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1. Introduction and Overview 

A number of computer communication systems 
have been developed in the last few years. The best 
known such system is the Arpanet ,  which provides a 
50-kilobit network interconnecting more than 40 com- 
puters [1-3]. By contrast, the system described in this 
paper connects computers, with terminals, rather than 
with each other. Such terminal networks are of interest 
because there are many requirements for connecting a 
number of geographically distributed terminals with a 
centrally located computer,  and because terminal net- 
works can use medium speed (12400-9600 baud) tele- 
phone lines which have reasonable cost and wide avail- 
ability. Another  system tackling essentially the same 
problem is Tymnet [5], which was developed at about 
the same time as the system described here. Of course, 
a general-purpose network like the Arpanet  can (and 
does) carry terminal traffic [4]. 

Our system was designed to connect (presumably 
remote) low and medium speed devices, such as tele- 
types and line printers, to the Berkeley Computer  Cor- 
poration's Bcc-500 computer system. The basic service 
provided is a full-duplex channel between a user's ter- 
minal and his program running on the BCC-500 CPU. 
The design objectives were to make the system efficient 
in the use of bandwidth and resistant to telephone line 
errors, while keeping it flexible so that a wide variety of 
devices could be handled. 

The 'paper  provides an overall description of what 
the Bcc terminal system does and how it does it. In 
addition, it presents in detail the solutions to three 
specific problems: local echoing (see Section 2); error 
detection and correction on the multiplexed telephone 
line (see Section 4.1); and output multiplexing (see 
Section 4.2). 

The structure of the system is shown in Figure 1. 
The hardware components,  named along the heavy 
black line, are 

- A  CPU on which user programs execute; 
- A  central dedicated processor called the CHIO 

which handles all character-oriented input-output 
to the CPU; 

- A  number of small remote computers called c o n -  

c e n t r a t o r s  to which terminals are connected, either 
directly or via standard low-speed modems and 
telephone lines; and 

- L e a s e d  voice-grade telephone lines with medium- 
speed (e.g. 4800 baud) modems which connect the 
concentrators to the CHIO.  

The system is organized as a collection of parallel 
processes which communicate by sending messages to 
each other. In some cases the processes run in the same 
processor and the parallelism is provided by a scheduler 
or coroutine linkage, but it is convenient to ignore such 
details in describing the logical structure. Figure 1 
shows the major processes involved in providing a 
channel from a user program to a terminal and back, 
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and indicates how they are interconnected. 
We describe the components  of the system in turn, 

starting with the user 's program and working out to- 
ward the terminal.  

2. The User Interface 

In this section we focus our attention on a single 
user at a terminal. The terminal is attached to a concen- 
trator which sends characters to, an~t receives charac- 
ters from, a user program running on the CPU. The 
terminal system is full-duplex: the input and output 
channels for a terminal are independent  except that 
input characters may be echoed into the corresponding 
output channel. In an ideal full-duplex system, all echo- 
ing of characters would be done by the user program in 
the CPU,  for three reasons: 

(1) The program can omit an echo, echo a different 
character,  or insert extra characters which make 
the typescript more readable.  

(2) The user can type ahead of the program's  responses 
and be sure that his typing is properly combined 
with the responses,  so the printing on the typescript 
records the logical order of the interaction as seen 
by the program,  rather than the chronological or- 
der as seen by the user. 

(3) There is some valuable error checking since it is 
almost certain that, if the character the user thinks 
he typed is the one he sees echoed,  then the pro- 
gram saw the same character and not some garbled 
version of it. 

Unfortunately this ideal is impractical. If  a user 
program were activated to echo each character,  the 
system overhead would be large and the response time 
would be long. Even if the echoing were done centrally 
in the C H I O ,  the response time would still be long, 
although the overhead would then be acceptable.  With 
a little care, however,  the system can be designed to 
simulate the ideal while avoiding these problems.  

The basic method is to specify a set of break charac- 
ters which, like a pause in conversation, indicate points 
at which the user might expect a response. Such a set is 
called a break set. The terminal system then knows 
that, if a break character has not yet been typed,  the 
input cannot elicit a response from the computer .  This 
fact has four useful consequences: 
(1) Characters can be echoed locally (by the concentra- 

tor) up to a break character.  If  more characters are 
typed, they are not echoed locally, but are echoed 
centrally (by the program or the C H I O )  until local 
echoing can be resumed. 

(2) Input characters need not be sent from the concen- 
trator to the C H I O  until a break character is typed. 

(3) The user process waiting for input need not be 
activated until a break character arrives (or the 
input buffer is almost full). 
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(4) The break character provides a natural boundary 
for blocks of characters delivered from the C H I O  
to the CPU.  

User programs can specify and change the current 
break set, a copy of which is kept in both the C H I O  and 
the concentrator.  We defined four break sets: (a) no 
characters; (b) all control characters,  including carriage 
return; (c) all nonalphanumerics;  (d) all characters. In 
addition to the break set, there are two flags which the 
user program can control: DontEcho prevents charac- 
ters from being echoed; it is set when a password is 
being typed, for example.  DontEchoBreak prevents 
break characters from being echoed. 

