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Abstract 
 
Ray-tracing is one of the most researched areas in 3D photo-realistic image synthesis. We propose 
the T-BUFFER algorithm, which is a modification to the conventional ray-tracing algorithm and 
compares very favorably with it in terms of performance, which is achieved primarily through 
reduction in the number of unsuccessful intersection tests. Our major contribution is the integration 
of a shadow-buffering technique which, in conjunction with the t-buffer, can create ray-traced 
renderings with reasonably accurate shadows much more efficiently than the common approach, 
while giving the user control over the quality of shadows and the related computational efficiency. 
We support the above claims with empirical evidence which suggest an approximately linear gain 
over the original ray-tracing algorithm. 

We also describe REALITY - a complete rendering engine which has been developed for the 
purpose of empirical comparison between the T-BUFFER algorithm and the classical ray-tracing 
algorithm. Both algorithms were implemented in a common code base to facilitate direct 
comparison. The engine also implements the above mentioned shadow-buffering technique to 
accelerate shadow calculations. We present a thorough comparative analysis of the original 
algorithm and the T-BUFFER algorithm, based on the rendering times of REALITY and show that the 
results strongly corroborate with the linear gain expected theoretically.  

 
Keywords: rendering, photo-realism, ray-tracing, t-buffer, shadow-buffer 
 

I. Introduction 
 
In recent years, ray-tracing has emerged as one of the most preferred techniques for generating 
photo-realistic images of 3D scenes. The original algorithm as proposed by Appel[1], can generate 
renderings of reasonably complex scenes, with point light sources and the shadows cast by them. 
The basic idea behind APPEL's algorithm is to back-trace light rays from the scene that fall on the 
observer's eye, which is similar to reversing the process as it actually occurs in nature. Also, 
“shadow rays” are shot from points on the objects towards the light source to find if they are 
occluded from the light source by an intervening object, or the object itself (self-occlusion). This 
algorithm generates quite convincing shadows but the results are not photo-realistic, mainly because 
the algorithm is not capable of implementing a more accurate global illumination model. See [9] for 
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a more accurate account of the problem of global illumination and KAJIYA's mathematical 
abstraction of the problem. 

This algorithm was extended by Whitted[2] and Kay[3] to include specula reflections and the 
complex optical phenomenon of refraction. WHITTED’s algorithm shoots secondary rays from the 
object's surface, corresponding to specula reflections and refractions. This amounts to calling the 
algorithm recursively for these secondary rays. This algorithm is referred to as recursive ray-
tracing.1 The results of this algorithm are quite convincing since the illumination model is capable of 
modeling most of the optical phenomena quite accurately. However, the image quality comes at the 
cost of a large computational complexity. The recursive ray-tracing algorithm is very slow, the main 
bottleneck being the large number of intersection calculations performed for the rays, those shot 
from the observer (primary rays) and those shot from the objects (shadow rays and secondary rays). 
The T-BUFFER algorithm that we propose here, tries to reduce the number of primary rays and 
shadows rays by avoiding futile intersection tests altogether. That is, while the traditional ray-tracing 
algorithm shoots a ray and tests it for intersection with all the objects, the T-BUFFER algorithm shoots 
only those primary rays which are bound to intersect an object (which may/may not be the closest 
object intersected by that ray). This is accomplished by considering an object at a time and ray-
tracing all the primary rays that may intersect it, and noting the results in a t-buffer. As will be 
elaborated later, the t-buffer is managed in such a manner that once all the objects have been 
considered, it holds all the visibility-related information that is needed by the succeeding steps of the 
algorithm. A similar idea is used in the “ZF-buffer” algorithm[6] to reduce the number of 
intersection tests. Our major contribution is the extension of the same idea as the t-buffer to the 
calculation of shadows for a scene. The key point to observe is that if a light source is replaced by a 
viewer, then non-visibility from the light source's viewpoint and shadowing are equivalent problems. 
Therefore, the algorithm uses a “shadow-buffer” to find shadowed areas in the scene. This way, there 
is a lot of gain in terms of performance for ray-traced rendering with shadows. We discuss the 
                                                 
1 Throughout this paper, references to “the traditional ray-tracing algorithm” or “the classical ray-tracing algorithm” are 
to be interpreted as the recursive ray-tracing algorithm as referred to here. 

Figure 1: The basic principle of ray-tracing. Rays are shot through the viewport and intersections found with the 
objects in the scene. The corresponding pixel is painted with the object's color, subject to the illumination due to the 
light source L. 
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working and implementation aspects of the t-buffer and the shadow-buffer in detail in sections 2 and 
3 respectively. In section 4, we illustrate the working of the T-BUFFER algorithm through a set of 
simple examples. We discuss the empirical results obtained and their analysis for various scenes in 
section 5. We conclude with a brief statement of the main results and possible further extensions to 
this work in section 6. 

