
Algebraic effects for Functional Programming
MSR-TR-2016-29, update: December 2016

Extended version of “Type Directed Compilation of Row-Typed Algebraic Effects”

Daan Leijen
Microsoft Research, USA

daan@microsoft.com

Abstract
Algebraic effect handlers, are recently gaining in popularity as a
purely functional approach to modeling effects. In this article, we
give an end-to-end overview of practical algebraic effects in the
context of a compiled implementation in the Koka language. In
particular, we show how algebraic effects generalize over common
constructs like exception handling, state, iterators and async-await.
We give an effective type inference algorithm based on extensible
effect rows using scoped labels, and a direct operational semantics.
Finally, we show an efficient compilation scheme to common run-
time platforms (such as JavaScript, the JVM, or .NET) using a type
directed selective CPS translation.

1. Introduction
Algebraic effects (introduced by Plotkin and Power in 2002 [36])
and algebraic effect handlers (introduced by Plotkin and Pretnar in
2009 [35]), are recently gaining in popularity as a purely functional
approach to modeling effects. As a restriction on general monads,
algebraic effects come with various advantages: they can be freely
composed, and there is a natural separation between their interface
(as a set of operations) and their semantics (as a handler).

At this time, implementations are usually based on libraries [18,
20, 21, 51], or interpreted run-times [3, 16]. This is unfortunate, be-
cause we believe that algebraic effect handlers have wide applica-
bility and should be considered as a basic mechanism for handling
effects and control-flow in a wide range of languages – including
languages like JavaScript and C#, which have added various spe-
cialized constructs over the years for concepts that are naturally ex-
pressed using algebraic effects.

In this article, we give an end-to-end overview of practical al-
gebraic effects in the context of a compiled implementation in the
Koka language. In particular:

• In Section 2 we present a language design for algebraic effects,
and show how algebraic effects subsume many control-flow
constructs that are specialized in other languages, e.g. excep-
tions, state, iterators, async-await, etc. In particular, iterators and
async-await are complex constructs that can lead to subtle in-
teractions with other features and require complex compilation
mechanisms [4]. Being able to generalize over them using a sin-
gle well-founded abstraction is a huge win.

• Typing algebraic effects, such that we can check what effects
functions can have, and can check that all effects are handled
in a program, is a challenge. We show in Section 3 how we can
leverage the row-types of Koka, based on scoped labels [24],
to implement sound and complete type inference for algebraic
effects. A problem with many effect systems is that the inferred

types become large or difficult to understand – we have exten-
sive experience with large effectful programs that suggests that
the row-type approach of Koka works well in practice.

• In Section 3.2 we show a novel approach to simplify polymor-
phic effect types. This turns out to be beneficial for an efficient
CPS translation too.

• Operational semantics for algebraic effects in the literature are
usually given in a continuation style calculus [3, 18] – this sim-
plifies semantics and is convenient when reasoning about ef-
fects. In contrast, we give a more direct operational semantics
to algebraic effects using syntactical contexts [50] in Section 4
(recent work by Lindley et al. [16, 30], and Kammar and Pret-
nar [19] use a similar style of operational semantics). This style
of semantics does not use continuations but captures the exe-
cution context explicitly. For compilation purposes we believe
this approach is more convenient. We also prove that well-typed
programs cannot go ‘wrong’ under these semantics.

• Section 5 describes efficient compilation of algebraic effects to
common runtime platforms (like JavaScript) where we do not
have full control over the runtime stack. We show how we can
use a type directed selective CPS translation to compile effect
handlers efficiently. It turns out that the standard CPS translation
does not work for functions with polymorphic effect variables,
and in Section 5.3.2 we show a novel technique where we use
polymorphic code duplication to dynamically pick the correct
runtime representation of such functions.

There is a full implementation of algebraic effects in Koka, see [27]
for detailed instructions on how to download it and program with
algebraic effects.

2. Overview
We are going to demonstrate algebraic effects in the context of
Koka – a call-by-value programming language with a type inference
system that tracks effects. The type of a function has the form
τ→ ϵ τ ′ signifying a function that takes an argument of type τ ,
returns a result of type τ ′ and may have a side effect ϵ. We can leave
out the effect and write τ→ τ ′ as a shorthand for the total function
without any side effect: τ→⟨⟩ τ ′. A key observation on Moggi’s
early work on monads [32] was that values and computations should
be assigned a different type. Koka applies that principle where effect
types only occur on function types; and any other type, like int, truly
designates an evaluated value that cannot have any effect.

Koka has many features found in languages like ML and
Haskell, such as type inference, algebraic data types and pattern
matching, higher-order functions, impredicative polymorphism,
open data types, etc. The pioneering feature of Koka is the use

of row types with scoped labels to track effects in the type system,
striking a balance between conciseness and simplicity. The system
works well in practice and has been used to write significant pro-
grams [26]. In this article we extend the original system [25] to use
algebraic effects and handlers to define new effect types.

In the following sections we give various examples of program-
ming with algebraic effects, where we give particular attention to
cases where algebraic effects subsume control-flow constructs that
are specialized in many other languages, such as exceptions, itera-
tors, and async-await. The interested reader may take a quick look
ahead at Figure 4 to see the precise operational semantics of al-
gebraic effect handlers. For the sake of concreteness, we show all
examples in the current Koka implementation but we stress that the
techniques shown here apply generally and can be applied in many
other languages.

There are various ways to understand algebraic effects and han-
dlers. As described originally [35, 36], the signature of the effect
operations forms a free algebra which gives rise to a free monad.
Free monads provide a natural way to give semantics to effects,
where handlers describe a fold over the algebra of operations [44].
Using a more operational perspective, we can also view algebraic
effects as resumable exceptions (or perhaps as a more structured
form of delimited continuations). We therefore start our overview
by modeling exceptional control flow.