For example,  a subsystem whose commands end 
with a carriage return can call for break set (b), and all 
echoing will be done in the concentrator  until a carriage 
return or control (editing) character is typed. If the user 
waits for the computer ' s  response,  his next input will be 
immediately echoed by the concentrator  because local 
echoing will have been resumed. If, however,  he con- 
tinues to type ahead,  taking his editing for granted or 
typing a list of commands,  these characters will not be 
echoed until they are read by the computer .  Thus the 
output produced during a console interaction will re- 
cord the interaction as seen by the program; no record 
of typing ahead will exist. 

Certain aspects of this scheme are straightforward 
to implement.  Since the break sets are kept in both the 
concentrator and the C H I O ,  the C H I O  determines 
which characters were echoed in the concentrator  by 
using the same algorithm that the concentrator  used. 
The break set is changed by sending a message to the 
concentrator,  which specifies the new set. The concen- 
trator responds by changing its set and immediately 
returning a message which tells the C H I O  to change its 
set. Both parties know that any input characters which 
precede the return message use the old set, and any 

Fig. 1. Structure of the terminal system. 

There is one copy of e~ch of these components 
for each concentrator 

- ~ -  cp~ | Chio | 4~00 ha.d ,e,o- 

line Concentrator Local tele- phone ~ | pl . . . . . . . . .  ~User mm 

Components which serve many channels are bold; those which serve only 

one channel are light. M stands for modem. 
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which follow it use the new one. The changing of the 
break sets is synchronized; i.e. it occurs at the same 
point in the input stream for each machine. 

Switching between central and local echoing is not 
so simple. There are three points at which echoing can 
Occur"  

- W h e n  the character is delivered to the user pro- 
gram (actually the echoing is done by the C H I O  
when it delivers the character);  

- I n  the C H I O  when the character is received from 
the concentrator  if the program has relinquished 
its interest in echoing, but the concentrator  has not 
yet taken it up; 

- I n  the concentrator  when the character is typed. 

The possible transitions in the locus of responsibility for 
echoing are: concentrator- to-program,  program-to-  
C H I O  and CHIO- to -p rogram,  and CHIO-to-concen-  
trator.  We must ensure that no echos are lost, dupli- 
cated, or improperly delayed in any of these transi- 
tions. 

The concentrator- to-program transition is easy: The 
only active agent is the user typing; so there is no 
possibility of conflicting decisions being made simulta- 
neously. The transition occurs whenever  the concentra- 
tor is echoing and a break character appears  in the 
input stream. The CHIO- to -p rogram transition (when- 
ever the C H I O  is echoing and a break character ap- 
pears) and the p rogram- to -CHIO transition (whenever 
the program tries to read and there is no input waiting) 
are also easy because the program is waiting for the 
C H I O  when they occur, and thus they can be atomic 
actions. 

The CHIO-to-concent ra tor  transition, on the other 
hand, is tricky, because the C H I O  can be telling the 
concentrator  to resume echoing at the same time that 
the concentrator  is sending off some newly typed,  un- 
echoed, characters to the C H I O .  When this happens,  
the concentrator  cannot obey the C H I O ' s  c o m m a n d -  
it has already sent the C H I O  an unknown number  of 
characters which must be echoed before any new char- 
acters can be echoed. 

When the C H I O  sends a command  to resume local 
echoing at some time tl, it is acting on information 
about the state of the user 's input which is derived from 
the input characters it has received from the concentra- 
tor. If  the last character which has been received in the 
C H I O  by time tl was sent by the concentrator  at t ime to, 
the C H I O  is acting in ignorance of anything which 
happened after to. The interval between to and the time 
tz at which the concentrator  receives the command to 
resume echoing will be called the hiatus. If any charac- 
ters from the terminal are passed from the concentrator  
to the C H I O  during the hiatus, it is not possible to 
resume local echoing in a straightforward way. 

Local echo resumption thus requires first detecting 
when characters are input during the hiatus and second 
doing something about it. Detect ion requires telling the 
concentrator  the last input character echoed from the 
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C H I O  so that the concentrator can tell whether  any 
more characters have arrived since then. We do this by 
sequence numbering the input characters (mod 16 be- 
cause we convinced ourselves that no more than 15 
characters could be in the pipe, i.e. the bold portions of 
Figure 1, during the hiatus). The numbers  increment 
independently for each channel, and we make sure that 
both machines attach the same number  to each charac- 
ter, as described below. 

Now whenever  the C H I O  wants the concentrator  to 
resume echoing, it sends a Request  Echo Resumpt ion 
(rer) command,  together with the character  sequence 
number  (cseq) of the last character it received (which 
must have been echoed already).  When the concentra- 
tor gets the rer ,  it determines whether  the last character  
from the terminal which it has sent to the C H I O  had 
the same cseq. If so, it resumes local echoing and sends 
the C H I O  a Resume Echo (rec) message. If not, it 
continues not to echo; the characters which must have 
been input during the hiatus will eventually cause the 
C H I O  to again at tempt  echo resumption.  However ,  the 
concentrator  does send the C H I O  a Synchronize Char- 
acter Numbers  (csync) message with its current cseq, 
which the C H I O  uses to reset its copy of cseq in case 
the cseqs have gotten out of sync. 