II. The t-buffer 
 
The traditional ray-tracer works by shooting rays from the observer's viewpoint into the scene, in 
order to back-trace the light rays from the scene that reach the observer. This idea is illustrated in 
Figure 1. The observer/camera is located at point C

r
. The ray intersects the viewport (shown as a 

grid of pixels) at pixel P and the object O at point I
r

 . There is a point light source at L
r

. The color of 
pixel P is partially determined by factors like the material of O and the position vectors L

r
 and C

r
. A 

major part of the computational effort is involved in finding the closest object hit by the ray and the 
corresponding point of intersection I

r
. 

The traditional ray-tracer does a large number of futile intersection tests while rendering a 
scene. To see why this is so, consider a simple scene with a single triangle as shown in Figure 2. A 
traditional ray-tracer would shoot all the rays which pass through some pixel on the viewport and test 
them for intersection with the triangle. Its easy to see that a majority of these intersection tests will 
be futile (an instance is the ray marked 'r' in the figure). The T-BUFFER algorithm, as will be 
demonstrated, ensures that these futile tests are completely avoided for primary rays by shooting 
only those rays that lie inside the projection of the triangle on the viewport (the region marked 'P' in 
Figure 2). 
 

A. Structure of the t-buffer 
 
The T-BUFFER algorithm uses a data-structure called the t-buffer, which is a two-dimensional 
array with the same dimensions as the viewport such that for every pixel on the viewport, there 

 

Figure 2: The ray marked r does not intersect any object in the scene. The T-BUFFER algorithm avoids shooting 
such rays. Only rays passing through the projection of the object on the viewport, P are tested for intersections.  
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is a corresponding location in the t-buffer. At each location in the t-buffer, a buffer item is 
stored which is a tuple consisting of a distance value, called the t-value (t) and an object pointer 
(O). The organization of the t-buffer is illustrated in Figure 3. A tuple (O, t) stored in the t-
buffer is interpreted as follows - if a ray is shot through the viewport, intersecting it at a pixel 
which corresponds to the given buffer-item, then the nearest object hit is O and the intersection 
point is at a distance t from the observer along the direction of the ray. 
 

B. Filling the t-buffer 
 

The T-BUFFER algorithm attempts to collect all the information required by the t-buffer in an 
optimal manner. It is clear that once the t-buffer is correctly filled, further intersection 
calculations are not required for primary rays. The naive approach would be to shoot a ray and 
perform intersection calculations with all the objects in the scene. Out of all the intersection 
distances, take the minimum, identify the object hit, and fill the corresponding entry of the t-
buffer with the collected data for the particular pixel. As discussed in section 2A, this approach 
is identical to the traditional ray-tracing algorithm and amounts to a lot of wasted intersection 
tests. 

We now describe the functioning of the T-BUFFER algorithm. To optimize the number 
of intersection calculations, we shoot only those rays that are bound to hit an object. Figure 4 
illustrates the idea. To fill the t-buffer, we consider each object in turn (suppose O is the object 
under consideration) and shoot all the rays which intersect it. This amounts to shooting all the 
rays that pass through pixels belonging to the region R in the figure. Now we consider all these 
rays in turn. Suppose rr  is the ray under consideration which passes through the viewport at 
pixel P and goes on to intersect object O at a distance t along the direction of the ray. The t-
buffer location corresponding to pixel P is looked up. Suppose the t-value stored there is t', the 
buffer-item being (O', t'). 

If t'<t, there must be some other object O' which is hit at a smaller distance than O, 
when a ray is shot from the observer’s location passing through P. This implies that O' 
occludes O from the viewer for this pixel. Therefore, the buffer-item is left unmodified. If, on 
the other hand, t'>=t, it implies that O occludes O' and hence, the current buffer item is over-
written with (O, t). This particular case is illustrated in Figure 4, since the object O obscures O' 
for pixel P, the present contents of the t-buffer are overwritten with a tuple corresponding to O. 

Figure 3: Organization of the t-buffer. The length and breadth, xL  and yL respectively are identical to that of 

the viewport and so are the resolutions, xn  and yn . Each cell stores information for the corresponding pixel on 
the viewport. Some of the entries are shown.
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It is clear from the above argument that once all the objects have been considered, the t-buffer 
contains only the minimum distance of intersection for each pixel on the viewport and hence 
the correct object visibility information for the scene under consideration. 

