White Fi," is one of the most advanced in the field, both dealing with the hardware side but also creating the networking protocols to handle the specific challenges. Softpedia (Aug. 19, 2009)

Microsoft researchers have taken a step closer to finally turning unused analogue TV spectrum, known as "white spaces", into unlicensed spectrum that can be used to deliver new wireless broadband service CNET.COM (Aug. 19, 2009)

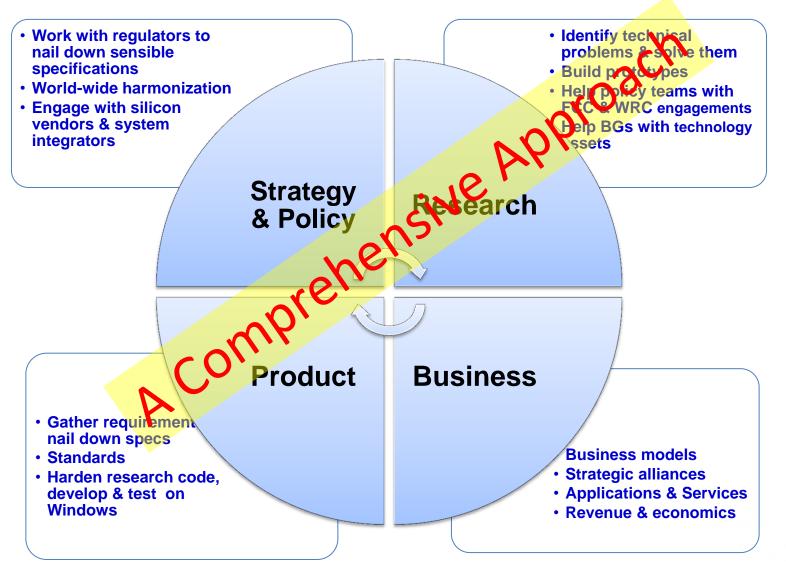
The Microsoft Research team has addressed many of these issues with WhiteFi. —that early promise of "WiFi on steroids" might turn out to be surprisingly accurate, after all. Nate Anderson, Ars technica, August 27, 2009

The actual engineering requirements to accomplish this frequency switch are non-trivial. Microsoft Research's "KNOWS" project has taken up the task and made some pretty remarkable advances. Scott Merrill, Crunchgear, August 28, 2009

One of the best prospects for the future is the opening up of "white spaces," unused parts of the spectrum. **One of the most advanced research projects....**

Lucian Parfeni, Web News, August 18, 2009

Microsoft researchers have taken the next step toward turning old UHF analog TV spectrum into rural wireless broadband networks that would operate like Wi-Fi but with greater range.


Simon Juran, GigaOm, August 18, 2009-09-02

Industry Landscape

Hardware Vendors (early movers)

What have we learnt? A journey that began in 2003....

Looking Ahead

Business Opportunities

- Focus on Scenarios
- What's it all good for.....no really?
- Industry movement
 - TV White Space Alliance
 - DB providers signed up
 - Standardization

Policy Positioning

Stay on target

Research Problems

- Microphone co-location
- Heterogeneity
- Channel diversity
- Nation-wide spectrum sniffer
- Data integrity of DBs
- Software Defined Radio

Ponder over this How long did it take to make Wi-Fi mainstream ?

Message of the day Be patient!

Business Opportunities

- Giant hot-spots (to relieve spectrum congestion)
- **Content distribution networks** (should work great in suburban communities & rural America)
- **Direct connectivity to retailer portals** (without involving cellular providers)
 - E.g. BestBuy, Walmart, Home Depot, Sears, etc. put up WS BSs and provide direct access to their store up to a few mile radius

Campus and City wide coverage

- Seamless handoffs while moving between buildings in Universities, industrial parks, companies etc.
- Home wireless multimedia

Industry Movement: TVWS Alliance

Goal: Align industry towards a commercially feasible solution

- Develop usage models & marketing requirements
- Agree on a technical solution

Members: Microsoft, Google, Dell, Nokia, LG, Cisco, Broadcom, Intel, Atheros, Marvell, HP