2.1. Exceptions as Algebraic Effects
The exception effect exc can be defined in Koka as:

effect exc {
raise(s : string) : a

}

This defines a new effect type exc with a single primitive operation,
raise with type string → exc a for any a (Koka uses single letters
for polymorphic type variables). The raise operation can be used
just like any other function:

fun safediv(x, y) {
if (y==0) then raise(”divide by zero”) else x / y

}

Type inference will infer the type (int,int) → exc int propagating
the exception effect. Up to this point we have introduced the new
effect type and the operation interface, but we have not yet defined
what these operations mean. The semantics of an operation is given
through an algebraic effect handlerwhich allows us to discharge the
effect type. The standard way to discharge exceptions is by catching
them, and we can write this using effect handlers as:

fun catch(action,h) {
handle(action) {

raise(s)→ h(s)
}

}

The handle construct for an effect takes an action to evaluate and
a set of operation clauses. The inferred type of catch is:

catch : (action : () → ⟨exc | e⟩ a, h : string → e a) → e a

The type is polymorphic in the result type a and its final effects
e, where the action argument can have the exc effect and possibly
more effects e. As we can see, the handle construct discharged the
exc effect and the final result effect is just e. For example,

fun zerodiv(x,y) {
catch({ safediv(x,y) }, fun(s){ 0 })

}

has type (int,int) → ⟨⟩ int and is a total function. Note that the
Koka syntax { safediv(x,y) } denotes an anonymous function that
takes no arguments.

Besides clauses for each operation, each handler can have a re-
turn clause too: this is applied to the final result of the handled ac-
tion. In the previous example, we just passed the result unchanged,
but in general we may want to apply some transformation. For ex-
ample, transforming exceptional computations into maybe values:

fun to-maybe(action) {
handle(action) {

return x → Just(x)
raise(s) → Nothing

}}

with the inferred type (() → ⟨exc | e⟩ a) → e maybe⟨a⟩.
The handle construct is actually syntactic sugar over the more

primitive handler construct:

handle(action) { ... } ≡ (handler{ ... })(action)

A handler just takes a set of operation clauses for an effect, and
returns a function that discharges the effect over a given action. This
allows us to express to-maybe more concisely as a (function) value:

val to-maybe = handler {
return x → Just(x)
raise(s) → Nothing

}

with the same type as before.
Just like monadic programming, algebraic effects allows us to

conveniently program with exceptions without having to explicitly
plumb maybe values around. When using monads though we have
to provide a Monad instance with a bind and return, and we need
to create a separate discharge function. In contrast, with algebraic
effects we only define the operation interface and the discharge is
implicit in the handler definition.

2.2. State: Resuming Operations
The exception effect is somewhat special as it never resumes: any
operations following the raise are never executed. Usually, opera-
tions will resume with a specific result instead of cutting the com-
putation short. For example, we can have an input effect:

effect input {
getstr() : string

}

where the operation getstr returns some input. We can use this as:

fun hello() {
val name = getstr()
println(”Hello ” + name)

}

An obvious implementation of getstr gets the input from the user,
but we can just as well create a handler that takes a set of strings to
provide as input, or always returns the same string:

val always-there = handler {
return x → x
getstr() → resume(”there”)

}

Every operation clause in a handler brings an identifier resume in
scope which takes as an argument the result of the operation and
resumes the program at the invocation of the operation – if the
resume occurs at the tail position (as in our example) it is much like
a regular function call. Executing always-there(hello) will output:

> always-there(hello)
Hello there

As another example, we can define a stateful effect:

effect state⟨s⟩ {
get() : s
put(x : s) : ()

}

The state effect is polymorphic over the values s it stores. For
example, in

fun counter() {
val i = get()
if (i ≤ 0) then () else {

println(”hi”)
put(i - 1);
counter()

}
}

the type becomes () → ⟨state⟨int⟩,console,div | e⟩ () with the
state instantiated to int. To define the state effect we could use the
built-in state effect of Koka, but a cleaner way is to use parame-
terized handlers. Such handlers take a parameter that is updated at
every resume. Here is a possible definition for handling state:

val state = handler(s) {
return x → (x,s)
get() → resume(s,s)
put(s’) → resume(s’,())

}

We see that the handler binds a parameter s (of the polymorphic
type s), the current state. The return clause returns the final result
tupled with the final state. The resume function in a parameterized
handler takes now multiple arguments: the first argument is the
handler parameter used when handling the resumption, while the
last argument is the result of the operation. The get operation leaves
the current state unchanged, while the put operation resumes with
its passed-in state argument. The function returned by the handler
construct now takes the initial state as an extra argument:

state : (x : s, action : () → ⟨state⟨s⟩ | e⟩ a) → e (a,s)

and we can use it as:

> state(2,counter)
hi
hi

2.3. Iterators
Many contemporary languages, like JavaScript or C#, have spe-
cial syntax and compilation rules for iterators and the yield state-

ment [45]. Algebraic effects generalize over this where the yield
effect can be defined as:

effect yield⟨a⟩ {
yield(item : a) : ()

}

The yield effect generalizes over the values a that are yielded. For
example, we can define an “iterator” over lists as:

fun iterate(xs : list⟨a⟩) : yield⟨a⟩ () {
match(xs) {

Nil → ()
Cons(x,xx) → { yield(x); iterate(xx) }

}}

and similarly for many data structures. Orthogonal to the iterators,
we can define handlers that handle the yielded elements. For exam-
ple, here is a generic foreach function that applies a function f to
each element that is yielded and breaks the iteration when f returns
False:

fun foreach(f : a → e bool, act : () → ⟨yield⟨a⟩ | e⟩ ()) : e () {
handle(action) {

return x → ()
yield(x) → if (f(x)) then resume(()) else ()

}}

Note how we can stop the iteration simply by not calling resume –
and that we can define this behavior orthogonal to the definition of
any particular iterator.

2.4. Ambiguity: Multiple Resumptions
You can enter a room once, yet leave it twice.

— Peter Landin [22, 23]
In the previous examples we looked at abstractions that never re-
sume (e.g. exceptions), and abstractions that resume once (e.g. state
and iterators). Such abstractions are common in most programming
languages. Less common are abstractions that can resume more than
once. Examples of this behavior can usually only be found in lan-
guages that implement some variant of callcc [47]. A nice example
to illustrate multiple resumptions is the ambiguity effect:

effect amb {
flip() : bool

}

where we have a flip operation that returns a boolean. As an exam-
ple, we take the exclusive or of two flip operations:

fun xor() : amb bool {
val p = flip()
val q = flip()
((p || q) && ! (p && q))

}

There are many ways we may assign semantics to flip. One handler
just flips randomly:

val coinflip = handler {
flip()→ resume(random-bool())

}

with type (action : () → ⟨amb,ndet | e⟩ a) → ⟨ndet | e⟩ a where
random-bool induced the (built-in) non-deterministic effect ndet.
A more interesting implementation though is to return all possible

results, resuming twice for each flip: once with a False result, and
once with a True result:

val amb = handler {
return x → [x]
flip() → resume(False) + resume(True)