 
C. Utilizing the t-buffer 

 
The T-BUFFER algorithm first updates the t-buffer according to the scene, as described in the 
previous section. Once all the values have been updated, it uses the information gathered to 
accelerate further processing for primary rays. The algorithm considers each pixel on the 
viewport in turn and shoots a ray through it. For that pixel, it reads the contents of the 
corresponding location in the t-buffer. This directly gives the closest object that is intersected 
by the ray and the intersection distance. From this information, and the direction of the ray 
being shot, the point of intersection can be found through a trivial vector calculation. Using the 
point of intersection and the actual object hit, the surface normal of the object at that point is 
found. This information is combined with further processing of the algorithm to yield the color 
that the particular pixel should be painted in. A more elaborate description of this process is 
given in section 4, through illustrations for a simple scene. 
 

III. The shadow-buffer 
 

In this section, we present our major contribution - the incorporation of a shadow-buffer developed 
on the lines of the t-buffer, to accelerate the shadow calculations for ray-traced rendering. The 
problem of shadow calculation in ray-tracing can be stated as - Given a light source at L

ur
 and a point 

P
r

 on an object O, find if the straight line from L
r

 to P
r

 intersects an object O' at a point, say I
r

, 
such that, 

Figure 4: Working of the t-buffer. Object O' is considered first and the t-buffer filled likewise. When O is 
considered, some of the entries of O' are over-written since O' is farther from the viewport than O for the 
corresponding pixels. One such pixel (P) is illustrated. 
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 ( ) ( ) 0.I L P L and I L P L− < − − • − >

r r r r r r r r
 (1) 

 
Figure 5 illustrates the situation that is described above. This condition tests if a ray of light starting 
from the light source at L

r
 is able to reach point P

r
 without obstruction. If the above condition holds, 

light cannot reach from the light source to P
r

 and hence, the point is occluded from the light source 
and receives no light directly from the light source. Otherwise, the point is directly illuminated by 
the light source.  
 

A. The traditional approach 
 

The straight-forward approach for finding if condition (1) holds would be to shoot a ray from 
point P

ur
 towards point L

ur
 (or vice-versa - which is equivalent, as can be easily verified). 

Stating mathematically, the ray would be,    
 

 ( ) , 0.L Pv t P t t
L P
−

= + ⋅ >
−

ur ur
uuur ur

ur ur  (2) 

 
Now, the ray ( )v t

uuur
 is tested with each object in the scene to find if it intersects the object. 

Suppose the ray does intersect an object with the intersection distance being t′  (say). Then we 
test if,  

 0 .t L P′< < −
ur ur

 (3) 

As discussed previously, the truth of this condition is equivalent to P
ur

 being in shadow with 
respect to the light source at L

ur
. Thus, if this condition fails for all the objects in the scene, P

ur
 

is not in the shadow of the light source at L
ur

. 
 

B. Shadow-buffer – the motivation 
 
The calculation of shadows as discussed above involves a lot of intersection tests because for a 
single point on an object, it requires intersection tests with all the objects in the scene. The 
principal aim of the shadow-buffer is to reduce this computational overhead to accelerate 
shadow calculations. The basic idea behind the shadow-buffer is derived from the fact that if 
the light source is treated as a viewer, then the part of the scene that is visible to it is outside the 
shadow cast by it, the rest being in the shadow. The idea of using the light source as the center 
of projection for finding shadows is in fact quite old, and is discussed in [4], although not in  

            Figure 5: Object O' occludes O from the light source L for the ray considered. 
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context of ray-tracing. Stretching the above analogy a bit further, while a viewer has a limited 
field of view, a point light source “sees” in all directions. The shadow-buffer uses these facts to 
reduce the complexity of shadow calculation, utilizing the same basic principle as the t-buffer, 
thus avoiding a lot of intersection tests while testing if a point is in the shadow of a given light 
source. 
 

C. Structure of the shadow-buffer 
 

The shadow-buffer, as illustrated in Figure 6, is a two-dimensional array with dimensions 
( )max max,r c  where an element with the index (r,c) in the array corresponds to a point on a unit 
sphere centered at the origin. The polar angles of the point are given by,  
 

 
max max

, 2 .r c
r c

θ π φ π= × = ×  (4) 

 
Each element of the shadow-buffer is a tuple (o,t) consisting of an object pointer o and a 
distance value t, analogous to the t-buffer. Supposing the shadow-buffer is B, the set of objects 
is O, the light source is at L

ur
 and the direction unit vector is 

$ ( ) $ ( ) $ ( )cos cos cos sin sind x y zθ φ θ φ θ= + + $  (θ  and φ  as calculated above), the contents of 
the array are interpreted as, 
 

 
( ) $

$( )

[ , ] ( , )  lies on 
                            and

o O, t , L  lies on .

B r c o t L t d o

t d o t t

= ⇒ + ⋅

′ ′ ′ ′ ′∀ ∈ ∃ + ⋅ ⇒ ≥

ur

ur
 (5) 

That is, if a ray of light leaves the light source with the direction vector being $d , the nearest 
object it hits is o. 