- − HP joined in March 2010;
 dropped from CogNea ☺
- Others pending

Direction

- TVWS Alliance drives WGs within Wi-Fi Alliance & IEEE 802.11
- Formed IEEE 802.11af
 - define the PHY
 - minimum MAC enhancements
- Groups in Wi-Fi Alliance
 - Develop roadmap for a certification program
 - MAC enhancements + database specifications

Industry Movement: TVDB Providers

- FCC names nine white-space database providers (Jan. 27, 2011)
 - Comsearch
- Frequency Finder
- KB Enterprises
- Key Bridge Global
- Spectrum Bridge Telcordia

- Google
- Neustar
- WSdb LLC
- Microsoft files with FCC to become a DB provider (April, 2011, Docket No. 04-186)

Comments due May 20, 2011

Federal Communications Commission 445 12th St., S.W. Washington, D.C. 20554

News Media Information 202/418-0500 Fax-On-Demand 202/418-2830 TTY 202/418-2550 Internet: http://www.fcc.gov ftp.fcc.gov

DA 11-803 Released: April 29, 2011

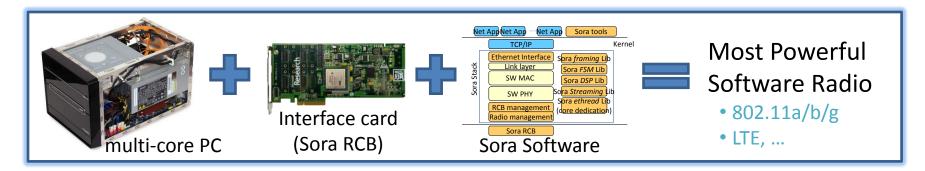
Office of Engineering and Technology Seeks Comment on Microsoft Corporation Proposal to be Designated as a TV Bands Device Database Administrator

Hot topic of the day Interoperability Discussions

ET Docket No. 04-186

Comment Date: May 20, 2011 Reply Date: May 31, 2011

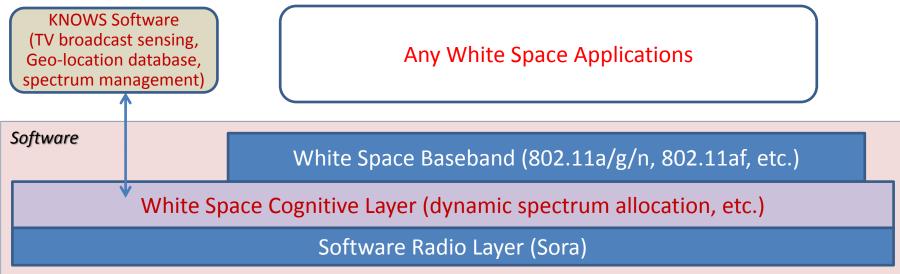
Policy: MS Response to FCC Nol on DSA (ET Docket No. 10-237)

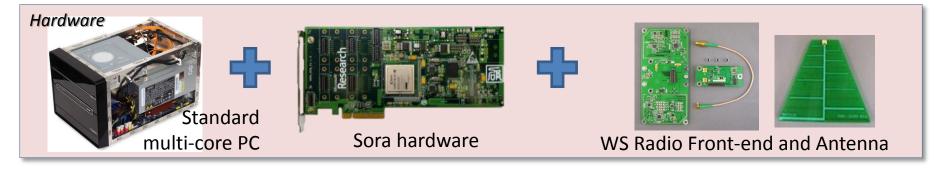

FCC (in cooperation with NTIA) must ensure

- Sufficient amount of spectrum stays available for WSN
- Underutilized spectrum, especially below 3 GHz, is made available for additional DSA