}

with type amb : (action : () → ⟨amb | e⟩ a) → e list⟨a⟩,
discharging the amb effect and lifting the result type a to a list⟨a⟩
of all possible results. The return clause wraps the final result of
the action in a list, while in the flip clause we append the results of
both resumptions (using +). Since each resume is handled by the
same handler, the results of each resumption will indeed be of type
list⟨a⟩. For example, executing amb(xor) leads to:

> amb(xor)
[False,True,True,False]

Multiple resumptions should be used with care though as the com-
position with other effects can sometimes be surprising. As an ex-
ample, consider a program that uses both state and ambiguity:

fun surprising() : ⟨state⟨int⟩,amb⟩ bool {
val p = flip()
val i = get()
put(i+1)
if (i≥ 1 && p) then xor() else False

}

We can use our earlier handlers to handle the state and ambiguity
effects, but we can compose them in two ways, giving rise to two
different semantics. First, we can handle the state outside the ambi-
guity handler, giving rise to a “global” state that is shared between
each ambiguous assumption.

> state(0, { amb(surprising) })
([False,False,True,True,False],2)

The final result is a tuple of a list of booleans and the final state.
Since the state is shared, only the first time (i≥ 1 && p) is
evaluated the result will be False (the first element of the result
list). On the second resumption, xor() will be evaluated leading
to the other 4 elements. If we change the order of the handler, we
effectively make the state local to each ambiguous resumption:

> amb({ state(0,surprising) })
[(False,1),(False,1)]

and the result is now a list of tuples. and in both resumptions of the
first flip the i will be the initial state leading to two False elements
in the result list. Note how, in contrast to general monads, algebraic
effects can be composed freely (since they are restricted to the free
monad). This is quite an improvement over previous work [43,
49] where composing different monads required implementing a
combined monad by hand.

2.5. Asynchronous Programming
Similarly to iterators, many programming languages are adding
support for async-await style asynchronous programming [46]. For
example, web servers written in JavaScript using NodeJS are highly
asynchronous and without language support the resulting programs
are difficult to write and debug due to excessive callbacks (e.g. the
so-called “pyramid of doom”). However, extending a language with
async-await is non-trivial, both in terms of semantics, as well as
compilation complexity where async methods need to be translated
into state-machines to simulate co-routine behavior [4].

Again, algebraic effect handlers generalize naturally over this
pattern. In contrast to the earlier examples we can generally not
implement this directly in our language but need to use primitives
of the host system. For concreteness, we assume NodeJS as our host
with a primitive to call readline:

prim-readline : (oninput : string → ()) → io ()

which calls its argument call back on successful input. We can now
define an asynchronous effect as:

effect async {
readline() : string

}

The handler for the asynchronous effect must effectively surround
the entire program as it relies on the outer NodeJS event loop to
re-invoke our callback when input is ready:

val outer-async = handler {
readline()→ prim-readline(resume)

}

We see that the readline clause just returns and exits the program to
the outer NodeJS event loop. However, it registered resume as the
callback – effectively resuming with the result input when available.
In the Koka implementation the core library defines async as an
abstract effect with a predefined handler around the main function.
The handled operations are more generic such that library writers
can easily wrap any asynchronous primitives provided by the host
system. Moreover, since it is just another effect, it composes natu-
rally with any other algebraic effects the user defines, such as state
and exceptions.

Using asynchronous operations is straightforward now:

fun ask-age() {
println(”what is your name?”)
val name = readline() // asynchronous!
println(”hello ” + name)

}

Note that even though the previous example is now asynchronous,
the program is written in an entirely straightforward manner where
the type of the program signifies asynchronicity. In async-await
style programming an async call site is signaled by an await key-
word and each asynchronous method with an async keyword. This
can be helpful for understanding the code. With our effect typing,
the type signifies the effects code can have and the asynchronicity is
immediately apparent through the inferred types of any expression.

ask-age : () → ⟨async,console⟩ ()

The previous example does not use asynchronicity in any essential
way but in general it is used to serve multiple requests interleaved
where no request handler will block on I/O operations. Moreover,
the Koka core library provides primitives like async-all to start
multiple asynchronous operations that are interleaved with each
other.

In future work we are planning to write highly robust asyn-
chronous web servers using algebraic effect handlers. A similar
technique as shown here is used in multi-core OCaml where one-
shot algebraic effects are used to implement concurrency [11].

2.6. Domain Specific Effects: Parsing
All the previous examples are well-known effects and are available
in various forms in other languages too. However, we can also im-

plement domain-specific effects. For example, in a compiler we may
have a name-supply effect that generates fresh names, a warning
effect for logging warnings, or an inference effect that maintains a
typing environment. Like monads, encapsulating effects allows for
abstraction over a particular implementation and removes the need
to explicitly deal with environments and result values.

As an example of such domain-specific effect, we show how
to implement a parse effect to implement parser combinators [17,
28]. In particular, the effect will abstract over the current input state,
handling failure, and combining multiple parse results. Following
the original example of Wu et al. [51], we first extend the amb effect
of Section 2.4 to describe multiple parse results and failures:

effect many {
flip() : bool
fail() : a

}

Using flip we can already describe choice between two parsers:

fun choice(p1,p2) { if (flip()) then p1() else p2() }

The choice combinator seems somewhat magical since it uses the
flip operation as an oracle but we will see that this allows for
multiple evaluation strategies. Using choice, we can define the
many combinator for parsing a sequence of zero or more p parsers:

fun many(p) { choice({ many1(p) }, { Nil }) }
fun many1(p) { Cons(p(), many(p)) }

where many has the inferred type

many : (p : () → ⟨many,div | e⟩ a) → ⟨many,div | e⟩ list⟨a⟩

A possible handler for the many effect returns all possible results:

val solutions = handler {
return x → [x]
fail() → []
flip() → resume(False) + resume(True)

}

Another handler is eager which returns the first successful result:

val eager = handler {
return x → Just(x)
fail()→ Nothing
flip()→ match(resume(False)) {

Nothing → resume(True)
Just(x)→ Just(x)

}}

Here, the False branch is taken first and the result examined to
determine whether we should explore the True branch or not. The
types of these handlers are:

fun solutions : (() → ⟨many | e⟩ a) → e list⟨a⟩
fun eager : (() → ⟨many | e⟩ a) → e maybe⟨a⟩

