
Computer
Systems

G. Bell, D. Siewiorek,
and S. H. Fuller, Editors

A Terminal-Oriented
Communication
System
Paul G. Heckel
Interactive Systems Consultants
Butler W. Lampson
Xerox Palo Alto Research Center

This paper describes a system for full-duplex
communication between a time-shared computer and
its terminals. The system consists of a communications
computer directly connected to the time-shared system,
a number of small remote computers to which the
terminals are attached, and connecting medium speed
telephone lines. It can service a large number of
terminals of various types. The overall system design is
presented along with the algorithms used to solve three
specific problems: local echoing, error detection and
correction on the telephone lines, and multiplexing of
character output.

Key Words and Phrases: terminal system, error
correction, multiplexing, local echoing, communication
system, network

CR Categories: 3 .81 , 4 .31

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for. Computing Machinery.

Authors' present addresses: P.C. Heckel, Interactive Systems
Consultants, P.O. Box 2345, Palo Alto, CA 94304; B.W. Lampson,
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304. The work described in this paper was done while
the authors were employed by the Berkeley Computer Corporation,
Berkeley, Calif.

486

1. Introduction and Overview

A number of computer communication systems
have been developed in the last few years. The best
known such system is the Arpanet , which provides a
50-kilobit network interconnecting more than 40 com-
puters [1-3]. By contrast, the system described in this
paper connects computers, with terminals, rather than
with each other. Such terminal networks are of interest
because there are many requirements for connecting a
number of geographically distributed terminals with a
centrally located computer, and because terminal net-
works can use medium speed (12400-9600 baud) tele-
phone lines which have reasonable cost and wide avail-
ability. Another system tackling essentially the same
problem is Tymnet [5], which was developed at about
the same time as the system described here. Of course,
a general-purpose network like the Arpanet can (and
does) carry terminal traffic [4].

Our system was designed to connect (presumably
remote) low and medium speed devices, such as tele-
types and line printers, to the Berkeley Computer Cor-
poration's Bcc-500 computer system. The basic service
provided is a full-duplex channel between a user's ter-
minal and his program running on the BCC-500 CPU.
The design objectives were to make the system efficient
in the use of bandwidth and resistant to telephone line
errors, while keeping it flexible so that a wide variety of
devices could be handled.

The 'paper provides an overall description of what
the Bcc terminal system does and how it does it. In
addition, it presents in detail the solutions to three
specific problems: local echoing (see Section 2); error
detection and correction on the multiplexed telephone
line (see Section 4.1); and output multiplexing (see
Section 4.2).

The structure of the system is shown in Figure 1.
The hardware components, named along the heavy
black line, are

- A CPU on which user programs execute;
- A central dedicated processor called the CHIO

which handles all character-oriented input-output
to the CPU;

- A number of small remote computers called c o n -

c e n t r a t o r s to which terminals are connected, either
directly or via standard low-speed modems and
telephone lines; and

- L e a s e d voice-grade telephone lines with medium-
speed (e.g. 4800 baud) modems which connect the
concentrators to the CHIO.

The system is organized as a collection of parallel
processes which communicate by sending messages to
each other. In some cases the processes run in the same
processor and the parallelism is provided by a scheduler
or coroutine linkage, but it is convenient to ignore such
details in describing the logical structure. Figure 1
shows the major processes involved in providing a
channel from a user program to a terminal and back,

Communications July 1977
of Volume 20
the ACM Number 7

and indicates how they are interconnected.
We describe the components of the system in turn,

starting with the user 's program and working out to-
ward the terminal.

2. The User Interface

In this section we focus our attention on a single
user at a terminal. The terminal is attached to a concen-
trator which sends characters to, an~t receives charac-
ters from, a user program running on the CPU. The
terminal system is full-duplex: the input and output
channels for a terminal are independent except that
input characters may be echoed into the corresponding
output channel. In an ideal full-duplex system, all echo-
ing of characters would be done by the user program in
the CPU, for three reasons:

(1) The program can omit an echo, echo a different
character, or insert extra characters which make
the typescript more readable.

(2) The user can type ahead of the program's responses
and be sure that his typing is properly combined
with the responses, so the printing on the typescript
records the logical order of the interaction as seen
by the program, rather than the chronological or-
der as seen by the user.

(3) There is some valuable error checking since it is
almost certain that, if the character the user thinks
he typed is the one he sees echoed, then the pro-
gram saw the same character and not some garbled
version of it.

Unfortunately this ideal is impractical. If a user
program were activated to echo each character, the
system overhead would be large and the response time
would be long. Even if the echoing were done centrally
in the C H I O , the response time would still be long,
although the overhead would then be acceptable. With
a little care, however, the system can be designed to
simulate the ideal while avoiding these problems.

The basic method is to specify a set of break charac-
ters which, like a pause in conversation, indicate points
at which the user might expect a response. Such a set is
called a break set. The terminal system then knows
that, if a break character has not yet been typed, the
input cannot elicit a response from the computer . This
fact has four useful consequences:
(1) Characters can be echoed locally (by the concentra-

tor) up to a break character. If more characters are
typed, they are not echoed locally, but are echoed
centrally (by the program or the C H I O) until local
echoing can be resumed.