Regulatory bodies must

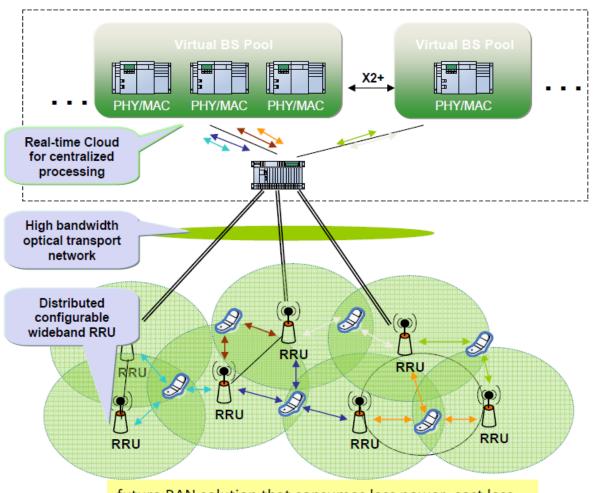
- Consider reallocation of additional spectrum
- Promote DSA to make better use of limited spectrum
- Realize that spectrum DBs are evolving to be able to negotiate spectrum access and usage rights in real time (*e.g.*, accounting for the cost of interference, power limits, geolocation and mobility, prioritization, and duration)


In other Development MSR's Software Radio (Sora)



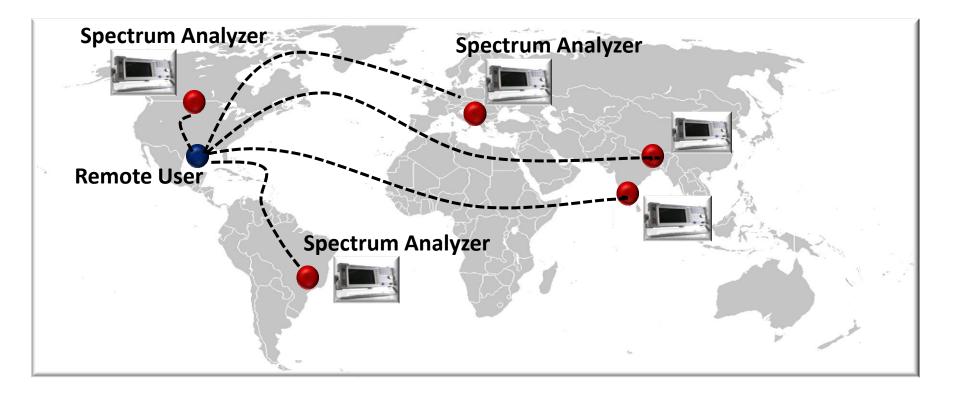
- High-performance software radio platform on standard multi-core Windows PC
 - Fast enough to support pure software implementation of the latest wireless standards (WiFi, LTE, ...)
- Sora Academic Program
 - Hardware/software made available to universities
 - Over 30+ schools worldwide are using Sora in research

Research: MSR White Space Platform SDK (Available end of this year)



Example: Vision of C-RAN Architecture Centralized Processing, Collaborative Radio, real-time Cloud

Computing Infrastructure



future RAN solution that consumes less power, cost less money but has higher capacity and more flexibility From China Mobile Research

Green Radio Access Networks

- Reduce CAPEX/OPEX, lower MB cost
- Better allocation of resources, improved power efficiency
- Easier to implement collaborative radio technology
- Supporting multistandard operation

Research: MSR's SpecNet Vision (Crowd sourcing of spectrum sensing)

A first-of-its-kind platform that allows remote users to measure spectrum remotely in real-time and to implement and deploy coordinated distributed sensing applications