The efficiency of this scheme depends upon the 
probability that characters are input during a hiatus. It 
is a good scheme if the probability is small, but poor  if it 
is large because (a) sending extra rers is wasteful, and 
(b) the user 's response is sluggish until local echoing is 
resumed. The probabili ty that the a t tempt  to resume 
local echoing will fail is h/i, where h is the expected 
duration of the hiatus and i is the expected interval 
between the arrival of input characters at the C H I O  
during the hiatus. For our system h was about  200 
milliseconds and i was at least 4 seconds, so the rer 's  
would fail less than 5 percent of the time. 

It is interesting to note that i can be increased by 
buffering more input characters in the concentrator  
before sending them on to the C H I O ,  although it can- 
not be made greater  than the interval between break 
characters. To take advantage of this increase, the 
concentrator  must distinguish between buffered char- 
acters which have been echoed (the normal  case) and 
those which have not. When it receives an rer ,  it must 
immediately echo all the characters which have been 
buffered but not yet echoed. Our  system did not ac- 
tually do this. 

Another  way to solve the echo resumption problem 
is for the concentrator  to r emember  unechoed charac- 
ters for a while after sending them to the C H I O ,  and to 
echo all the characters following the one specified by 
the eseq when it receives the rer command.  This would 
get rid of the acknowledgment  to the C H I O  and the 
need to retry, at the cost of some buffering for each 
terminal in the c o n c e n t r a t o r - e n o u g h  to cover the 
maximum round-trip delay in a message sent between 
per-terminal processes. This is quite a lot when the 
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worst case for all the terminals is considered, because 
the delay can be very large if a burst of errors on the 
4800-baud line forces repeated retransmissions. Our 
desire to minimize the amount of buffering for low- 
speed terminals led us to reject this method. The prob- 
lem of local echo resumption has also been discussed 
elsewhere [5]. 

The foregoing analysis assumes that there are no 
interruptions in terminal interactions; i.e. each party 
waits for the other to finish, and if the user types ahead, 
the terminal system buffers the typing until the com- 
puter is ready to listen. While this assumption is valid 
most of the time, each party will occasionally wish to 
interrupt the other. 

The user can interrupt the computer,  for example, 
to stop a program in an infinite loop, by typing a quit 
character, which generates a special signal to the user's 
program. Presumably the program will take some ap- 
propriate action, such as aborting the current computa- 
tion or output. As far as the terminal system is con- 
cerned, there is nothing special about the quit se- 
quence, except that the CHIO must be able to accept a 
command from the CPU to clear the output buffers for 
a particular terminal. 

A program may also want to interrupt its user, for 
example, to notify him that some asynchronous event 
such as the printing of a file has been completed. It 
could, of course, simply blast out a message, but this 
would probably result in an ugly mixture of the user's 
input with the characters of the message. More impor- 
tant, the program would be unable to tell which of the 
input characters came before, in ignorance of, and 
which after, in response to, its blast. To solve this 
problem, we introduce a control character called tag. If 
the program outputs this control character, the concen- 
trator turns off local echoing and sends the tag back to 
the program. This achieves two things. First, since local 
echoing was turned off, the typescript will be readable. 
Second, the program can synchronize with its user's 
concept of input because it knows that characters re- 
ceived after the tag comes back were typed after the tag 
was processed by the concentrator. In practice, the 
program should wait a few seconds and then send a 
second tag to ensure that the user had enough time to 
react. 

3. The CHIO 

The CHIO communicates with the CPU through 
memory which both processors can access. Each proc- 
essor can also send the other an attention signal. The 
CPU sends messages to the C H I O  by writing them in 
agreed-upon memory locations and then sending the 
attention signal. If the CPU expects an immediate re- 
sponse from the CHIO,  it waits for the response to 
appear in another agreed-upon location. Otherwise the 
CPU goes about its business. At some later time (e.g. 
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when a break character has arrived or the output buffer 
is nearly empty), the CHIO can use the same technique 
to send a signal requesting the wakeup of the proper 
user program. 

The logical interface which the CHIO presents to 
the CPU is a collection of buffered simplex data chan- 
nels. There is one input channel and one output chan- 
nel for each terminal, related only in that input charac- 
ters may be echoed into the corresponding output 
channel. In addition to its buffering, each channel has 
some state which can be read and set by the CPU: 
break set, speed and character structure, and the name 
of the process to wake up when the channel needs 
service. 

There are three basic CPU- to-CHIO commands: 
ReadString, PeekString, and WriteString. These com- 
mands are issues by the supervisor in response to sys- 
tem calls made by a user program. ReadString(c, n) 
reads, and removes, characters from the CHIO ' s  
buffers for channel c. It stops at the first break charac- 
ter or the nth character, whichever is first, to ensure 
that the reading program won't  get more input than it is 
prepared to deal with. PeekString (c, n) is identical to 
ReadString, except that the characters are not removed 
from the buffer. WriteString(c, s) writes string s into the 
CHIO's  buffer for channel c. 