(2) Input characters need not be sent from the concen-
trator to the C H I O until a break character is typed.

(3) The user process waiting for input need not be
activated until a break character arrives (or the
input buffer is almost full).

487

(4) The break character provides a natural boundary
for blocks of characters delivered from the C H I O
to the CPU.

User programs can specify and change the current
break set, a copy of which is kept in both the C H I O and
the concentrator. We defined four break sets: (a) no
characters; (b) all control characters, including carriage
return; (c) all nonalphanumerics; (d) all characters. In
addition to the break set, there are two flags which the
user program can control: DontEcho prevents charac-
ters from being echoed; it is set when a password is
being typed, for example. DontEchoBreak prevents
break characters from being echoed.

For example, a subsystem whose commands end
with a carriage return can call for break set (b), and all
echoing will be done in the concentrator until a carriage
return or control (editing) character is typed. If the user
waits for the computer ' s response, his next input will be
immediately echoed by the concentrator because local
echoing will have been resumed. If, however, he con-
tinues to type ahead, taking his editing for granted or
typing a list of commands, these characters will not be
echoed until they are read by the computer . Thus the
output produced during a console interaction will re-
cord the interaction as seen by the program; no record
of typing ahead will exist.

Certain aspects of this scheme are straightforward
to implement. Since the break sets are kept in both the
concentrator and the C H I O , the C H I O determines
which characters were echoed in the concentrator by
using the same algorithm that the concentrator used.
The break set is changed by sending a message to the
concentrator, which specifies the new set. The concen-
trator responds by changing its set and immediately
returning a message which tells the C H I O to change its
set. Both parties know that any input characters which
precede the return message use the old set, and any

Fig. 1. Structure of the terminal system.

There is one copy of e~ch of these components
for each concentrator

- ~ - cp~ | Chio | 4~00 ha.d ,e,o-

line Concentrator Local tele- phone ~ | pl ~User mm

Components which serve many channels are bold; those which serve only

one channel are light. M stands for modem.

Communications July 1977
of Volume 20
the ACM Number 7

which follow it use the new one. The changing of the
break sets is synchronized; i.e. it occurs at the same
point in the input stream for each machine.

Switching between central and local echoing is not
so simple. There are three points at which echoing can
Occur"

- W h e n the character is delivered to the user pro-
gram (actually the echoing is done by the C H I O
when it delivers the character);

- I n the C H I O when the character is received from
the concentrator if the program has relinquished
its interest in echoing, but the concentrator has not
yet taken it up;

- I n the concentrator when the character is typed.

The possible transitions in the locus of responsibility for
echoing are: concentrator- to-program, program-to-
C H I O and CHIO- to -p rogram, and CHIO-to-concen-
trator. We must ensure that no echos are lost, dupli-
cated, or improperly delayed in any of these transi-
tions.

The concentrator- to-program transition is easy: The
only active agent is the user typing; so there is no
possibility of conflicting decisions being made simulta-
neously. The transition occurs whenever the concentra-
tor is echoing and a break character appears in the
input stream. The CHIO- to -p rogram transition (when-
ever the C H I O is echoing and a break character ap-
pears) and the p rogram- to -CHIO transition (whenever
the program tries to read and there is no input waiting)
are also easy because the program is waiting for the
C H I O when they occur, and thus they can be atomic
actions.

The CHIO-to-concent ra tor transition, on the other
hand, is tricky, because the C H I O can be telling the
concentrator to resume echoing at the same time that
the concentrator is sending off some newly typed, un-
echoed, characters to the C H I O . When this happens,
the concentrator cannot obey the C H I O ' s c o m m a n d -
it has already sent the C H I O an unknown number of
characters which must be echoed before any new char-
acters can be echoed.

When the C H I O sends a command to resume local
echoing at some time tl, it is acting on information
about the state of the user 's input which is derived from
the input characters it has received from the concentra-
tor. If the last character which has been received in the
C H I O by time tl was sent by the concentrator at t ime to,
the C H I O is acting in ignorance of anything which
happened after to. The interval between to and the time
tz at which the concentrator receives the command to
resume echoing will be called the hiatus. If any charac-
ters from the terminal are passed from the concentrator
to the C H I O during the hiatus, it is not possible to
resume local echoing in a straightforward way.

Local echo resumption thus requires first detecting
when characters are input during the hiatus and second
doing something about it. Detect ion requires telling the
concentrator the last input character echoed from the

488

C H I O so that the concentrator can tell whether any
more characters have arrived since then. We do this by
sequence numbering the input characters (mod 16 be-
cause we convinced ourselves that no more than 15
characters could be in the pipe, i.e. the bold portions of
Figure 1, during the hiatus). The numbers increment
independently for each channel, and we make sure that
both machines attach the same number to each charac-
ter, as described below.