To do actual parsing, we are defining the parse effect with just one
operation to test if the current input satisfies a predicate:

effect parse { satisfy⟨a⟩(string → maybe⟨(a,string)⟩) : a }

Note that the result type a is locally quantified, e.g. the type of
satisfy is

satisfy : forall⟨a⟩ (string → maybe⟨(a,string)⟩) → parse a

A handler for the parse effect can be defined as:

val parse = handler(input) {
return x → (x,input)
satisfy(p) → match(p(input)) {

Nothing → fail()
Just((x,rest)) → resume(rest,x)

}}

In this handler, we use fail operation from the many effect to handle
failure. The handler is parameterized with the current input string
and the final result is tupled with any remaining input:

parse : (string,()→⟨parse,many | e⟩ a)→⟨many | e⟩ (a,string)

With the satisfy combinator we can create basic parsers to recog-
nize symbols and digits:

fun symbol(c : char) : parse char {
satisfy(fun(input) { match(input.first) {

Just((d,rest)) | d == c → Just((c,rest))
_ → Nothing

})
}

fun digit(c : char) : parse int {
satisfy(fun(input) { match(input.first) {

Just((d,rest)) | d.digit? → Just((d - ’0’).int,rest))
_ → Nothing

})
}

We combine the digit parser with many1 in order to parse numbers:

fun number() {
many1(digit).foldl(0, fun(n,d) { 10 *n + d })

}

With these building blocks in place, parsing simple expressions
becomes straightforward:

fun expr() : ⟨div,parse,many⟩ int {
choice {

val i : int = term()
symbol(’+’)
i + term()

}
{ term() }

}

fun term() { fun factor() {
choice { choice(number) {

val i : int = factor() symbol(’(’)
symbol(’*’) val i = expr()
val j = factor() symbol(’)’)
i * j i

} }
{ factor() } }

}

Using the expression parser expr, we can now use the the solutions
and parse handlers to apply the parsers to simple expressions:

> solutions{ parse(”1+2*3”, expr) }
[(7,””),(3,”*3”),(1,”+2*3”)]

Expressions e ::= e(e) application
| val x = e; e binding
| handle{h}(e) handler
| v value

Values v ::= x | c | op | λx. e

Clauses h ::= return x→ e
| op(x)→ e; h op ̸∈ h

Types τ k ::= αk type variable
| ck0⟨τ k1

1 , ..., τ kn
n ⟩ k0 = (k1, ..., kn)→ k

Kinds k ::= ∗ | e values, effects
| k effect constants
| (k1, ..., kn)→ k type constructor

Type scheme σ ::= ∀αk. σ | τ∗

Constants (), bool :: ∗ unit, booleans
(_→__) :: (∗, e, ∗)→∗ functions
⟨⟩ :: e empty effect
⟨_ | _⟩ :: (k, e)→ e effect extension

Total functions τ1 → τ2
.
= τ1 →⟨⟩ τ2

Effects ϵ
.
= τ e

Effect variables µ
.
= αe

Effect labels l .
= ck⟨τ1, ..., τn⟩ k = ...→ k

Closed effects ⟨l1, ..., ln⟩ .
= ⟨l1, ..., ln | ⟨⟩ ⟩

Effect extension ⟨l1, ..., ln | ϵ⟩ .
= ⟨l1 | ... ⟨ln | ϵ⟩ ... ⟩

Figure 1. Syntax of expressions, types, and kinds

ϵ∼= ϵ [eq-refl]

ϵ1 ∼= ϵ2

⟨l | ϵ1⟩∼= ⟨l | ϵ2⟩
[ൾඊ-ඁൾൺൽ]

ϵ1 ∼= ϵ2 ϵ2 ∼= ϵ3

ϵ1 ∼= ϵ3
[ൾඊ-ඍඋൺඇඌ]

l1 ̸∼= l2
⟨l1 | ⟨l2 | ϵ⟩ ⟩∼= ⟨l2 | ⟨l1 | ϵ⟩ ⟩

[ൾඊ-ඌඐൺඉ]

c ̸= c′

c⟨τ1, ..., τn⟩ ̸∼= c′⟨τ ′
1, ..., τ

′
n⟩

[ඎඇൾඊ-අൺൻൾඅ]

Figure 2. Row equivalence

Changing the parsing strategy it orthogonal to the implementation
of the parsers, and we can apply the eager handler to return the first
successful parse result:

> eager{ parse(”1+2*3”, expr) }
Just((7,””))

We hope this section gives a taste of the power of abstraction offered
by algebraic effect handlers. In general, any free monad can be
readily expressed with algebraic effects.

3. Type Rules
In this section we give a formal definition of our polymorphic row-
based effect system for the core calculus of Koka. The calculus
and its type system has been in use for many years now and has
been developed from the start using effect types based on rows with

scoped labels [24]. Originally, user-defined effects were described
using a monadic approach [49] but it turns out that algebraic effects
fit the original type system well with almost no changes. The new
system based on algebraic effects is much simpler and allows for
free composition of user defined effects.

Figure 1 defines the syntax of types and expressions. The expres-
sion grammar is straightforward but we distinguish values v from
expressions e that can have effects. Values consist of variables x,
constants c, operations op, and lambda’s. Expression include han-
dler expressions handle{h}(e) where h is a set of operation clauses.
The handler construct of the previous section can be seen as syn-
tactic sugar, where:

handler{h} ≡ λf. handle{h}(f())

For simplicity we assume that all operations take just one argument.
We also use membership notation op(x)→ e ∈ h to denote that h
contains a particular operation clause. Sometimes we shorten this
to op ∈ h.

Well-formed types are guaranteed through kinds k which we
denote using a superscript, as in τ k. We have the usual kinds for
value types ∗ and type constructors →, but because we use a row
based effect system, we also have kinds for effect rows ϵ, and
effect constants (or effect labels) k. When the kind of a type is
immediately apparent or not relevant, we usually leave it out. For
clarity, we use α for regular type variables, and µ for effect type
variables. Similarly, we use ϵ for effect row types, and l for effect
constants/labels.

Effect types are defined as a row of effect labels l. Such row is
either empty ⟨⟩, a polymorphic effect variable µ, or an extension
of an effect ϵ with a label l, written as ⟨l | ϵ⟩. Effect labels must
start with a constant and are never polymorphic. By construction,
effect type are either a closed effect of the form ⟨l1, ..., ln⟩, or an
open effect of the form ⟨l1, ..., ln |µ⟩.