Internally the CHIO has a buffer for each input and 
output channel. Each CHIO buffer is a list of 21- 
character blocks. If too many of these blocks are being 
used by an output channel after a WriteString is com- 
pleted, the CHIO will return an indication that the 
CPU should send no more characters to this channel. 
When this happens, the supervisor will normally block 
the user program which is generating the output. When 
the CHIO finds that its output buffer is nearly empty, it 
will send the program a wakeup so that it can generate 
more output. Since all the buffer blocks are allocated 
from a common pool, the decision as to when a single 
channel is demanding too many of them is based on the 
speed of the channel and the current demand for buffer 
space. 

This scheme, like many other features of the CPU- 
to-CHIO interface, requires that the CPU program be 
friendly. For this reason, user programs are not allowed 
to send commands directly to the CHIO,  but must filter 
them through the system's supervisor, which does the 
necessary error check ing - in  this case by blocking 
processes which uncooperatively refuse to stop output- 
ting when requested. 

4. The Communication Link 

The communication network consists of one CHIO 
connected to several concentrators via 4800-baud tele- 
phone lines. Characters go from the CHIO directly to 
the destination concentrator; there is no forwarding 
capability. The next few sections describe the commu- 
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nication link between the per-channel processes. This 
link consists of the processes shown in bold in Figure 1 ; 
it involves the C H I O ,  one concentrator,  and the con- 
necting telephone line. It  is convenient to divide this 
link into two parts: 

(1) The Error-Free Communicat ion Link (EFCL),  
consisting of (a) identical modules in the C H I O  
and concentrator  and (b) the connecting telephone 
line. Its function is to provide (an acceptable ap- 
proximation to) error-f lee transmission of a single 
stream of characters between the two machines. 

(2) Multiplexing, which converts this single channel 
(the EFCL)  into separate channels, one for each 
terminal plus a few extra for talking to global proc- 
esses in the concentrator ,  such as the process which 
reports  incoming calls. 

The terminal system was designed to know as little 
as possible about  actual devices. It  delivers characters 
unaltered f rom the input devices to the CPU,  which is 
responsible for converting them to the internal charac- 
ter set. We considered putting the mapping to an inter- 
nal character set in the concentrator.  However ,  we felt 
it would be best to keep the translation centralized in 
the CPU until we had some experience with the termi- 
nal system. 

Characters in the range 0-37 octal are used inter- 
nally as control characters by the terminal system. 
Some of these control characters,  like the previously 
ment ioned rer, have internal meaning to the terminal 
system and will be rejected by the C H I O  if the CPU 
tries to send them. Others ,  like tag, can legally be sent 
by a user program but will result in some action by the 
system. Data  characters in this range must be sent as 
two characters: the control character shift, followed by 
40 plus the desired character.  Thus character code 13 
would be sent as shift followed by 53. This scheme 
allows the system to interface with any 8-bit device, use 
8-bit data paths throughout,  and still encode its control 
messages conveniently. The shift characters are in- 
serted and removed by the terminal service processes in 
the concentrator  and by the user program in the CPU.  

4.1 The Error-Free Communication Link 
The terminal system is built out of a number  of 

processes which interact by sending messages to each 
other. When the source and the destination of a mes- 
sage are in the same machine,  it is convenient and 
reasonable to assume that the message can be transmit- 
ted without error.  If the message must pass from one 
machine to another,  it is still convenient to assume that 
there will be no errors, but it is no longer reasonable 
unless precautions are taken,  since the raw communica-  
tion path provided by modems and telephone lines is 
liable to errors. An important  component  of the termi- 
nal system, therefore,  is the collection of programs and 
conventions which construct a virtual, error-free com- 
munication link (EFCL) from the real, error-prone 

490  

one. This name should not be taken too literally, of 
course, since the error detection and retransmission 
strategy we use can only reduce the frequency of uncor- 
rected errors, not eliminate them altogether.  

From the viewpoint of its users (the multiplexing 
and demultiplexing processes), the EFCL is a full- 
duplex channel which processes a character stream seg- 
mented into 13-byte messages. It does not interpret  
these messages in any way, except that three control 
characters must not appear  in them: ign, null, and syn. 
The two halves of the channel are not entirely inde- 
pendent;  each half needs the other to return requests 
for retransmission when errors are detected. 

To minimize the bandwidth used for error control,  
only negative acknowledgments,  called retransmission 
requests (rtrs), are transmitted.  A receiver sends an rtr 
whenever it receives anything other  than a legal mes- 
sage. Messages are sequence-numbered within the 
EFCL.  Message n always follows message n - 1  unless 
the EFCL is recovering from an error.  Thus the re- 
ceiver always knows which message it expects next and 
sends an rtr if it gets anything else. The sender saves 
each message on a lookback queue until it is sure that it 
will not have to retransmit it. This approach uses band- 
width more efficiently than a simple positive-acknowl- 
edgment  scheme, but at the cost of more complex 
logic. 

The timing information which makes the negative 
acknowledgment scheme work is provided in the fol- 
lowing way. Each (full-duplex) EFCL contains 32 enve- 
lopes in which messages can be sent. The envelopes are 
numbered  0 to 31, and they pass back and forth be- 
tween the two ends of the link. Note that one conse- 
quence of this ar rangement  is that data bytes must flow 
through the EFCL at the same rate in both directions, 
within the slop provided by the 32 windows. D u m m y  
data bytes are supplied if necessary to balance the flow. 