 

Figure 6: Structure of the shadow-buffer. Note that it is almost identical to the t-buffer accept that the 
dimensions and resolution are different from the t-buffer. Also, the resolution of the shadow-buffer is a variable, 
as opposed to the t-buffer, for which the resolution has to match that of the viewport. Higher values of resolution 
tend to give more accurate shadows but at a higher computational cost. 
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D. Utilizing the shadow-buffer 
 

The function of the shadow-buffer is to provide all the shadow information there is in the 
scene, with respect to the light source it is associated with. Note that the shadow-buffer stores 
information only for one light source, therefore we require as many shadow-buffers as there are 
light sources in the scene. As will be shown shortly, once the contents of the shadow-buffer are 
correctly computed, consistent with (5), only shadow-buffer lookups need to be performed 
while testing for shadows. Moreover, as one may notice, the contents of the shadow-buffer are 
independent of the location of the viewer. This has an important consequence - for renderings 
of the same scene from different viewer positions/orientations the contents of the shadow-
buffer need not be recomputed as the locations of the shadows do not change until there is a 
change in the relative position/orientation of the light source and the objects. This reduces the 
computational complexity of multiple renderings with fixed light sources by a large factor. 

Now we describe how shadow-buffer lookups may be utilized to extract the shadow 
information for a scene. The process is illustrated in Figure 7. Suppose we are interested in 
finding if the point oP  is shadowed with respect to the light source at L

ur
.2 Suppose, we 

represent this by the predicate ( )0,inshadow P L
ur

. LB  is the shadow-buffer associated with the 

light source at L
ur

 and $ $, ,x y z$  represent the standard Cartesian unit vectors. First, we compute 
the direction vector from the light source to the given point (shown as r in the figure), 

 

 $ .o

o

P Ld
P L
−

=
−

uur ur

uur ur  (6) 

 
Next, we find the cell in the shadow-buffer corresponding to this direction vector. The row and 
column of the cell (r and c respectively) are given by, 
 

                                                 
2 The subscript 'o' in oP  denotes that the point P lies on the object named o. 

Figure 7: Interpretation of the contents of the shadow-buffer. Any ray r, from the light source at L is 
mapped onto a location l of the shadow-buffer which contains a pointer to the object O that is the closest hit 
by the light ray. To check if a point P on an object O is not in the shadow, we just need to check if the location 
l has the object pointer stored as O. 
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$( )
$ $( )( )
$ $( )( )

$

max

max

arcsin

arccos

 .
2

d z

d d z z
x

d d z z

r r

c c

θ

φ

θ
π
φ
π

=

⎛ ⎞−⎜ ⎟= ⋅⎜ ⎟
−⎜ ⎟

⎝ ⎠

= ×

= ×

$�

$ $�

$ $�  (7) 

 
Finally, we access the object pointer stored at the location [ , ]LB r c , r and c having been 
calculated as above - only if it is the same as o, is object o illuminated at the point oP  by the 

light source at L
ur

. Stating mathematically, 
 

 ( ) ( )[ , ] , , , .L oB r c o t o o inShadow P L′ ′ ′= ≠ ⇔
uur ur

 (8) 

 
E. Filling the shadow-buffer 

 
In this section, we describe the method used to fill the shadow-buffer so as to fulfill the 
requirement set in relation (5). Observing that the question of illumination of a certain point by 
a given light source can be reduced to the visibility of the point from the light source, as 
discussed in section 3B, it is clear that a technique similar to the t-buffer can be applied for the 
shadow-buffer as well. The algorithm is illustrated in Figure 8. The shadow-buffer is visualized 
as being wrapped around a unit sphere centered on the light source, L. The algorithm considers 

Figure 8: Filling the shadow-buffer. Object O' is considered first and the shadow-buffer filled likewise. 
When O is considered, some of the entries of O' are over-written since O' is farther from the light source L than 
O for the corresponding pixels. One such pixel, P, is illustrated. 
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all the objects in the scene one at a time. Suppose the currently chosen object is o (the red 
triangle in the figure). All the rays from the light source which can possibly intersect with o are 
shot and the tuple (o, t) is stored at B[r,c], where r and c are the corresponding row and column 
in the shadow-buffer, computed from the direction vector of the ray as shown in relation (7). 
Note that in the actual scene, some of these rays may be obstructed by other objects. Therefore, 
overwriting the present contents of the shadow-buffer in all the cases would lead to incorrect 
results. This can be accounted for in this way - while storing the tuple (o, t), we find the t 
component of B[r,c], the tuple already stored in the shadow-buffer. Suppose its value is t'. 
Now, two cases arise - 
 