We cannot use direct equality on types since we would like to re-
gard effect rows equivalent up to the order of their effect constants.
Figure 2 defines an equivalence relation (∼=) between effect rows.
This relation is essentially the same as for the scoped labels record
system [24] with the difference that we ignore the type arguments
when comparing labels. By reusing the scoped labels approach, we
also get a deterministic and terminating unification algorithm which
is essential for type inference. Moreover, in contrast to other record
calculi [14, 29, 38, 42], our approach does not require extra con-
straints, like lacks or absence constraints, on the types which sim-
plifies the type system significantly. The system also allows dupli-
cate labels, where an effect ⟨exc, exc⟩ is legal and different from
⟨exc⟩. There are some use-cases for this but in practice we have not
found many uses for duplicate effects (nor any drawbacks).

3.1. Type Inference
The type rules for our calculus is given in Figure 3. A type environ-
mentΓmaps variables to types and can be extended using a comma:
if Γ′ equals Γ, x : σ, then Γ′(x) = σ and Γ′(y) = Γ(y) for any
x ̸= y. A type rule Γ ⊢ e : τ | ϵ states that under environment Γ,
the expression e has type τ with possible effects ϵ.

The type rules are quite standard. The rule ඏൺඋ derives the type
of a variable x with an arbitrary effect ϵ. We may have expected to
derive only the total effect ⟨⟩ since the evaluation of a variable has
no effect at all. However, there is no rule that lets one upgrade the
final effect and instead we need to pick the final effect right away.
Another way to look at this is that since the variable evaluation has
no effect, we are free to assume any arbitrary effect. We use the
Vൺඋ rule too for operations op and constants c where we assume the
types of those are part of the initial environment.

The අൺආ rule is similar in that it assumes any effect ϵ for the
result since the evaluation of a lambda is a value. At this rule, we

Γ(x) = σ

Γ ⊢ x : σ | ϵ [Vൺඋ]

Γ, x : τ1 ⊢ e : τ2 | ϵ′

Γ ⊢ λx. e : τ1 → ϵ′ τ2 | ϵ
[Lൺආ]

Γ ⊢ e1 : σ | ϵ Γ, x : σ ⊢ e2 : τ | ϵ
Γ ⊢ val x = e1; e2 : τ | ϵ [Lൾඍ]

Γ ⊢ e1 : τ2 → ϵ τ | ϵ Γ ⊢ e2 : τ2 | ϵ
Γ ⊢ e1(e2) : τ | ϵ [Aඉඉ]

Γ ⊢ e : τ | ⟨⟩ α ̸∈ ftv(Γ)
Γ ⊢ e : ∀α. τ | ϵ [Gൾඇ]

Γ ⊢ e : ∀α. τ | ϵ
Γ ⊢ e : τ [α 7→ τ] | ϵ [Iඇඌඍ]

Γ ⊢ e : τ | ⟨l|ϵ⟩ Σ(l) = {op1, ..., opn}
Γ, x : τ ⊢ er : τr | ϵ Γ ⊢ opi : τi →⟨l⟩ τ ′

i | ⟨⟩
Γ, resume : τ ′

i → ϵ τr, xi : τi ⊢ ei : τr | ϵ
Γ ⊢ handle{ op1(x1)→ e1; ...; opn(xn)→ en; return x→ er }(e) : τr | ϵ

[Hൺඇൽඅൾ]

Figure 3. Type rules.

also see how the effect derived for the body of a lambda ϵ′ shifts
to the derived function type τ1 → ϵ′ τ2. Rule ൺඉඉ is standard and
derives an effect ϵ requiring that its premises derive the same effect
as the function effect.

Rules ංඇඌඍ and ൾඇ instantiate and generalize types. The general-
ization rule has an interesting twist as it requires the derived effect
to be total. When combining our calculus with polymorphic muta-
ble reference cells, this is required to ensure a sound semantics. This
is the semantic equivalent to the syntactic value restriction in ML.
In our core calculus we cannot define polymorphic reference cells
directly so the restriction is not necessary persé but it seems good
taste to leave it in as it is required for the full Koka language.

Finally, the ඁൺඇൽඅൾ rule types effect handlers. We assume that
effect declarations populate an initial environmentΓ0 with the types
of declared operations, and also a signature environment Σ that
maps declared effect labels to the set of operations that belong to
it. We also assume that all operations have unique names, such that
given the operation names, we can uniquely determine to which
effect l they belong.

The rule ඁൺඇൽඅൾ requires that all operations in the signature Σ(l)
are part of the handler, and we reject handlers that do not handle all
operations that are part of the effect l. The return clause is typed
with x : τ where τ is the result type of the handled action. All
clauses must have the same result type τr and effect ϵ. For each
operation clause opi(xi)→ ei we first look up the type of opi in
the environment as τi →⟨l⟩ τ ′

i , and bind xi to the argument type
of the operations, and bind resume to the function τ ′

i → τr where
the argument type of resume is the result type of the operation. The
derived type of the handler is a function that discharges the effect
type l.

3.2. Simplifying Types
The rule ൺඉඉ is a little surprising since it requires both the effects of
the function and the arguments to match. This only works because
we set things up to always be able to infer the effects of functions
that are ‘open’ – i.e. have a polymorphicµ in their tail. For example,
consider the identity function:

id = λx. x

If we assign the valid type ∀α. α→⟨⟩α to the id function, we get
into trouble quickly. For example, the application id(raise(”hi”))
would not type check since the effect of id is total while the effect of
the argument contains exc. Of course, the type inference algorithm
always infers a most general type for id, namely ∀αµ. α→µα
which has no such problems.

In practice though we wish to simplify the types more and leave
out ‘obvious’ polymorphism. In Koka we adopted two extra type
rules to achieve this. The first rule opens closed effects of function
types:

Γ ⊢ e : τ1 →⟨l1, ..., ln⟩ τ2 | ϵ
Γ ⊢ e : τ1 →⟨l1, ..., ln | ϵ′⟩ τ2 | ϵ

[ඈඉൾඇ]

With this rule, we can type the application id(raise(”hi”)) even
with the simpler type assigned to id as we can open the effect
type of id using the ඈඉൾඇ rule to match the effect of raise(”hi”).
We combine this with a closing rule (which is just an instance of
ංඇඌඍ/ൾඇ):

Γ ⊢ e : ∀µα. τ1 →⟨l1, ..., ln |µ⟩ τ2 | ϵ
µ ̸∈ ftv(τ1, τ2, l1, ..., ln)

Γ ⊢ e : ∀α. τ1 →⟨l1, ..., ln⟩ τ2 | ϵ
[ർඅඈඌൾ]

During inference, the rule ർඅඈඌൾ is applied (when possible) before
assigning a type to a let-bound variable. In general, such technique
would lead to incompleteness where some programs that were well-
typed before, may now be rejected since ർඅඈඌൾ assigns a less general
type. However, due to ඈඉൾඇ this is not the case: at every occurrence
of such let-bound variable the rule ඈඉൾඇ can always be applied (pos-
sibly surrounded by ංඇඌඍ/ൾඇ) to lead to the original most general
type – i.e. even though the types are simplified, the set of typeable
programs is unchanged.