If  a sender puts a message into envelope n, it must 
keep a copy of the message for possible retransmission 
until it gets envelope n back. Once this happens,  it 
knows that the message was successfully received, and 
the copy can be discarded. Envelopes are sent in order,  
envelope n + 1 following envelope n (mod 32), except 
when a retransmission occurs. The (implicit) positive 
acknowledgment of a message is the successful receipt 
from the other computer  of a message with the same 
number,  i.e. in the same envelope.  Since envelopes are 
not explicitly identified except at the start of a retrans- 
mission, no bandwidth is used for the positive acknowl- 
edgment .  

It  is possible for all 32 envelopes to be at one end, 
and in fact the link is initialized in this state. When this 
happens,  the other  end will be keeping copies of 32 
messages (dummy ones at initialization time). Each end 
has 32 message buffers, called envelope buffers, each 
of which is permanent ly  associated with a particular 
envelope. When envelope n is present ,  then envelope 
buffer n is free; when envelope n is absent,  then enve- 
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lope buffer n contains a copy of the message which was 
sent in that envelope.  

Free envelope buffers, which correspond to availa- 
ble envelopes,  are kept on a free queue; full ones 
waiting for transmission are kept  on the output queue; 
and full ones that have been sent but whose receipt has 
not been acknowledged (i.e. whose envelope has not 
yet come back) are kept  on the lookback queue.  The 
concatenation of the free,  lookback,  and output queues 
always contains all 32 envelope buffers,  and buffer n is 
always followed in this list by buffer n + l  (mod 32). 
Input messages are stored in a different set of buffers,  
called in-buffers. These have no permanent  numbers .  

When either end of the EFCL detects an error ,  it 
resets the receiver to wait for resynchronization of the 
line. The sender stops what it is doing and sends a 
resynchronization message,  followed by a request for 
retransmission (rtr) of the next envelope the receiver is 
expecting. The sender then transmits idle (ign) charac- 
ters until an rtr arrives f rom the other end, at which 
point it sends a retransmission acknowledgement  (rta),  
followed by the usual s tream of envelopes,  beginning 
with the one which was requested.  In the meant ime,  
the other  end is doing the same thing. The remainder  of 
this section describes the implementat ion of this 
scheme. 

Figure 2 is an idealized picture of the EFCL ' s  struc- 
ture, in which the boxes represent  processes, the 
dashed connections are coroutine linkages, and the 
diamonds are queues connecting modules which can 
execute in parallel. We proceed by describing each 
process in turn. 

Out takes the envelope buffer f rom the front of the 
free queue (the next available envelope) and puts into 
it a 13-byte block which it gets from its user and a 2- 
byte checksum which it calculates. It  then puts this 
envelope buffer on the end of the output  queue (from 
which it will be read by Tr). 

Tr takes an envelope buffer from the front of the 
output queue and does two things with it. First, it 
outputs the buffer 's  contents to the hardware;  if the 
output queue is empty ,  Tr sends ign bytes which are 
ignored by the receiver. Second, Tr puts the buffer on 
the end of the lookback queue if it is an envelope buffer 
(it could be an rtr or rta). This envelope buffer will be 
moved from the lookback queue to the end of the free 
queue when its envelope comes back. If  a retransmis- 
sion request (rtr) is received before this happens,  how- 
ever, the envelope buffer will be put back on the output  
queue. 

Read takes characters f rom the input hardware,  
recognizes messages, and puts them on the read queue.  
Its life is complicated by the need to parse messages 
from the s t ream of garbage which may be arriving over  
the telephone line. The hardware helps by recognizing 
a string of more than 16 zero bits as part  of a resyn- 
chronization sequence. The first 16 zero bits are passed 
on in data bytes in the usual way; note that the byte 
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Fig. 2. Error-free communication link. 

S e n d e r  

R e c e i v e r  

with 8 zero bits is the null byte and that at least one null 
byte will result f rom 16 zero bits. If  there are more zero 
bits, they are absorbed by the hardware until a one bit 
appears.  This bit is used to define byte boundaries in 
such a way that if a syn character is the first thing 
sent after a string of nulrs,  then it will be correctly 
received. 

Read looks for a syntactically correct,  properly 
checksummed block (15 non-null bytes after igns are 
filtered out). If  it sees such a block, Read puts it into an 
in-buffer which it appends to the read queue. If it sees 
anything else, it puts an error block on the read queue,  
throws everything away until the sychronization se- 
quence null syn appears,  and then starts looking for a 
correct block again. 

Rcv is a little more complicated. It can find one of 
four things on the read queue: a data block (with no 
errors),  an rtr (retransmission request) ,  an rta (retrans- 
mission acknowledgment) ,  or an error block (anything 
else, but most likely a block with a bad checksum). Rcv 
can be in one of three states: expecting a data block, 
expecting an rta ,  or waiting for an rtr.  Rcv takes an in- 
buffer from the front of the read queue.  Then: 

(1) I f R c v  expects and gets a data block, it (a) puts 
the in-buffer on the end of the input queue and (b) 
moves the envelope buffer on the front of the lookback 
queue to the end of the output free queue,  thus record- 
ing the positive acknowledgment that the correspond- 
ing envelope h a s b e e n  received at the other end of the 
link. Rcv will still expect data blocks. 