1. If t t′ < , some other object which was considered in one of the preceding iterations is 

closer to the light source than o. Hence, (o, t) is ignored and not stored at all 
 

2. If t t′ ≥ , overwrite the tuple stored at the shadow-buffer location B[r,c] since we have just 
found an object closer to the light source, for the current row and column under 
consideration. This is the case illustrated in Figure 8 - since the red triangle (o ) is closer 
to the light source than the blue one (o′ ) for the ray r, the present contents of the shadow-
buffer (shown top-right) are overwritten with the tuple for o (shown bottom-right) 

 
The above method ensures that once all the objects have been considered, the tuples stored in 
the shadow-buffer correspond to the object nearest to the light source, in various directions in 
which light rays leave the light source. Thus, the above method ensures that once all the objects 
have been considered, all the tuples stored in the shadow-buffer satisfy the criterion set forth in 
(5), and hence contain all the shadowing information for the given light source.3 

 

IV. The algorithm through illustrations 
 
In this section, we describe the complete T-BUFFER algorithm through a series of illustrations and 
show how the information present in the t-buffer and the shadow-buffer is utilized in an actual run. 
We also show the outputs given by REALITY, the ray-tracing engine we have developed for testing 
the algorithm and the effect of various parameters on the actual rendering. For simplicity of 
illustration, we assume only one point light source and a very simple scene, consisting of three 
stacked spheres placed on an infinite ground.4 
 

A. Scene 1 
 
The configuration of REALITY for this run is as follows – 
 
 
 
 
 

                                                 
3 At this point, one may note that the distance value - t, stored in the shadow-buffer is not required in any later steps of 
the algorithm. More specifically, none of the steps described in section 3D require the t-value. Therefore, once the 
shadow-buffer has been filled with the correct object pointers, all the t-values can be discarded, thereby reducing the 
memory requirements of the shadow-buffer by half. 
4 The case of multiple light sources is a straight-forward extension of the algorithm and is not discussed here for the sake 
of simplicity of illustration. 
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Feature Status 

Shadows ON 
Inter-Object Reflections OFF 
Textures OFF 
t-buffer ON 
Shadow-buffer OFF 

 
Figure 9 shows the output of REALITY for this configuration. The outputs of the traditional 
algorithm and the T-BUFFER algorithm are identical for this case, which is expected since the t-
buffer doesn't introduce any aliasing other than that inherent in ray-tracing itself. Now we 
describe the steps the T-BUFFER algorithm takes to do the rendering of the scene shown in the 
figure. 
 
1. Filling the t-buffer 
 

i. Initialize all the entries of the t-buffer to the tuple (null, infinity) so that the object 
pointer is set to null and the intersection distance is set to infinity. Consider all the 
objects at a time. In this particular scene, there are only four objects - the ground and 
three spheres.5 Suppose the ground is considered first 

 
ii. Trace primary rays through all the pixels on the viewport which lead to an intersection 

with the ground and fill the corresponding t-buffer entries with the corresponding 
intersection information as discussed in section 2B  

 
iii. Process the spheres in a similar fashion. Since the intersection distance for any point on 

any of the spheres is smaller than the value already present in the t-buffer at the 

                                                 
5 Note that the sky is not treated as an object and hence no explicit intersection tests are done for it. If a ray doesn't 
intersect any object, it is assumed to be going towards the sky and is treated accordingly. 

Figure 9: Output of REALITY for a simple scene with textures, reflections and shadow-buffer disabled. Note 
that the scene does not seem realistic, which illustrates the importance of reflections and textures for realistic 
image synthesis. 
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corresponding location (if it corresponds to one of the intersections with the ground 
considered in step ii), all t-buffer entries which correspond to the spheres are filled with 
the corresponding information, overwriting the earlier ground entries present at those 
locations. Intuitively, this ensures that the spheres occlude the ground from the viewer, 
which one would naturally expect. Obviously, some entries for the spheres may also 
over-write each other depending on the viewer's position. Now the t-buffer contains 
complete visibility information for the scene under consideration 

 
2. Rendering 
 

i. Consider each pixel on the viewport at a time. Suppose P is the pixel under 
consideration  

ii. Look at the t-buffer location corresponding to P and find the object pointer, o and the t-
value, t 

iii. Calculate the intersection point I
r

 from the above information6  
iv. Calculate the surface normal n

r
 of o at the point I

r
 

v. Illumination and Shadow Computation: Shoot a ray from I
r

 towards the light source, 
go through all the objects sequentially and find if it intersects any of the objects, before 
it reaches the light source 
a. If yes, I

r
 is in the shadow of the light source, and the light source's direct 

contribution to the color is 0. Therefore, the specular and diffuse contributions are 
0. Denoting the specular and diffuse contributions by sC  and dC  respectively, 