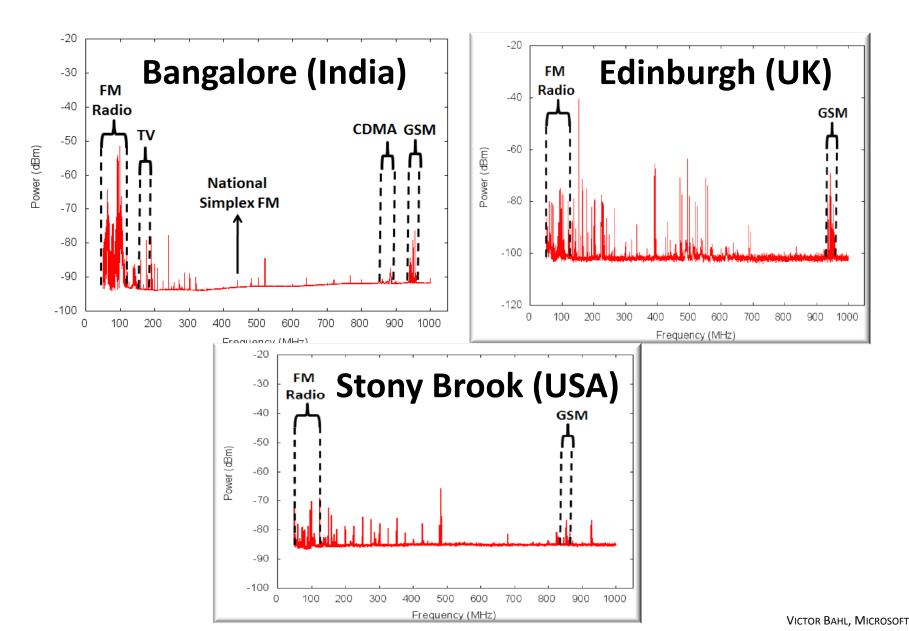
MSR's SpecNet Operation

Spectrum Analyzers

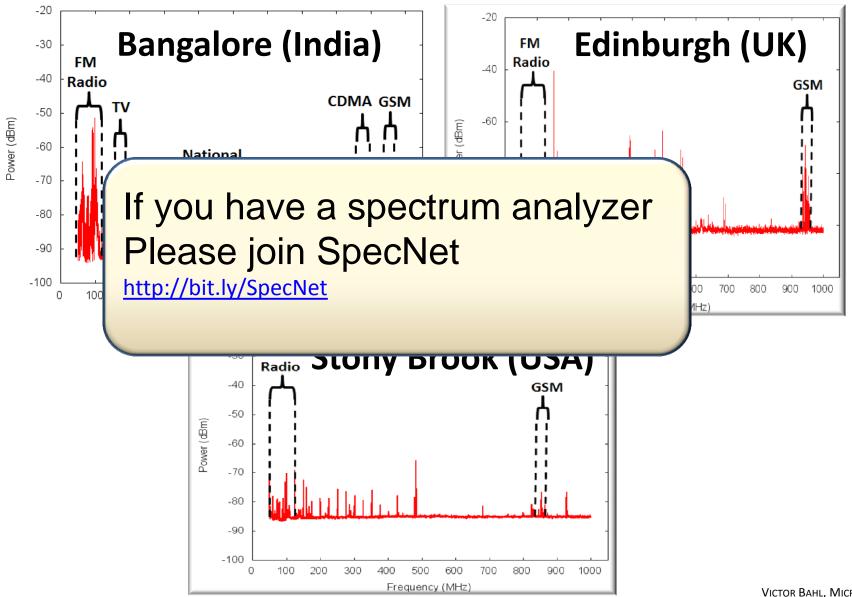
- Volunteering spectrum analyzer (SA) owners register and connect to SpecNet
- SA owners specify times of public usage
- Connect to SpecNet server

Users

- Use SpecNet API to write applications
- SpecNet API provides an easy to use abstraction layer implemented as XML-RPC for flexibility
- Can be written in any language that supports XML_RPC , C#, Pearl etc.



Listing 1: Code snippet for remote measurement.


connect to SpecNet server
apiServer = xmlrpclib.ServerProxy(
 "http://122.166.44.139:3000/SNAPI/API.rem",
 allow_none=True);

Find devices from region of interest
devices = APIServer.GetDevices(
 [55.944350, -3.187745, 500.0], None);
for device in devices:
 power_vals = APIServer.GetPowerSpectrum
 device['ID'], Fs, Fe, 1e3);

MSR's SpecNet Operation

MSR's SpecNet Operation

VICTOR BAHL, MICROSOFT

DySpan 2010 Announcement

http://whitespaces.msresearch.us

<primary user[], signal strength[] at location>

Microsoft Research WhiteSpaceFinder

Current Status = Loaded New Results. Time taken = 1 s

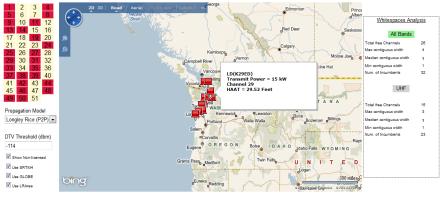
36th St and 148th NE, Redmond, WA Find Address Show nearby incumbents