(2) If Rcv expects and gets an rta for envelope n~n 
(for which it had previously sent out an rtr in case (4), 
Rcv expects data block nin. 

(3) If Rcv is waiting for an rtr, it discards anything 
else. When an rtr arrives for block nout, an rta for 
envelope nou t is appended to the output queue.  Buffer 
r/ou t must be on the lookback queue; it and all its 
successors on the queue are appended to the output 
queue,  which is initially empty,  except perhaps for the 
rtr put on by case (4). Rcv then expects an rta for 
envelope n i n  , which was determined in case (4). Note 
that an rtr on the read queue will always be preceded by 
an error block; so the actions of case (4) are always 
taken just before those of this step. 

(4) Otherwise Rcv deletes any rtrs or rtas on the 
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output queue and moves any envelope buffers to the 
end of the lookback queue. It puts a synchronization 
block (see Read) on the now empty output queue, 
which will force the Read at the other end of the link to 
synchronize. Then it generates an rtr for the envelope 
nin whose buffer is on the front of the lookback queue, 
or on the front of the free queue if the lookback queue 
is empty, and puts this on the output queue. Rcv now 
expects an rtr. 

In takes an in-buffer from the input queue, delivers 
its 13 data bytes to the user, and returns the in-buffer to 
the input free queue. 

Finally, we clear up a loose end. The scheme just 
described works as long as no rtrs or rtas are lost. This 
case is handled as follows: whenever an error is de- 
tected, a timer is set (or reset if it is already set) to 
trigger in 300 milliseconds. This timer is turned off 
when an rta is received. If the timer goes off first, 
however, Rcv is forced into case (4), thus ensuring a 
new attempt to resume normal communication. 

The EFCL is based on the assumption that errors 
occur infrequently. If there are no errors on the line, 
the only inefficiency is represented by the check char- 
acters. When an error is detected, however, the EFCL 
stops transmitting data blocks for two block times plus 
a round-trip time on the telephone line, or about 100 
milliseconds. Since available telephone lines and mo- 
dems promise no more than 1 error per 105 bits, we can 
expect one error every 20 seconds on a 4800-baud line, 
or an efficiency of 99.5 percent. 

4.2 Multiplexing 
The choice of methods for converting the single 

EFCL channel into a channel for each terminal is domi- 
nated by the demands placed on two scarce resources: 
bandwidth on the EFCL and buffer space in the CHIO 
and the concentrator. Input multiplexing is fairly easy 
to handle because the volume of input is low, and the 
CHIO has a large amount of buffer space which can be 
shared among the terminals attached to all the concen- 
trators. Output is hard because the volume is large, 
bandwidth must be shared equitably, delays in starting 
output to any terminal must be short, and the buffering 
done in the concentrator should not be too great. 
Available telephone lines and modems provide the 
same amount of EFCL bandwidth in both directions; 
thus the efficient utilization of bandwidth is more im- 
portant in the output direction than in the input direc- 
tion. 

A basic principle underlying the system is that char- 
acters are sent only if the receiving computer can accept 
them. There is no provision for transmission of control 
messages between the processes which handle single 
terminals, except for the special case of local echo 
resumption. 

This principle causes no trouble for input multiplex- 
ing because the CHIO "always" has enough buffer 
space to store the demultiplexed input character 
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streams. The input data rate is usually low, and the user 
doesn't  type ahead very far. Futhermore,  the maximum 
interval between break characters is short (about 150 
characters), and since the concentrator loses control of 
echoing at a break character, the C H I O  can discard 
input beyond the break character, replacing it with an 
overflow indicator. When the CPU sees this indicator, 
it can respond appropriately so that the user will never 
be in doubt about which input was kept and which was 
thrown away. This will only happen if the user program 
is responding very slowly and the user is typing ahead 
regardless. Of course mechanical input devices such as 
paper tape readers have quite different properties, so a 
program which wants to input from such a device must 
ask the system for extra CHIO buffer space. 

For output multiplexing we must be more careful 
because the user program can produce characters very 
fast, and we do not want to have much buffering in the 
concentrator. Furthermore,  we cannot send output in 
large blocks because this causes excessive delay in 
sending to terminals whose output happens to get 
caught behind a few of these blocks. As a consequence, 
we must regulate the average rate at which the C H I O  
sends characters to a terminal so that it is only slightly 
less than (ideally equal to) the rate at which the termi- 
nal can take them. To minimize buffering in the con- 
centrator and avoid excessive startup delays, the inter- 
val over which flow averaging is done should be as short 
as possible. Finally, we should take advantage of the 
fact that output messages tend to be quite long. 

Input multiplexing is simple and straightforward. 
The input stream carries a sequence of messages, each 
of which consists of a burst marker (bm), a device 
number, and a sequence of input characters terminated 
by the next bm. Input for a device is not sent to the 
CHIO until either (a) the input buffer is almost full or 
(b) a break character has been typed. Thus bursts of 
several characters can be sent even for low-speed de- 
vices. A bm immediately followed by another bm 
serves as an idle message if there are no data to send. 