We have significant experience with the Koka type system in
practice with several large programs (up to 14.000 loc) and type
simplification works well in practice. As we will see later in Sec-
tion 5, the ඈඉൾඇ rule actually proves essential for an efficient CPS
translation of algebraic effects.

3.3. Type Inference
The type system as defined is closely related to the core type sys-
tem originally presented for Koka [25], with the main differences
that this paper uses a simpler presentation without treating isolated
state, and we added the rule for handlers. Since the handler rule is
straightforward and can be encoded using regular applications and
lambdas, the results in [25] carry over directly.

In particular, we can define syntax directed type rules that are
sound and complete with respect to the rules in Figure 3, and there
exists a sound and complete type inference algorithm. Due to this,
it was straightforward to change the Koka compiler to type check
algebraic effects and handlers as there were no changes to the core
type inference algorithm. The main difficulties that needed to be
overcome were found in an efficient compilation to common run-
time platforms as described in Section 5.

4. Operational Semantics
In this section we define a precise semantics for our core language
with algebraic effect handlers, and show that well-typed programs
cannot go ‘wrong’. Even though algebraic effects are originally
conceived with a semantics in category theory, we will give a more
regular operational semantics. The main reason to do so is that
a direct operational semantics is more useful as a guidance for
efficient compilation as described in Section 5. Moreover, using a

Evaluation contexts:
E ::= [] |E(e) | v(E) | val x = E; e | handle{h}(E)

Xop ::= [] |Xop(e) | v(Xop) | val x = Xop; e
| handle{h}(Xop) if op ̸∈ h

Reduction rules:
(δ) c(v) −→ δ(c, v) if δ(c, v) is defined
(β) (λx. e)(v) −→ e[x 7→ v]
(let) val x = v; e −→ e[x 7→ v]

(return) handle{h}(v) −→ e[x 7→ v]
where

return x→ e ∈ h

(handle) handle{h}(Xop[op(v)]) −→ e[x 7→ v, resume 7→λy. handle{h}(Xop[y])]
where

op(x)→ e ∈ h

Figure 4. Reduction rules and evaluation contexts

direct operational semantics may help exposing algebraic effects to
a wider audience and allows us to use a traditional style proof of
soundness.

The operational semantics of our calculus is given in Figure 4
and consists of just five evaluation rules. We use two evaluation
contexts: the E context is the usual one for a call-by-value lambda
calculus. The Xop context is used for handlers. In particular, it eval-
uates down through any handlers that do not handle the operation
op. This is used to express concisely that the ‘nearest enclosing han-
dler’ handles particular operations.

The first three reduction rules, (δ), (β), and (let) are the stan-
dard rules of call-by-value evaluation. The final two rules evaluate
handlers. Rule (return) applies the return clause of a handler when
the argument is fully evaluated. Note that this evaluation rule sub-
sumes both lambda- and let-bindings and we can define both as a
reduction to a handler without any operations:

(λx. e1)(e2) ≡ handle{return x→ e1}(e2)

and

val x = e1; e2 ≡ handle{return x→ e2}(e1)

The next rule, (handle), is where all the action is. Here we see how
algebraic effect handlers are closely related to delimited continua-
tions as the evaluation rules captures a delimited ’stack’ Xop[op(v)]
under the handler h. Using a Xop context ensures by construction
that only the innermost handler containing a clause for op, can han-
dle the operation op(v). Evaluation continues with the expression
ϵ but besides binding the parameter x to v, also the resume vari-
able is bound to the continuation: λy. handle{h}(Xop[y]). Apply-
ing resume results in continuing evaluation at Xop with the supplied
argument as the result. Moreover, the continued evaluation occurs
again under the handler h.

Resuming under the same handler is important as it ensures that
our semantics correspond to the original categorical interpretation
of algebraic effect handlers as a fold over the effect algebra [35]. If
the continuation is not resumed under the same handler, it behaves
more like a case statement doing only one level of the fold. Such
handlers are sometimes called shallow handlers [18, 30].

For this article we do not formalize parameterized handlers as
shown in Section 2.2. However the reduction rule is straightfor-
ward. For example, a handler with a single parameter p is reduced

as:
handle{h}(p = vp)(Xop[op(v)])
−→ { op(v)→ e ∈ h }

e[x 7→ v, p 7→ vp, resume 7→λq y. handle{h}(p = q)(Xop[y])]
Using the reduction rules of Figure 4 we can define the evaluation
function (7−→), where E[e] 7−→E[e′] iff e−→ e′. We also define
the function 7−→→ as the reflexive and transitive closure of 7−→.

4.1. Optimizing Tail-Resumptions
From the reduction rules, we can already see some possible op-
timizations that can be used to compiler handlers efficiently. For
example, if a handler never resumes, we can treat it similarly to
how exceptions are handled and do not need to capture the ex-
ecution context. An important other optimization can apply to
tail resumptions, i.e. a resume that occurs in the tail position of
an operation clause. Suppose we have an operations clause h with
op(x)→ resume(e) ∈ h and resume ̸∈ fv(e). In that case, we can
derive:
handle{h}(Xop[op(v)])
−→

resume(e)[x 7→ v, resume 7→λy. handle{h}(Xop[y])]
−→

(λy. handle{h}(Xop[y]))(e[x 7→ v])
−→∗ { e[x 7→ v]−→∗ v′ }

(λy. handle{h}(Xop[y]))(v′)
−→

handle{h}(Xop[v′])
That means that in an implementation we do not need to capture and
restore the context Xop at all but can directly evaluate the operation
expression as if it was a regular function call. Of course, special pre-
cautions must be taken that any operations yielded in the evaluation
of e[x 7→ v] are not handled by any handler in handle{h}(Xop[]).