Now whenever the C H I O wants the concentrator to
resume echoing, it sends a Request Echo Resumpt ion
(rer) command, together with the character sequence
number (cseq) of the last character it received (which
must have been echoed already). When the concentra-
tor gets the rer , it determines whether the last character
from the terminal which it has sent to the C H I O had
the same cseq. If so, it resumes local echoing and sends
the C H I O a Resume Echo (rec) message. If not, it
continues not to echo; the characters which must have
been input during the hiatus will eventually cause the
C H I O to again at tempt echo resumption. However , the
concentrator does send the C H I O a Synchronize Char-
acter Numbers (csync) message with its current cseq,
which the C H I O uses to reset its copy of cseq in case
the cseqs have gotten out of sync.

The efficiency of this scheme depends upon the
probability that characters are input during a hiatus. It
is a good scheme if the probability is small, but poor if it
is large because (a) sending extra rers is wasteful, and
(b) the user 's response is sluggish until local echoing is
resumed. The probabili ty that the a t tempt to resume
local echoing will fail is h/i, where h is the expected
duration of the hiatus and i is the expected interval
between the arrival of input characters at the C H I O
during the hiatus. For our system h was about 200
milliseconds and i was at least 4 seconds, so the rer 's
would fail less than 5 percent of the time.

It is interesting to note that i can be increased by
buffering more input characters in the concentrator
before sending them on to the C H I O , although it can-
not be made greater than the interval between break
characters. To take advantage of this increase, the
concentrator must distinguish between buffered char-
acters which have been echoed (the normal case) and
those which have not. When it receives an rer , it must
immediately echo all the characters which have been
buffered but not yet echoed. Our system did not ac-
tually do this.

Another way to solve the echo resumption problem
is for the concentrator to r emember unechoed charac-
ters for a while after sending them to the C H I O , and to
echo all the characters following the one specified by
the eseq when it receives the rer command. This would
get rid of the acknowledgment to the C H I O and the
need to retry, at the cost of some buffering for each
terminal in the c o n c e n t r a t o r - e n o u g h to cover the
maximum round-trip delay in a message sent between
per-terminal processes. This is quite a lot when the

Communications July 1977
of Volume 20
the ACM Number 7

worst case for all the terminals is considered, because
the delay can be very large if a burst of errors on the
4800-baud line forces repeated retransmissions. Our
desire to minimize the amount of buffering for low-
speed terminals led us to reject this method. The prob-
lem of local echo resumption has also been discussed
elsewhere [5].

The foregoing analysis assumes that there are no
interruptions in terminal interactions; i.e. each party
waits for the other to finish, and if the user types ahead,
the terminal system buffers the typing until the com-
puter is ready to listen. While this assumption is valid
most of the time, each party will occasionally wish to
interrupt the other.

The user can interrupt the computer, for example,
to stop a program in an infinite loop, by typing a quit
character, which generates a special signal to the user's
program. Presumably the program will take some ap-
propriate action, such as aborting the current computa-
tion or output. As far as the terminal system is con-
cerned, there is nothing special about the quit se-
quence, except that the CHIO must be able to accept a
command from the CPU to clear the output buffers for
a particular terminal.

A program may also want to interrupt its user, for
example, to notify him that some asynchronous event
such as the printing of a file has been completed. It
could, of course, simply blast out a message, but this
would probably result in an ugly mixture of the user's
input with the characters of the message. More impor-
tant, the program would be unable to tell which of the
input characters came before, in ignorance of, and
which after, in response to, its blast. To solve this
problem, we introduce a control character called tag. If
the program outputs this control character, the concen-
trator turns off local echoing and sends the tag back to
the program. This achieves two things. First, since local
echoing was turned off, the typescript will be readable.
Second, the program can synchronize with its user's
concept of input because it knows that characters re-
ceived after the tag comes back were typed after the tag
was processed by the concentrator. In practice, the
program should wait a few seconds and then send a
second tag to ensure that the user had enough time to
react.

3. The CHIO

The CHIO communicates with the CPU through
memory which both processors can access. Each proc-
essor can also send the other an attention signal. The
CPU sends messages to the C H I O by writing them in
agreed-upon memory locations and then sending the
attention signal. If the CPU expects an immediate re-
sponse from the CHIO, it waits for the response to
appear in another agreed-upon location. Otherwise the
CPU goes about its business. At some later time (e.g.

489

when a break character has arrived or the output buffer
is nearly empty), the CHIO can use the same technique
to send a signal requesting the wakeup of the proper
user program.

The logical interface which the CHIO presents to
the CPU is a collection of buffered simplex data chan-
nels. There is one input channel and one output chan-
nel for each terminal, related only in that input charac-
ters may be echoed into the corresponding output
channel. In addition to its buffering, each channel has
some state which can be read and set by the CPU:
break set, speed and character structure, and the name
of the process to wake up when the channel needs
service.

There are three basic CPU- to-CHIO commands:
ReadString, PeekString, and WriteString. These com-
mands are issues by the supervisor in response to sys-
tem calls made by a user program. ReadString(c, n)
reads, and removes, characters from the CHIO ' s
buffers for channel c. It stops at the first break charac-
ter or the nth character, whichever is first, to ensure
that the reading program won't get more input than it is
prepared to deal with. PeekString (c, n) is identical to
ReadString, except that the characters are not removed
from the buffer. WriteString(c, s) writes string s into the
CHIO's buffer for channel c.