4.2.1 The Meta-Multiplexing Algorithm. The out- 
put multiplexing algorithm is based on the simple fact 
that output messages tend to be long. Another  way to 
say this is that the set of active channels, on which 
output is in progress, changes slowly relative to the rate 
at which characters can be transmitted along these 
channels. For simplicity, we begin by considering an 
interval of time during which this set doesn't  change at 
all. If sender and receiver agree on which channels are 
transmitting and on the order in which they will share 
the channel, we don' t  have to transmit any multiplexing 
information at all. This is a form of time-division multi- 
plexing, in which the rules for allocating time slots may 
be" arbitrarily complex. 

We can split the multiplexer and demultiplexer each 
into two modules, a Mere-Multiplexer and a Bandwidth 
Allocator in the sender, and a Meta-Demultiplexer and 
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an identical allocator in the receiver. The meta-algo- 
rithm requires the allocator to determine which channel 
owns each character position in the EFCL stream. The 
sole constraint on the algorithm used by the allocator is 
that is must reference only state information which 
exists in both sender and receiver, and which has the 
same value in the sender when the sender is process- 
ing the ith character in the EFCL stream as it does 
in the receiver when the receiver is processing that 
character. 

The role of the meta-algorithm is to deliver each 
character to the correct channel, and it will do this as 
long as the Bandwidth Allocator operates identically in 
the sender and the receiver. Thus the meta-algorithm is 
independent of the allocator in the following sense. The 
role of the allocator is to assign the proper amount of 
bandwidth to each channel. If it does this improperly, 
the channels may get too much or too little bandwidth, 
but the multiplexing will still be correct; i.e. every 
character will still be delivered to the channel on which 
it was sent. 

In reality, of course, the set of active output chan- 
nels is not fixed, but the scheme can be easily extended 
to the more general case of a slowly varying set of 
active channels. If the Meta-Multiplexer wants to add a 
new active channel, it adds the channel to the set of 
active channels and sends the Demultiplexer an Insert 
New Channel (inc) character, followed by the number 
of the channel being activated. The Meta-Demuiti- 
plexer, when it gets the inc message, adds the channel 
to its set of active channels and otherwise ignores the 
message. 

Similarly, when the Meta-Multiplexer finds that 
there are no more characters for an active channel, it 
deactivates the channel by removing it from the active 
set and sending a Delete Old Channel (doc) character. 
The Meta-Demultiplexer, when it gets the doc, likewise 
removes the channel from its active set, but otherwise 
ignores the message. In this case it is unnecessary to 
send the channel number since the doc is sent in place 
of a data character and the receiver therefore knows 
which channel is involved. 

The bandwidth efficiency of a multiplexing algo- 
rithm is the percentage of the characters in the multi- 
plexed stream which are data characters. The efficiency 
of our algorithm is n / ( n + 3 ) ,  where n is the average 
number of characters sent to a channel between an 
activation and the next deactivation; usually this is just 
the length of an output message from the user's pro- 
gram. The 3 is the number of control characters added 
to the stream to activate and deactivate the channel. 
For example, if n is 22 characters, the efficiency of the 
multiplexer is 88 percent. 

4 . 2 . 2  T h e  B a n d w i d t h  Al loca tor .  This section de- 
scribes the Bandwidth Allocator used in our system. It 
was designed around three criteria: 

(1) It must have the properties demanded by the meta- 
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algorithm. These properties are implied by the re- 
quirement that identical copies of the allocator run 
in both machines. 

(2) It must not send characters to a device faster than 
the device can process them. 

(3) It must be able to multiplex devices of any speed. It 
is this requirement that makes things tricky. 

Time is arbitrarily divided into intervals of t seconds 
over which the flow of characters is averaged; in our 
system t was 0.1 seconds. For each output channel we 
keep the number of characters r which that channel's 
terminal can accept in t seconds. Let ir be the integer 
part of r and fr the fractional part. For example, a 
channel driving a 10 cps terminal has r = 10t, and one 
driving an IBM 2741 has r = 14.8t. We also keep the 
number of characters c to be sent in the current inter- 
val; again let ic be the integer part of c and fc  the 
fractional part. Initially c is set to zero. The basic idea is 
to alternately send ir and ir + 1 characters in each 
interval in such a way that the average number of 
characters per interval will be just r. The following 
algorithm will give ic the values ir and ir + 1 with the 
proper distribution. 

At the beginning of each interval, we set c = fc  + r 
for each channel. The Bandwidth Allocator will then 
try to send ic characters to the channel in that interval. 
It does this in two passes. In the first pass it sends each 
active channel min(d, ic) characters. The choice of d 
determines the rate to which high-speed devices are 
restricted when there is not enough bandwidth to serve 
everyone. The allocator will finish this pass even if it 
has to stretch the interval beyond t seconds. 

If there is still time left in the interval after the first 
pass, channels that can accept more than d characters 
are sent ic - d characters until the interval is over. This 
allows high-speed devices such as printers to take up 
the slop in times of plenty, while slowing output to all 
devices when saturation occurs. Channels get this extra 
service in round-robin fashion, but of course not more 
than once per interval. 