0s dC C= =  

b. Otherwise, knowing the position of the light source and n
r

, find the specular and 
diffuse components of the color contribution from the light source – sC  and dC   
respectively.7 The actual calculation of these is quite common in graphics and are 
calculated using the assumptions of a lambertian surface and will not be discussed 
in detail here. Briefly, Lambert's law is used while calculating dC  and PHONG's 
illumination model[10] is used for calculating sC  

vi. Calculate the ambient contribution to the color aC (assuming some constant amount of 
ambient light) 

vii. Return the color for pixel P as total a d sC C C C= + +  
 

B. Scene 2 
 
The configuration of REALITY for this run is as follows – 

                                                 
6 If the direction vector corresponding to P is $d  and the viewer is at C

ur
, then the intersection point is given by 

$I C t d= + ⋅
r ur

. 
7 All the color contributions discussed here eg. sC , dC  etc., are treated as vectors in 3D RGB space and added 
accordingly. 
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Feature Status 

Shadows ON 
Inter-Object Reflections ON 
Textures OFF 
t-buffer ON 
Shadow-buffer OFF 

 
Figure 10 shows the output of REALITY for this configuration. 
 
1. Filling the t-buffer 
 

• This step is carried out in a manner identical to the previous illustration  
 

2. Rendering 
 

i. The initial steps are the same as steps 1 through 5 of the algorithm described in the 
previous illustration. Therefore, we assume that the diffuse and specular color 
contributions – dC  and sC  respectively, have been calculated already  

ii. Calculate the inter-object reflection contribution as follows –  
a. Find the reflection of the primary ray r

r
 about the surface normal $n  

b. Call the classical ray-tracing algorithm with I
r

 as the initial point and r
r

 as the 
direction vector of the ray. Suppose the color contribution returned is rC  

iii. Calculate the ambient contribution to the color aC (assuming some constant amount of 
ambient light) 

iv. Return the color for pixel P as total a d s rC C C C C= + + +  
 

Figure 10: Output of REALITY for a simple scene with textures and shadow-buffer disabled. Note the 
enhancement in rendering-quality due to the addition of inter-object reflections. Specifically, note the inter-
reflections among the spheres. 
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C. Scene 3 
 
The configuration of REALITY for this run is as follows – 
 

Feature Status 
Shadows ON 
Inter-Object Reflections ON 
Textures ON 
t-buffer ON 
Shadow-buffer ON 

 
Figure 11 shows the output of REALITY for this configuration.  
 
1. Filling the t-buffer 
 

• This step is carried out in a manner identical to the previous illustration  
 

2. Filling the shadow-buffer 
 

i. Initialize all the entries of the shadow-buffer to the tuple (null, infinity) so that the 
object pointer is set to null and the intersection distance is set to infinity 

ii. Consider all the objects at a time. In this particular scene, there are only four objects - 
the ground and three spheres. Suppose the ground is considered first 

iii. Shoot all the shadow-rays which lead to an intersection with the ground and fill the 
corresponding shadow-buffer entries with the intersection information, namely, the 
object pointer o  and the intersection distance t  

iv. Process the spheres in a similar fashion. Since the light source is present above the 
ground for this particular scene, the intersection distance for any point on the spheres is 
smaller than the value already present in the shadow-buffer at the corresponding 
location. This has the effect that all shadow-buffer entries which correspond to the 
ground as well as any of the spheres which lies lower and is obstructed from the view 

Figure 11: Output of REALITY for a simple scene with all features enabled. Note the additional aliasing of 
shadows due to the use of a shadow-buffer. Figure 18 shows this effect in more detail. 
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of the light source, are filled with the sphere's information instead, overwriting the 
earlier entries corresponding to the ground present at those locations. This eventually 
leads to the shadow of the spheres on the ground 

v. Now the shadow-buffer contains view-independent and complete shadowing 
information of the scene for the current light source 

 
3. Rendering 
 

i. The initial steps are the same as steps 1 through 4 of the algorithm described in the first 
illustration. 

ii. Shadow Computation: Join the intersection point of the primary ray and the object hit, 
I
r

 to the light source and find the shadow-buffer entry corresponding to I
r

, as 
illustrated in equation (7). Suppose the entry points to the object o′ . Further, suppose 
the object on which the intersection point I

r
 lies is o8  

a. If o o′≠ , I
r

 is in the shadow of the light source and the light source's direct 
contribution to the radiance is 0. The reason is that, from the definition of the 
shadow-buffer the  object o' is nearer to the light source than o for the current 
shadow-ray under consideration  

b. If o o′= , knowing the position of the light source and the surface normal $n , find 
the specular and diffuse components of the color contribution from the  light source 
- sC  and dC  respectively. 