Internally the CHIO has a buffer for each input and
output channel. Each CHIO buffer is a list of 21-
character blocks. If too many of these blocks are being
used by an output channel after a WriteString is com-
pleted, the CHIO will return an indication that the
CPU should send no more characters to this channel.
When this happens, the supervisor will normally block
the user program which is generating the output. When
the CHIO finds that its output buffer is nearly empty, it
will send the program a wakeup so that it can generate
more output. Since all the buffer blocks are allocated
from a common pool, the decision as to when a single
channel is demanding too many of them is based on the
speed of the channel and the current demand for buffer
space.

This scheme, like many other features of the CPU-
to-CHIO interface, requires that the CPU program be
friendly. For this reason, user programs are not allowed
to send commands directly to the CHIO, but must filter
them through the system's supervisor, which does the
necessary error check ing - in this case by blocking
processes which uncooperatively refuse to stop output-
ting when requested.

4. The Communication Link

The communication network consists of one CHIO
connected to several concentrators via 4800-baud tele-
phone lines. Characters go from the CHIO directly to
the destination concentrator; there is no forwarding
capability. The next few sections describe the commu-

Communications July 1977
of Volume 20
the ACM Number 7

nication link between the per-channel processes. This
link consists of the processes shown in bold in Figure 1 ;
it involves the C H I O , one concentrator, and the con-
necting telephone line. It is convenient to divide this
link into two parts:

(1) The Error-Free Communicat ion Link (EFCL),
consisting of (a) identical modules in the C H I O
and concentrator and (b) the connecting telephone
line. Its function is to provide (an acceptable ap-
proximation to) error-f lee transmission of a single
stream of characters between the two machines.

(2) Multiplexing, which converts this single channel
(the EFCL) into separate channels, one for each
terminal plus a few extra for talking to global proc-
esses in the concentrator , such as the process which
reports incoming calls.

The terminal system was designed to know as little
as possible about actual devices. It delivers characters
unaltered f rom the input devices to the CPU, which is
responsible for converting them to the internal charac-
ter set. We considered putting the mapping to an inter-
nal character set in the concentrator. However , we felt
it would be best to keep the translation centralized in
the CPU until we had some experience with the termi-
nal system.

Characters in the range 0-37 octal are used inter-
nally as control characters by the terminal system.
Some of these control characters, like the previously
ment ioned rer, have internal meaning to the terminal
system and will be rejected by the C H I O if the CPU
tries to send them. Others , like tag, can legally be sent
by a user program but will result in some action by the
system. Data characters in this range must be sent as
two characters: the control character shift, followed by
40 plus the desired character. Thus character code 13
would be sent as shift followed by 53. This scheme
allows the system to interface with any 8-bit device, use
8-bit data paths throughout, and still encode its control
messages conveniently. The shift characters are in-
serted and removed by the terminal service processes in
the concentrator and by the user program in the CPU.

4.1 The Error-Free Communication Link
The terminal system is built out of a number of

processes which interact by sending messages to each
other. When the source and the destination of a mes-
sage are in the same machine, it is convenient and
reasonable to assume that the message can be transmit-
ted without error. If the message must pass from one
machine to another, it is still convenient to assume that
there will be no errors, but it is no longer reasonable
unless precautions are taken, since the raw communica-
tion path provided by modems and telephone lines is
liable to errors. An important component of the termi-
nal system, therefore, is the collection of programs and
conventions which construct a virtual, error-free com-
munication link (EFCL) from the real, error-prone

490

one. This name should not be taken too literally, of
course, since the error detection and retransmission
strategy we use can only reduce the frequency of uncor-
rected errors, not eliminate them altogether.

From the viewpoint of its users (the multiplexing
and demultiplexing processes), the EFCL is a full-
duplex channel which processes a character stream seg-
mented into 13-byte messages. It does not interpret
these messages in any way, except that three control
characters must not appear in them: ign, null, and syn.
The two halves of the channel are not entirely inde-
pendent; each half needs the other to return requests
for retransmission when errors are detected.

To minimize the bandwidth used for error control,
only negative acknowledgments, called retransmission
requests (rtrs), are transmitted. A receiver sends an rtr
whenever it receives anything other than a legal mes-
sage. Messages are sequence-numbered within the
EFCL. Message n always follows message n - 1 unless
the EFCL is recovering from an error. Thus the re-
ceiver always knows which message it expects next and
sends an rtr if it gets anything else. The sender saves
each message on a lookback queue until it is sure that it
will not have to retransmit it. This approach uses band-
width more efficiently than a simple positive-acknowl-
edgment scheme, but at the cost of more complex
logic.

The timing information which makes the negative
acknowledgment scheme work is provided in the fol-
lowing way. Each (full-duplex) EFCL contains 32 enve-
lopes in which messages can be sent. The envelopes are
numbered 0 to 31, and they pass back and forth be-
tween the two ends of the link. Note that one conse-
quence of this ar rangement is that data bytes must flow
through the EFCL at the same rate in both directions,
within the slop provided by the 32 windows. D u m m y
data bytes are supplied if necessary to balance the flow.