After the output has been generated for each inter- 
val as described above, one or more Check Synchroni- 
zation (chs) control characters are inserted to fill out 
the interval. This checks and resets the synchronization 
of the Multiplexer and Demultiplexer (in theory, loss of 
synchronization would only occur if the EFCL failed to 
detect an error) and provides padding if there is no 
output to do. 

5.  T h e  Concentrator  

The concentrator was designed to: 

- Efficiently handle input and output to a large num- 
ber of low-speed (up to 300-baud) devices; 

- P r o v i d e  flexibility, especially in interfacing with a 
variety of devices; 
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- B e  controllable from the CPU so that opera tor  
intervention is not required except in case of hard- 
ware malfunction. 

The concentrator  is implemented by a small com- 
puter  which has specialized read-only microcode to 
implement the EFCL algorithm, multiplexing, and bit- 
scanning for low-speed devices. The rest of the work is 
done by a collection of tasks coded in the machine 's  
assembly language and scheduled by a simple priority 
scheduler. 

Low-speed devices are bit scanned by microcode.  
The assembled character is echoed if appropriate  and 
then stored in the input buffer for the device. However ,  
if the input buffer is full, which might happen either 
because of a communicat ion line malfunction or be- 
cause of an unusually heavy load on the Multiplexer, 
the character is neither stored nor echoed.  Thus the 
user does not get false feedback if his character was lost 
by the concentrator.  The Multiplexer removes  charac- 
ters from the input buffer and multiplexes them for 
transmission to the C H I O  when requested to do so by 
the EFCL.  Output  is similar to input: the Demulti-  
plexer puts characters in the device's output buffer,  
from which they are later removed  by the microcoded 
output  bit scanner. Recall that the Bandwidth Alloca- 
tor design ensures that characters will not be delivered 
faster than the output bit scanner can dispose of them. 

Line printers, card readers,  and other devices 
whose speed is too high for the bit scanner are handled 
differently on the device side of the concentrator .  A 
device-specific task inputs characters from these de- 
vices and stores them in the input buffer for the Multi- 
plexer to pick up. Similarly, for each output  device, a 
task gets characters from the device's output buffer,  
where they were put by the Demult iplexer ,  and outputs 
them to its device. These tasks are activated by the 
input and output interrupts from the hardware inter- 
face for medium-speed devices and by the output  de- 
multiplexer when it delivers a character.  In addition to 
interfacing with devices that are not bit scanned, tasks 
are used for answering the phone,  initializing the con- 
centrator,  and buffer allocation. Some of these are 
done in conjunction with a controlling CPU process, 
using one of the channels for communicat ion.  

The third function of the concentrator  is initializa- 
tion from the CPU.  This is slightly tricky because we 
would like the initialization to work regardless of the 
state of the concentrator .  Since it is possible for the 
concentrator  to turn off the hardware interface to the 
4800-baud line, or to get into a microcode loop, this is 
not entirely practical, but we do quite well at the 
expense of putting a glitch into the EFCL.  Initialization 
proceeds in four steps. 

First, to handle the (rare) worst case where the 
communicat ion line has been turned off or the concen- 
trator  is in an unrecoverably bad state, there is a button 
on the concentrator  which, if pushed,  will initialize the 
concentrator  so that it can be loaded over  the EFCL.  It 
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simply causes a branch to the microcode initialization 
location. 

Second, whenever  the EFCL microcode is about  to 
read an input character from the hardware,  it checks 
for the control character init. If  it gets three of these in 
a row (two in a row could be checksum characters),  it 
does the same initialization as the console pushbutton.  
The effect of this initialization is to allow the EFCL and 
the Demult iplexer  to operate ,  albeit in a rudimentary 
way. It also turns off all tasks, because they cannot be 
expected to run properly until their programs and data 
have been loaded. 

Now the CPU can load the concentrator ' s  memory  
by sending special messages consisting of a Load Re- 
mote  Concentra tor  (lrc) control character  followed by 
loading information.  Part of the loading information is 
a flag that indicates whether  tasks should be allowed to 
run. Thus tasks can remain turned off until memory  has 
been properly set up and then turned on with a last lrc 
so that a just loaded initialization task can run. Finally, 
this task can interact with the CPU to complete the 
initialization. 

6. Some Facts 

The concentrator  contains about  500 microinstruc- 
tions, each 82 bits wide, which implement  the EFCL,  
multiplexing, low-speed device service, task schedul- 
ing, and an emulator  for a standard minicomputer  in- 
struction set. The C H I O  has about  900 microinstruc- 
tions. The microcode for the EFCL and the Bandwidth 
Allocator is identical in both machines.  The concentra- 
tor has less microcode than the C H I O  because great 
effort was expended in minimizing the concentrator  
microcode so as to reduce the cost of replicating the 
machine. This was less important  with the C H I O ,  
where efficiency and straightforwardness took prece- 
dence. 

The system was implemented and run in an experi- 
mental  mode before the demise of BCC. Since then it 
has become fully operat ional  on the BCC-500 at the 
University of Hawaii ,  although in a much smaller con- 
figuration than was envisioned in the initial design. 
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