iii. Calculate the inter-object reflection contribution as follows –  
a. Find the reflection of the primary ray r

r
 about the surface normal $n  

b. Call the classical ray-tracing algorithm with I
r

 as the initial point and r
r

 as the 
direction vector of the ray. Suppose the color contribution returned is rC  

iv. Calculate the ambient contribution to the color aC (assuming some constant amount of 
ambient light) 

v. Return the color for pixel P as total a d s rC C C C C= + + +  
 

V. Results 
 
The major objective of the T-BUFFER algorithm is to reduce the computational complexity of ray-
tracing by reducing the number of ray-object intersection tests. For testing whether our algorithm did 
give such gain and to get numerical estimates of the gain involved, we implemented our own ray-
tracing engine, named REALITY, which implements both the traditional ray-tracing engine and the T-
BUFFER ray-tracing engine. Care was taken so that both the engines share the routines for 
intersection tests and other common features, so that the running times are truly representative of the 
number of intersection tests performed, and all other factors affecting the running time are distilled 
out. 
 
 
 

                                                 
8 The object pointer o was found in the initial steps, by doing a t-buffer lookup as illustrated in step 2 of the rendering 
part of the algorithm described in section 4A 
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A. The test scene 
 

The main parameter for testing the efficacy of our approach is to test the variation in running 
times with respect to the number of objects in the scene. It was clear that no scene file could give 
us this flexibility. So we used a procedurally specified scene, which would be dynamically 
generated as per the specifications of the program. The input consisted in the number of objects 
desired, and the kind of objects that is, sphere, triangle etc. The scene that is generated consists 
of these objects stacked on top of each other so that they fill the viewport as much as possible. 
On increasing the scene complexity, the objects grow smaller so as to accommodate the 
increased number of objects. Figure 12 illustrates the scene generated for three different scene 
complexities with sphere as the object type. 

 
B. Performance enhancements with the t-buffer algorithm 

 
The major factors which affect the performance of the T-BUFFER algorithm are the number of 
objects in the scene (Scene Complexity) and the resolution of the shadow-buffer. We analyzed 
the impact of varying both these parameters on the performance of the T-BUFFER algorithm. 
Since we wanted to analyze the variation in the computational efficiency for primary rays and 
shadows only, we kept other features such as reflections and textures disabled for these tests. We 
present these results and their detailed analysis next. 

 
C. Performance enhancements due to t-buffer alone 

 
Figure 13 compares the running times of the traditional and the T-BUFFER algorithm, for varying 
number of objects in the scene (10-6000). Note that the shadow-buffer is turned off in this case. 
The object type is set to sphere. Figure 14 is a plot of the ratio of the running times for the 
classical and t-buffer algorithms for the scene versus the scene complexity. The graph shows a 
very complex pattern of growth in running times but the general trend points to a growth in the 
performance gain as the scene complexity increases, though the gain saturates somewhere close 
to 2.2 when the scene complexity approaches 5000. 

Figure 12: The procedural scene used to test the effect of the number of objects on the running times. The scene 
complexities for the three cases shown are 3, 50 and 100 respectively. 
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Figure 13: The running times of the classical algorithm and the T-BUFFER algorithm for varying number of 
objects in the scene, with the shadow-buffer disabled. The object type is set to sphere. The T-BUFFER algorithm 
consistently performs better. 

Figure 14: The growth in performance ratio as the complexity is increased, with shadow-buffer disabled. 
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D. Performance enhancements due to t-buffer and shadow-buffer 
 

This is the main result of our research. Figure 15 shows a plot of the computational gain (inverse 
ratio of the running times) of the T-BUFFER algorithm with respect to the classical algorithm for 
scenes of varying complexity. The shadow-buffer resolution has been kept fixed at 400× 800. It 
is clear that the computational gain is approximately linear in the scene complexity and the 
computational effort for the shadow-buffer algorithm is almost independent of the number of 
objects. The classical ray-tracing algorithm's running time is demonstrated to be linear in scene 
complexity, which is expected, as each ray involves an intersection test with all the objects in the 
scene, with a constant number of rays being shot. The important result is that the running time 
for the T-BUFFER algorithm shows very little variation with scene complexity, in comparison to 
the classical algorithm. Therefore, as more and more complex scenes are considered, the 
computational gain due to the T-BUFFER algorithm becomes more evident. This constancy in 
running time may be attributed to the fact that usually shadows due to a single light source do not 
occupy a majority of the area of the final rendering. With the shadow-buffer approach, 
calculations are performed only for the places in the scene where shadows may actually form, 
while the classical algorithm does calculations for all the points in the scene, even where there 
are no shadows. This leads to the large computational gain.  