If a sender puts a message into envelope n, it must
keep a copy of the message for possible retransmission
until it gets envelope n back. Once this happens, it
knows that the message was successfully received, and
the copy can be discarded. Envelopes are sent in order,
envelope n + 1 following envelope n (mod 32), except
when a retransmission occurs. The (implicit) positive
acknowledgment of a message is the successful receipt
from the other computer of a message with the same
number, i.e. in the same envelope. Since envelopes are
not explicitly identified except at the start of a retrans-
mission, no bandwidth is used for the positive acknowl-
edgment .

It is possible for all 32 envelopes to be at one end,
and in fact the link is initialized in this state. When this
happens, the other end will be keeping copies of 32
messages (dummy ones at initialization time). Each end
has 32 message buffers, called envelope buffers, each
of which is permanent ly associated with a particular
envelope. When envelope n is present , then envelope
buffer n is free; when envelope n is absent, then enve-

Communications July 1977
of Volume 20
the ACM Number 7

lope buffer n contains a copy of the message which was
sent in that envelope.

Free envelope buffers, which correspond to availa-
ble envelopes, are kept on a free queue; full ones
waiting for transmission are kept on the output queue;
and full ones that have been sent but whose receipt has
not been acknowledged (i.e. whose envelope has not
yet come back) are kept on the lookback queue. The
concatenation of the free, lookback, and output queues
always contains all 32 envelope buffers, and buffer n is
always followed in this list by buffer n + l (mod 32).
Input messages are stored in a different set of buffers,
called in-buffers. These have no permanent numbers .

When either end of the EFCL detects an error , it
resets the receiver to wait for resynchronization of the
line. The sender stops what it is doing and sends a
resynchronization message, followed by a request for
retransmission (rtr) of the next envelope the receiver is
expecting. The sender then transmits idle (ign) charac-
ters until an rtr arrives f rom the other end, at which
point it sends a retransmission acknowledgement (rta),
followed by the usual s tream of envelopes, beginning
with the one which was requested. In the meant ime,
the other end is doing the same thing. The remainder of
this section describes the implementat ion of this
scheme.

Figure 2 is an idealized picture of the EFCL ' s struc-
ture, in which the boxes represent processes, the
dashed connections are coroutine linkages, and the
diamonds are queues connecting modules which can
execute in parallel. We proceed by describing each
process in turn.

Out takes the envelope buffer f rom the front of the
free queue (the next available envelope) and puts into
it a 13-byte block which it gets from its user and a 2-
byte checksum which it calculates. It then puts this
envelope buffer on the end of the output queue (from
which it will be read by Tr).

Tr takes an envelope buffer from the front of the
output queue and does two things with it. First, it
outputs the buffer 's contents to the hardware; if the
output queue is empty , Tr sends ign bytes which are
ignored by the receiver. Second, Tr puts the buffer on
the end of the lookback queue if it is an envelope buffer
(it could be an rtr or rta). This envelope buffer will be
moved from the lookback queue to the end of the free
queue when its envelope comes back. If a retransmis-
sion request (rtr) is received before this happens, how-
ever, the envelope buffer will be put back on the output
queue.

Read takes characters f rom the input hardware,
recognizes messages, and puts them on the read queue.
Its life is complicated by the need to parse messages
from the s t ream of garbage which may be arriving over
the telephone line. The hardware helps by recognizing
a string of more than 16 zero bits as part of a resyn-
chronization sequence. The first 16 zero bits are passed
on in data bytes in the usual way; note that the byte

491

Fig. 2. Error-free communication link.

S e n d e r

R e c e i v e r

with 8 zero bits is the null byte and that at least one null
byte will result f rom 16 zero bits. If there are more zero
bits, they are absorbed by the hardware until a one bit
appears. This bit is used to define byte boundaries in
such a way that if a syn character is the first thing
sent after a string of nulrs, then it will be correctly
received.

Read looks for a syntactically correct, properly
checksummed block (15 non-null bytes after igns are
filtered out). If it sees such a block, Read puts it into an
in-buffer which it appends to the read queue. If it sees
anything else, it puts an error block on the read queue,
throws everything away until the sychronization se-
quence null syn appears, and then starts looking for a
correct block again.

Rcv is a little more complicated. It can find one of
four things on the read queue: a data block (with no
errors), an rtr (retransmission request) , an rta (retrans-
mission acknowledgment) , or an error block (anything
else, but most likely a block with a bad checksum). Rcv
can be in one of three states: expecting a data block,
expecting an rta , or waiting for an rtr. Rcv takes an in-
buffer from the front of the read queue. Then:

(1) I f R c v expects and gets a data block, it (a) puts
the in-buffer on the end of the input queue and (b)
moves the envelope buffer on the front of the lookback
queue to the end of the output free queue, thus record-
ing the positive acknowledgment that the correspond-
ing envelope h a s b e e n received at the other end of the
link. Rcv will still expect data blocks.

(2) If Rcv expects and gets an rta for envelope n~n
(for which it had previously sent out an rtr in case (4),
Rcv expects data block nin.