	Туре	<u>CallSign</u>	<u>Channel</u>	Signal Strength (dbm)	TX Power (kW)	HAAT (Ft)	<u>Distance</u> (miles)	Elevation Data Source	Propagation Mode	Comments
Select	DTV	KMYQ	25	-19.2	1000	951.2	7.854	SRTM41	Line-Of-Sight Mode	
Select	DTV	KOMO-TV	38	-22.9	870.9	849.5	9.781	SRTM41	Line-Of-Sight Mode	
Select	DTV	KCTS-TV	9	-26.7	21.87	816.7	7.875	SRTM41	Line-Of-Sight Mode	
Select	DTV	KSTW	11	-27.1	100	904.2	7.896	SRTM41	Line-Of-Sight Mode	
Select	DTV	KWDK	42	-33.1	144.5	2279	12.46	SRTM41	Line-Of-Sight Mode	
Select	DTV	KWPX-TV	33	-36.8	398.1	2348	12.46	SRTM41	Line-Of-Sight Mode	
Select	DTV	KCPQ	13	-38.9	30.19	2000	31.57	SRTM41	Line-Of-Sight Mode	
Select	DTV	KUNS-TV	50	-40.3	239.8	2358	12.48	SRTM41	Line-Of-Sight Mode	
Select	DTV	KBTC-TV	27	-42.3	100	770.8	30.4	SRTM41	Line-Of-Sight Mode	
Select	DTV	KPST	44	-43.3	239.8	2328	12.46	SRTM41	Line-Of-Sight Mode	

Features

- Configurable parameters
 - Propagation models: L-R, Free Space, Egli
 detection threshold (-114 dBm by default)
- Includes analysis of white space availability

April 7 2010


DySpan 2011 Update: Internationalization

http://whitespaces.msresearch.us

Now supports UK, Finland, Singapore & Hong Kong

<primary user[], signal strength[] at location>

Microsoft Research WhiteSpaceFinder

Current Status = Loaded New Results. Time taken = 1 s

36th St and 148th NE, Redmond, WA Find Address Show nearby incumbents

	Туре	<u>CallSign</u>	<u>Channel</u>	Signal Strength (dbm)	TX Power (kW)	HAAT (Ft)	<u>Distance</u> (miles)	Elevation Data Source	Propagation Mode	Comments
Select	DTV	KMYQ	25	-19.2	1000	951.2	7.854	SRTM41	Line-Of-Sight Mode	
Select	DTV	KOMO-TV	38	-22.9	870.9	849.5	9.781	SRTM41	Line-Of-Sight Mode	
Select	DTV	KCTS-TV	9	-26.7	21.87	816.7	7.875	SRTM41	Line-Of-Sight Mode	
Select	DTV	KSTW	11	-27.1	100	904.2	7.896	SRTM41	Line-Of-Sight Mode	
Select	DTV	KWDK	42	-33.1	144.5	2279	12.46	SRTM41	Line-Of-Sight Mode	
Select	DTV	KWPX-TV	33	-36.8	398.1	2348	12.46	SRTM41	Line-Of-Sight Mode	
Select	DTV	KCPQ	13	-38.9	30.19	2000	31.57	SRTM41	Line-Of-Sight Mode	
Select	DTV	KUNS-TV	50	-40.3	239.8	2358	12.48	SRTM41	Line-Of-Sight Mode	
Select	DTV	KBTC-TV	27	-42.3	100	770.8	30.4	SRTM41	Line-Of-Sight Mode	
Select	DTV	KPST	44	-43.3	239.8	2328	12.46	SRTM41	Line-Of-Sight Mode	

Collaborators

Harmonization between

heterogeneous white

space networks

Security & Privacy In white space networks

Features

- Configurable parameters
 - -Propagation models: L-R, Free Space, Egli
 - -detection threshold (-114 dBm by default)
- Includes analysis of white space availability
- Internationalization of TV tower data
- Protection for MICs by adding as primary user

Chanel occupancy White space mesh networks database design & related for rural communities issues

Now Grandma is on our side....