4.2. Comparison with Delimited Continuations
Shan [41] has shown that various variants of delimited continua-
tions can be defined in terms of each other. Following Kammar et
al. [18], we can define a variant of Danvy and Filinski’s [7] shift
and reset operators, called shift0 and reset0, as
reset0(Xs[shift0(λk. e)])−→ e[k 7→λx. reset0(Xs[x])]
where we write Xs for a context that does not contain a reset0.
Therefore, the shift0 captures the continuation up to the nearest

enclosing reset0. Just like handlers, the captured continuation is
itself also wrapped in a reset0. Unlike handlers though, the handling
is done by the shift0 directly instead of being done by the delimiter
reset0. From the reduction rule, we can easily see that we can
implement delimited continuations using algebraic effect handlers,
where shift0 is an operation and Xs ≡Xshift0 :

reset0(e) .
= handle{ shift0(f)→ f(resume) }(e)

Using this definition, we can show it is equivalent to the original
reduction rule for delimited continuations, where we write h for the
handler shift0(f)→ f(resume):

reset0(Xs[shift0(λk. e)])
.
=

handle{h}(Xs[shift0(λk. e)])
−→

(f(resume))[f 7→λk. e, resume 7→λx. handle{h}(Xs[x])]
−→

(λk. e)(λx. handle{h}(Xs[x]))
−→

e[k 7→λx. handle{h}(Xs[x])].
=

e[k 7→λx. reset0(Xs[x])]

Even though we can define this equivalence in our untyped calculus,
we cannot give a general type to the shift0 operation in our system.
To generally type shift and reset operations a more expressive type
system with answer types is required [1, 6]. Kammar et al. [18] also
show that it is possible to go the other direction and implement
handlers using delimited continuations but that solution requires
mutable reference cells to implement a global handler stack.

4.3. Soundness: Well Typed Effect Handlers Cannot Go
Wrong
Under our semantics, well-typed programs cannot go wrong:
Theorem 1. (Semantic soundness)
If · ⊢ e : τ | ϵ then either e ⇑ or e 7−→→ v where · ⊢ v : τ | ϵ.
where we use the notation e ⇑ for a never-ending reduction. The
proof of this theorem consists of showing two main lemmas:

• Show that reduction in the operational semantics preserves well-
typing, i.e. subject reduction, and,

• Show that faulty expressions are not typeable.

If programs are closed and well-typed we know from subject reduc-
tion that we can only reduce to well-typed terms, which are either
faulty, a value, or an expression containing a further redex. Since
faulty expressions are not typeable, it must be that evaluation either
produces a well-type value or diverges. (Often a soundness proof
is done using progress instead of faulty expressions but we use the
latter technique since it turns out that for proving state isolation [25]
this technique works better).

Subject reduction is stated more precisely as:
Lemma 1. (Subject reduction)
If Γ ⊢ e1 : τ | ϵ and e1 7−→ e2 then Γ ⊢ e2 : τ | ϵ.
To show that subject reduction holds we need to establish various
other lemmas. Two particularly important ones are the substitution
and replacement lemmas:
Lemma 2. (Substitution)
If Γ, x : ∀α. τ ⊢ e : τ ′ | ϵwhere x ̸∈ dom(Γ),Γ ⊢ v : τ | ϵ, and
α ̸ ∩ ftv(Γ), then Γ ⊢ e[x 7→ v] : τ ′ | ϵ.

Lemma 3. (Replacement)
If D is a deduction ending in Γ ⊢ E[e] : τ | ϵ, and D′ is a sub-

e ::= xσ | cσ | e(e)
| λϵx : σ. e
| val x = e; e binding
| e⟨σ⟩ | Λα. e type application/abstraction
| e⟨⟨ϵ⟩⟩ opening an effect
| handle⟨l⟩{h}(e)

Figure 5. Syntax of explicitly typed Koka

deduction of D ending in Γ′ ⊢ e : τ ′ | ϵ′ and occurs at the hole of
E, and Γ ⊢ e′ : τ ′ | ϵ′, then we have that Γ ⊢ E[e′] : τ | ϵ.
The proofs of these lemmas carry over directly from [50]. Using
these lemmas we can prove subject reduction. We focus on the
interesting cases for (let), (return) and (handle):
Proof. (Subject reduction)
We prove by induction over the reduction rules of −→.
case val x = v; e−→ e[x 7→ v]: From අൾඍ we have Γ ⊢ v : σ | ϵ,
and Γ, x : σ ⊢ e : τ | ϵ, and by Lemma 2, we can derive that
Γ ⊢ e[x 7→ v] : τ | ϵ.
case handle{h}(v)−→ e[x 7→ v] with return x→ e ∈ h (0): From
ඁൺඇൽඅൾ we have Γ ⊢ v : τ |_ (1), and Γ, x : τ ⊢ e : τr | ϵ. Using
(1) and lemma 2 we can derive Γ ⊢ e[x 7→ v] : τr | ϵ.
case handle{h}(Xop[op(v)])−→ e[x 7→ v, resume 7→λy. handle
{h}(Xop[y])] with op(x)→ ϵ ∈ h (0): Assume op ∈ Σ(l) (1).
From ඁൺඇൽඅൾ we have Γ ⊢ Xop[op(v)] : τ | ⟨l|ϵ⟩. By (1) we can
derive G0 ⊢ op : τ1 →⟨l⟩ τ2 | ⟨⟩, and thus from ൺඉඉ and op(v),
we derive Γ ⊢ v : τ1 |_ (2), and Γ ⊢ op(v) : τ2 |_ (3). Us-
ing (3) and lemma 3, and assuming · ⊢ y : τ2 |_, it follows
Γ ⊢ Xop[y] : τ | ⟨l|ϵ⟩. Using ඁൺඇൽඅൾ and (1), we also can de-
rive Γ ⊢ handle{h}(Xop[y]) : τr | ϵ, and through the rule අൺආ, we
have Γ ⊢ λy. handle{h}(Xop[y]) : τ2 → ϵ τr |_ (4). Again from
ඁൺඇൽඅൾ and (0) we have Γ, resume : τ2 → ϵ τr, x : τ1 ⊢ e : τr | ϵ,
and using lemma 1 in combination with (2) and (4) we conclude
Γ ⊢ e[x 7→ v, resume 7→λy. handle{h}(Xop[y])] □