(3) If Rcv is waiting for an rtr, it discards anything
else. When an rtr arrives for block nout, an rta for
envelope nou t is appended to the output queue. Buffer
r/ou t must be on the lookback queue; it and all its
successors on the queue are appended to the output
queue, which is initially empty, except perhaps for the
rtr put on by case (4). Rcv then expects an rta for
envelope n i n , which was determined in case (4). Note
that an rtr on the read queue will always be preceded by
an error block; so the actions of case (4) are always
taken just before those of this step.

(4) Otherwise Rcv deletes any rtrs or rtas on the

Communications July 1977
of Volume 20
the ACM Number 7

output queue and moves any envelope buffers to the
end of the lookback queue. It puts a synchronization
block (see Read) on the now empty output queue,
which will force the Read at the other end of the link to
synchronize. Then it generates an rtr for the envelope
nin whose buffer is on the front of the lookback queue,
or on the front of the free queue if the lookback queue
is empty, and puts this on the output queue. Rcv now
expects an rtr.

In takes an in-buffer from the input queue, delivers
its 13 data bytes to the user, and returns the in-buffer to
the input free queue.

Finally, we clear up a loose end. The scheme just
described works as long as no rtrs or rtas are lost. This
case is handled as follows: whenever an error is de-
tected, a timer is set (or reset if it is already set) to
trigger in 300 milliseconds. This timer is turned off
when an rta is received. If the timer goes off first,
however, Rcv is forced into case (4), thus ensuring a
new attempt to resume normal communication.

The EFCL is based on the assumption that errors
occur infrequently. If there are no errors on the line,
the only inefficiency is represented by the check char-
acters. When an error is detected, however, the EFCL
stops transmitting data blocks for two block times plus
a round-trip time on the telephone line, or about 100
milliseconds. Since available telephone lines and mo-
dems promise no more than 1 error per 105 bits, we can
expect one error every 20 seconds on a 4800-baud line,
or an efficiency of 99.5 percent.

4.2 Multiplexing
The choice of methods for converting the single

EFCL channel into a channel for each terminal is domi-
nated by the demands placed on two scarce resources:
bandwidth on the EFCL and buffer space in the CHIO
and the concentrator. Input multiplexing is fairly easy
to handle because the volume of input is low, and the
CHIO has a large amount of buffer space which can be
shared among the terminals attached to all the concen-
trators. Output is hard because the volume is large,
bandwidth must be shared equitably, delays in starting
output to any terminal must be short, and the buffering
done in the concentrator should not be too great.
Available telephone lines and modems provide the
same amount of EFCL bandwidth in both directions;
thus the efficient utilization of bandwidth is more im-
portant in the output direction than in the input direc-
tion.

A basic principle underlying the system is that char-
acters are sent only if the receiving computer can accept
them. There is no provision for transmission of control
messages between the processes which handle single
terminals, except for the special case of local echo
resumption.

This principle causes no trouble for input multiplex-
ing because the CHIO "always" has enough buffer
space to store the demultiplexed input character

492

streams. The input data rate is usually low, and the user
doesn't type ahead very far. Futhermore, the maximum
interval between break characters is short (about 150
characters), and since the concentrator loses control of
echoing at a break character, the C H I O can discard
input beyond the break character, replacing it with an
overflow indicator. When the CPU sees this indicator,
it can respond appropriately so that the user will never
be in doubt about which input was kept and which was
thrown away. This will only happen if the user program
is responding very slowly and the user is typing ahead
regardless. Of course mechanical input devices such as
paper tape readers have quite different properties, so a
program which wants to input from such a device must
ask the system for extra CHIO buffer space.

For output multiplexing we must be more careful
because the user program can produce characters very
fast, and we do not want to have much buffering in the
concentrator. Furthermore, we cannot send output in
large blocks because this causes excessive delay in
sending to terminals whose output happens to get
caught behind a few of these blocks. As a consequence,
we must regulate the average rate at which the C H I O
sends characters to a terminal so that it is only slightly
less than (ideally equal to) the rate at which the termi-
nal can take them. To minimize buffering in the con-
centrator and avoid excessive startup delays, the inter-
val over which flow averaging is done should be as short
as possible. Finally, we should take advantage of the
fact that output messages tend to be quite long.

Input multiplexing is simple and straightforward.
The input stream carries a sequence of messages, each
of which consists of a burst marker (bm), a device
number, and a sequence of input characters terminated
by the next bm. Input for a device is not sent to the
CHIO until either (a) the input buffer is almost full or
(b) a break character has been typed. Thus bursts of
several characters can be sent even for low-speed de-
vices. A bm immediately followed by another bm
serves as an idle message if there are no data to send.

4.2.1 The Meta-Multiplexing Algorithm. The out-
put multiplexing algorithm is based on the simple fact
that output messages tend to be long. Another way to
say this is that the set of active channels, on which
output is in progress, changes slowly relative to the rate
at which characters can be transmitted along these
channels. For simplicity, we begin by considering an
interval of time during which this set doesn't change at
all. If sender and receiver agree on which channels are
transmitting and on the order in which they will share
the channel, we don' t have to transmit any multiplexing
information at all. This is a form of time-division multi-
plexing, in which the rules for allocating time slots may
be" arbitrarily complex.