 
E. Effect of shadow-buffer resolution on performance 

 
The shadow-buffer resolution is a variable which is completely in the control of the user and has 
an important impact on the performance of the algorithm and the visual accuracy of the shadows 
in the rendering. Figure 16 shows a plot of the computational gain versus the scene complexity 
for a shadow buffer resolution of 1000× 2000 and compares it with the plot obtained in the 
previous section. It is clear that the computational gain has fallen with the increased resolution. 

Figure 15: The increase in performance enhancement due to the T-BUFFER algorithm as the scene complexity 
is increased. The large gain may be attributed mainly to the shadow-buffer. 
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To study this effect more closely, the shadow-buffer resolution was varied, keeping the scene 
complexity fixed at 500. Figure 17 shows the variation in running time as the shadow buffer 

Figure 16: The effect of increase in the shadow-buffer resolution on the performance of the T-BUFFER 
algorithm. The gain still increases with an increase in the number of objects but not at the same rate as the case 
when the shadow-buffer resolution is kept at a lower value. 

Figure 17: Variation in the running time due to change in shadow-buffer resolution. It is clearly seen that the 
performance drop is quadratic in the resolution of the shadow-buffer. 
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resolution is increased from 200× 400 to 2000× 4000. It is clearly seen that the curve is quadratic 
in resolution, as pointed to by the high degree of correlation (.9996) between the quadratic curve 
and the actual running times. This is in accord with theoretical predictions, since the number of 
entries in the shadow buffer grows quadratically in resolution, and each entry of the shadow- 
buffer needs to be filled as part of the t-buffer algorithm. This result shows that the shadow-
buffer resolution must be chosen very judicially keeping another important factor in mind, the 
quality of the shadows generated - this is discussed next. 

 
F. Effect of shadow-buffer resolution on the quality of output  

 
The shadow-buffer resolution has very noticeable effects on the quality of the shadows that are 
produced. Since the shadow-buffer quantizes the possible angles at which rays are shot from the 
light source, it introduces some aliasing artifacts in the shadows produced. These aliasing 
artifacts can be reduced by increasing the shadow-buffer resolution. Figure 18 demonstrates 
renderings of the same scene with the shadow-buffer resolution set to 400, 800, 1200, 1600 and 
2000 respectively. The quality gains should be obvious from the images. However, increasing 
the resolution results in a quadratic drop in performance as was discussed in the previous section. 
Moreover, the improvement in appearance due to an increase in resolution is not uniform - It 
should be evident that the quality of shadows shows a large improvement as the resolution is 
increased from 400 to 1200, but the same kind of gain is not observed as the resolution is 
increased from 1200 to 2000. Therefore, the shadow-buffer resolution must be chosen very 
judiciously, keeping this speed-quality tradeoff in mind.  

Recent developments in anti-aliasing techniques for rendering 3D scenes offer a very 
attractive solution to the above problem and may give reasonably anti-aliased shadows while 
keeping the shadow-buffer resolution at a relatively low value. While we have not implemented 
these techniques in this work, they may be easily incorporated into our approach. Some 
techniques for generating anti-aliased ray-traced renderings and shadows are discussed in [8,7]. 

Figure 18: A demonstration of the effect of shadow-buffer resolution on the quality of output. The first 
rendering is the output of pure ray-tracing without employing any shadow-buffer. The other renderings have been 
done at successive shadow-buffer resolutions of 400× 800, 800× 1600, 1200× 2400, 1600× 3200 and 
2000× 4000 respectively. Note that the improvement in visual quality saturates at a resolution of 1200× 2400 for 
the scene under consideration. 
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VI. Conclusion 
 
The T-BUFFER algorithm shows a lot of promise as a technique for accelerating 3D ray-traced image 
synthesis, mainly in accelerating the generation of shadows. Moreover, it provides a speed-quality 
tradeoff for shadow generation which can be a very useful feature in applications where time is at a 
premium. One more advantage of the shadow-buffer is its viewpoint-independence. Therefore, in 
applications where the same scene is to be rendered from different viewpoints, the calculations for 
the shadow-buffer need not be repeated, which will make the process much more efficient.9 

This algorithm shows the way to a very basic idea which is explicitly exploited in the 
algorithm to accelerate visibility-calculations as well as shadow-generation. This concept may be 
extended in the future to accelerate the processing of secondary rays in the recursive ray-tracing 
algorithm, to efficiently generate reflections as well. The T-BUFFER algorithm has the specific 
advantage that it always maintains a locality of reference in the scene, which is ensured by the way 
each object is processed separately to fill the t-buffer and the shadow-buffer. Hence, it can be easily 
combined with techniques which strive to accelerate rendering algorithms by using the memory 
occupied by the scene data “intelligently” as described by Pharr[5]. Moreover, the above property 
opens the way for methods which exploit object coherence to fill the buffers more efficiently.  
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