NAB takes fight against "white space" broadband to the airwaves

Eric Bangeman | Last updated: 3 years ago

Poor grandma's picture is breaking up due to interference from wireless broadband

First White Spaces Access Point **PCWorld** Gives Grandma the Internet

John Cox, NetworkWorld , Apr. 19, 2011

Houston Grandma Gives White Space Broadband a Spin

Built on the shoulders of giants...

Researchers

- Ranveer Chandra
- Krishna Chintalapudi
- Thomas Moscibroda
- Bozidar Radunovic
- Kun Tan
- Yongguang Zhang

Students

- Rohan Narayan Murty (Harvard)
- George P. Nychis (CMU)
- Eeyore Wang (CMU)
- Yuan Yuan (UMD)

Policy & Strategy

- Paula Boyd
- Paul Garnett
- Pierre de Vries (Silicon Flatirons Center)

Open Source Research

Тес	chnology	Publication		
1.	White Space Networking without sensing	DySPAN 2011		
2.	Protecting integrity of WS Spectrum Measurements	NDSS 2011		
3.	Co-existence with wireless microphones	MSR Tech Report		
4.	Harmonious operation in heterogeneous environment	In-preparation		
5.	Enhancements to the software stack	N/A		
6.	Fast discovery & connectivity in ad hoc mode	In-preparation		
7.	Secure collaborative sensing	DySPAN 2010		
8.	Temporal analysis & Spectrum assignment for AP Operation	SIGCOMM 2009 (Best paper)		
9.	Dynamic channel width operation	SIGCOMM 2008		
10.	Load aware spectrum distribution	ICNP 2008		
11.	Dynamic time spectrum blocks	MobiHoc 2007		
12.	Control channel medium access protocol	DySPAN 2007		
13.	Spectrum leasing	DySPAN 2006		
14.	Separation of control & data	BroadNets 2006		

Thanks!

bahl@microsoft.com

Victor Bahl, Microsoft

Wireless Connectivity over Unlicensed Frequencies

Popular Name	Associated Standard	Frequencies	Bandwidth	Speed	Range	Uses	World -Wide
Wi-Fi	 IEEE 802.11 {b, g, a, n} 	 2.4 – 2.4835 GHz 5.15 – 5.35 GHz 5.725 – 5.825 GHz 	83.5 MHz300 MHz	 54 – 600 Mbps / 22 MHz - 40 MHz 	 100-200 m 50 – 150 m 	LAN	Yes
Bluetooth	• IEEE 802.15.1	• 2.4 – 2.4835 GHz	• 83.5 MHz	 721 Kbps 1 - 3 Mbps 	• 10 m	Cable Repl.	Yes
Wireless USB	• WiMedia	• 3.1 – 10.6 GHz	• 7.5 GHz Underlay	 480 Mbps 100 Mbps	• 3 m • 10 m	Cable Repl.	US only
Zigbee	• IEEE 802.15.4	 902–928 MHz 2.4 – 2.4835 GHz 833 MHz (EU) 	 26 MHz 83.5 MHz	 250 Kbps 40 Kbps 20 Kbps	• 50 m	PAN	Yes
RFID	• IEEE 802.15.4f	 UWB 2.4 – 2.4835 GHz 433.05 - 434.79 MHz 	83.5 MHz1.75 MHz	• Very low	• 1-2 m	NFC	Yes
WAVE – DSRC*	• IEEE 802.11p	• 5.85 – 5.925 GHz	 75 MHz (US) 30 MHz (EU) 	 6 - 27 Mbps / 10 MHz 	• 300 -1000 m	Vehicular	US & EU
WhiteFi	 IEEE 802.11af IEEE 802.22 ECMA TC48-TG1 	 Opportunistic – VHF & UHF TV Bands 	• 0 – 180 MHz	 24 Mbps / 6 MHz 	• 1-5 miles	WAN	US only
60 GHz	 WirelessHD WiGig IEEE 802.11ad IEEE 802.15.3c 	• 57 – 64 GHz	• 7 GHz	• 6-8 Gbps / 2.16 GHz	• 5 – 10 m (LOS)	Cable Repl.	Yes