We can split the multiplexer and demultiplexer each
into two modules, a Mere-Multiplexer and a Bandwidth
Allocator in the sender, and a Meta-Demultiplexer and

Communications July 1977
of Volume 20
the ACM Number 7

an identical allocator in the receiver. The meta-algo-
rithm requires the allocator to determine which channel
owns each character position in the EFCL stream. The
sole constraint on the algorithm used by the allocator is
that is must reference only state information which
exists in both sender and receiver, and which has the
same value in the sender when the sender is process-
ing the ith character in the EFCL stream as it does
in the receiver when the receiver is processing that
character.

The role of the meta-algorithm is to deliver each
character to the correct channel, and it will do this as
long as the Bandwidth Allocator operates identically in
the sender and the receiver. Thus the meta-algorithm is
independent of the allocator in the following sense. The
role of the allocator is to assign the proper amount of
bandwidth to each channel. If it does this improperly,
the channels may get too much or too little bandwidth,
but the multiplexing will still be correct; i.e. every
character will still be delivered to the channel on which
it was sent.

In reality, of course, the set of active output chan-
nels is not fixed, but the scheme can be easily extended
to the more general case of a slowly varying set of
active channels. If the Meta-Multiplexer wants to add a
new active channel, it adds the channel to the set of
active channels and sends the Demultiplexer an Insert
New Channel (inc) character, followed by the number
of the channel being activated. The Meta-Demuiti-
plexer, when it gets the inc message, adds the channel
to its set of active channels and otherwise ignores the
message.

Similarly, when the Meta-Multiplexer finds that
there are no more characters for an active channel, it
deactivates the channel by removing it from the active
set and sending a Delete Old Channel (doc) character.
The Meta-Demultiplexer, when it gets the doc, likewise
removes the channel from its active set, but otherwise
ignores the message. In this case it is unnecessary to
send the channel number since the doc is sent in place
of a data character and the receiver therefore knows
which channel is involved.

The bandwidth efficiency of a multiplexing algo-
rithm is the percentage of the characters in the multi-
plexed stream which are data characters. The efficiency
of our algorithm is n / (n + 3) , where n is the average
number of characters sent to a channel between an
activation and the next deactivation; usually this is just
the length of an output message from the user's pro-
gram. The 3 is the number of control characters added
to the stream to activate and deactivate the channel.
For example, if n is 22 characters, the efficiency of the
multiplexer is 88 percent.

4 . 2 . 2 T h e B a n d w i d t h Al loca tor . This section de-
scribes the Bandwidth Allocator used in our system. It
was designed around three criteria:

(1) It must have the properties demanded by the meta-

493

algorithm. These properties are implied by the re-
quirement that identical copies of the allocator run
in both machines.

(2) It must not send characters to a device faster than
the device can process them.

(3) It must be able to multiplex devices of any speed. It
is this requirement that makes things tricky.

Time is arbitrarily divided into intervals of t seconds
over which the flow of characters is averaged; in our
system t was 0.1 seconds. For each output channel we
keep the number of characters r which that channel's
terminal can accept in t seconds. Let ir be the integer
part of r and fr the fractional part. For example, a
channel driving a 10 cps terminal has r = 10t, and one
driving an IBM 2741 has r = 14.8t. We also keep the
number of characters c to be sent in the current inter-
val; again let ic be the integer part of c and fc the
fractional part. Initially c is set to zero. The basic idea is
to alternately send ir and ir + 1 characters in each
interval in such a way that the average number of
characters per interval will be just r. The following
algorithm will give ic the values ir and ir + 1 with the
proper distribution.

At the beginning of each interval, we set c = fc + r
for each channel. The Bandwidth Allocator will then
try to send ic characters to the channel in that interval.
It does this in two passes. In the first pass it sends each
active channel min(d, ic) characters. The choice of d
determines the rate to which high-speed devices are
restricted when there is not enough bandwidth to serve
everyone. The allocator will finish this pass even if it
has to stretch the interval beyond t seconds.

If there is still time left in the interval after the first
pass, channels that can accept more than d characters
are sent ic - d characters until the interval is over. This
allows high-speed devices such as printers to take up
the slop in times of plenty, while slowing output to all
devices when saturation occurs. Channels get this extra
service in round-robin fashion, but of course not more
than once per interval.

After the output has been generated for each inter-
val as described above, one or more Check Synchroni-
zation (chs) control characters are inserted to fill out
the interval. This checks and resets the synchronization
of the Multiplexer and Demultiplexer (in theory, loss of
synchronization would only occur if the EFCL failed to
detect an error) and provides padding if there is no
output to do.

5. T h e Concentrator

The concentrator was designed to:

- Efficiently handle input and output to a large num-
ber of low-speed (up to 300-baud) devices;

- P r o v i d e flexibility, especially in interfacing with a
variety of devices;

Communications July 1977
of Volume 20
the ACM Number 7

- B e controllable from the CPU so that opera tor
intervention is not required except in case of hard-
ware malfunction.

The concentrator is implemented by a small com-
puter which has specialized read-only microcode to
implement the EFCL algorithm, multiplexing, and bit-
scanning for low-speed devices. The rest of the work is
done by a collection of tasks coded in the machine 's
assembly language and scheduled by a simple priority
scheduler.

Low-speed devices are bit scanned by microcode.
The assembled character is echoed if appropriate and
then stored in the input buffer for the device. However ,
if the input buffer is full, which might happen either
because of a communicat ion line malfunction or be-
cause of an unusually heavy load on the Multiplexer,
the character is neither stored nor echoed. Thus the
user does not get false feedback if his character was lost
by the concentrator. The Multiplexer removes charac-
ters from the input buffer and multiplexes them for
transmission to the C H I O when requested to do so by
the EFCL. Output is similar to input: the Demulti-
plexer puts characters in the device's output buffer,
from which they are later removed by the microcoded
output bit scanner. Recall that the Bandwidth Alloca-
tor design ensures that characters will not be delivered
faster than the output bit scanner can dispose of them.

Line printers, card readers, and other devices
whose speed is too high for the bit scanner are handled
differently on the device side of the concentrator . A
device-specific task inputs characters from these de-
vices and stores them in the input buffer for the Multi-
plexer to pick up. Similarly, for each output device, a
task gets characters from the device's output buffer,
where they were put by the Demult iplexer , and outputs
them to its device. These tasks are activated by the
input and output interrupts from the hardware inter-
face for medium-speed devices and by the output de-
multiplexer when it delivers a character. In addition to
interfacing with devices that are not bit scanned, tasks
are used for answering the phone, initializing the con-
centrator, and buffer allocation. Some of these are
done in conjunction with a controlling CPU process,
using one of the channels for communicat ion.

The third function of the concentrator is initializa-
tion from the CPU. This is slightly tricky because we
would like the initialization to work regardless of the
state of the concentrator . Since it is possible for the
concentrator to turn off the hardware interface to the
4800-baud line, or to get into a microcode loop, this is
not entirely practical, but we do quite well at the
expense of putting a glitch into the EFCL. Initialization
proceeds in four steps.

First, to handle the (rare) worst case where the
communicat ion line has been turned off or the concen-
trator is in an unrecoverably bad state, there is a button
on the concentrator which, if pushed, will initialize the
concentrator so that it can be loaded over the EFCL. It

4 9 4

simply causes a branch to the microcode initialization
location.

Second, whenever the EFCL microcode is about to
read an input character from the hardware, it checks
for the control character init. If it gets three of these in
a row (two in a row could be checksum characters), it
does the same initialization as the console pushbutton.
The effect of this initialization is to allow the EFCL and
the Demult iplexer to operate , albeit in a rudimentary
way. It also turns off all tasks, because they cannot be
expected to run properly until their programs and data
have been loaded.

Now the CPU can load the concentrator ' s memory
by sending special messages consisting of a Load Re-
mote Concentra tor (lrc) control character followed by
loading information. Part of the loading information is
a flag that indicates whether tasks should be allowed to
run. Thus tasks can remain turned off until memory has
been properly set up and then turned on with a last lrc
so that a just loaded initialization task can run. Finally,
this task can interact with the CPU to complete the
initialization.

6. Some Facts

The concentrator contains about 500 microinstruc-
tions, each 82 bits wide, which implement the EFCL,
multiplexing, low-speed device service, task schedul-
ing, and an emulator for a standard minicomputer in-
struction set. The C H I O has about 900 microinstruc-
tions. The microcode for the EFCL and the Bandwidth
Allocator is identical in both machines. The concentra-
tor has less microcode than the C H I O because great
effort was expended in minimizing the concentrator
microcode so as to reduce the cost of replicating the
machine. This was less important with the C H I O ,
where efficiency and straightforwardness took prece-
dence.

The system was implemented and run in an experi-
mental mode before the demise of BCC. Since then it
has become fully operat ional on the BCC-500 at the
University of Hawaii , although in a much smaller con-
figuration than was envisioned in the initial design.

Received April 1974; revised September 1975

1. Carr, C.S., et al. Host-host communication protocol in the
ARPA Network. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS Press,
Montvale, N.J., pp. 589-597.
2. Crocker, S.D., et al. Function-oriented protocols for the ARPA
computer network. Proc. AFIPS 1970 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 271-279.
3. Heart, F.E., et al. The interface message processor for the
ARPA computer network. Proc. AFIPS 1970 SJCC, Vol. 36, AFIPS
Press, Montvale, N.J., pp. 551-567.
4. Ornstein, S., et al., The terminal IMP for the ARPA computer
network. Proc. AFIPS 1970 SJCC, Vol. 40, AFiPS Press, Montvale,
N.J., pp. 243-254.
5. Tymes, L. Tymnet: A terminal oriented communication
network. Proc. AFIPS 1971 SJCC, AFIPS Press, Montvale, N.J.,
pp. 211-216.

Communications July 1977
of Volume 20
the ACM Number 7