4.4. Faulty Expressions
The main purpose of type checking is of course to guarantee that
wrong expressions cannot occur. Apart from the usual errors, like
adding a number to a string, we have one more kind of error in
our system that we would like to avoid, namely using operations
without a corresponding handler to give semantics:
Lemma 4. (Faulty expressions are not typeable)
a. If Γ ⊢ c(v) : τ | ϵ then δ(c, v) is defined.
b. If Γ ⊢ Xop[op(v)] : τ | ϵ, with op ∈ Σ(l), then l ∈ ϵ.
The second statement is somewhat unusual since it concerns itself
with effects only. It is a powerful lemma though as it states that
effect types cannot be discarded (except through handlers). This
lemma also implies effect types are meaningful, e.g. if a function
does not have an exc effect, it will never throw an exception.
Proof. (Lemma 4.b)
Suppose Γ ⊢ Xop[op(v)] : τ | ϵ with op ∈ Σ(l) (1). To be well
typed, we must have Γ ⊢ op(v) : _ | ϵ′ with l ∈ ϵ′ (due to (1)).
We use induction on the structure of Xop to show that l ∈ ϵ′ for
any Γ ⊢ Xop[op(v)] : _ | ϵ′.
case Xop(e′): Due to the induction hypothesis, the premise in rule
ൺඉඉ is typed with an effect ϵ′ with l ∈ ϵ′ and therefore also in the
result effect l ∈ ϵ′.
case v(Xop): as the previous case.
case val x = Xop; e: Similarly to the previous cases, the premise
is typed with an effect ϵ′ with l ∈ ϵ′ and therefore due to rule අൾඍ
the result effect also has l ∈ ϵ′

⊢ cσ : σ | ϵ [Cඈඇ]

⊢ xσ : σ | ϵ [Vൺඋ]

⊢ e : σ | ϵ
⊢ Λα. e : ∀α. σ | ϵ [TLൺආ]

⊢ e : σ | ϵ
⊢ λϵx : σ1. e : σ1 → ϵ σ | ϵ′

[Lൺආ]

⊢ e : ∀α. σ | ϵ
⊢ e⟨σ1⟩ : σ[α 7→σ1] | ϵ

[TAඉඉ]

⊢ e1 : σ2 → ϵ σ | ϵ ⊢ e2 : σ2 | ϵ
⊢ e1(e2) : σ | ϵ [Aඉඉ]

⊢ e : σ1 →⟨l1, ..., ln⟩σ2 | ϵ′

⊢ e⟨⟨ϵ⟩⟩ : σ1 →⟨l1, ..., ln|ϵ⟩σ2 | ϵ′
[Oඉൾඇ]

Σ(l) = {op1, ..., opn} ⊢ opi : σi →⟨l⟩σ′
i | ⟨⟩

⊢ e : σr | ⟨l|ϵ⟩ ⊢ ei : σ | ϵ ⊢ er : σ | ϵ [ඁൺඇൽඅൾ]
⊢ handle⟨l⟩{ op1(x : σ1)→ e1; ...; opn(x : σn)→ en; return x : σr → er }(e) : σ | ϵ

Figure 6. Type rules for explicitly typed Koka

case handle{h}(Xop) with op ̸∈ h: since op ̸∈ h the handler dis-
charges some effect l′ with l ̸= l′. Using rule ඁൺඇൽඅൾ and ൺඉඉ we
have a premise Γ ⊢ Xop : _ | ⟨l′, l|_⟩ and a result effect ⟨l|_⟩ and
thus l ∈ ϵ′ □

5. Compilation
Compiling algebraic effects efficiently is not straightforward. In
particular, as can be seen in the operational semantics of Fig-
ure 4, the rule for handlers captures a delimited execution context
Xop[op(v)] which in practice means we need to capture the call
stack up to the handler.

If we have full control over the runtime system, this can be
done in a straightforward manner similarly how many compilers
for Scheme and ML implement callcc. This approach does not
work though when targeting a common runtime platform, like the
JVM or the .NET environment. For Koka in particular, we compile
to JavaScript to take advantage of the rich libraries and runtime
environments (like high performance asynchronous web services
in NodeJS).

In these environments we cannot capture the call stack and need
to use other mechanisms to implement effect handlers. One way to
avoid capturing the stack, is to translate the program into continu-
ation passing style (CPS) [10]. This makes the evaluation context
explicit in the current continuation. For example, Scheme imple-
mentations usually use this in order to implement both proper tail-
calls, as well as callcc, when targeting JavaScript [31, 48, 52]. This
was also used in Scala to provide first-class delimited continuations
on the JVM platform [40].

With a CPS translation, the evaluation context Xop essentially
disappears since all constructs take an explicit continuation func-
tion k as a last argument. For example, the xor function from the
Section 2.4 would get CPS translated into:

val xor = λk.flip(λp.flip(λq. k((p||q)&& !(p&&q))))

We can see that an operation call op(v) becomes op(v, k) where k
is a function taking the result of the operation call. The reduction
rule for handlers essentially becomes:

handle{h}(Hop[op(v, k)])
−→ { op(x)→ e ∈ h }

e[x 7→ v, resume 7→λy. handle{h}(Hop[k(y)])]

where the context Hop is now strictly a stack of handlers. In an
implementation it is straightforward to maintain such a ’shadow’
stack explicitly.

At first, we tried a full CPS translation in Koka but it turned
out to slow down the code significantly. One of the larger programs
written in Koka is a markdown processor called Madoko [26] (and
this article is entirely written in Madoko!). This program runs usu-
ally client-side in the browser and with a full CPS translation it

started to use too much resources to run reliably. A better approach
was needed.

5.1. A Type-Directed Selective CPS Translation.
It has long been recognized that one can selectively CPS transform
only parts of the program that need it [8, 9, 39]. In our case, we only
have to use CPS translation on those parts that may issue effectful
operations. Moreover, since effects are tracked in the type system,
we can use a type-directed selective CPS translation (as used by
Scala [40] for example). We built on the translation by Nielsen [33]
who introduces a sound selective CPS translation for the simply
typed lambda calculus extended with callcc and throw. However,
the translation by Nielsen applies to monomorphic effects only and
we will see that in the presence of polymorphic effect variables the
translation becomes more complex.

We define the CPS translation over an explicitly typed core
calculus, defined in Figure 5. This is the internal core calculus of
Koka generated by type inference. It is essentially System F [15]
extended with the effect annotations. In particular, lambda’s carry
the effect of the body as ϵ. Similarly, handlers are annotated with
the handled effect type l. Finally, there is a special construct e⟨⟨ϵ⟩⟩
that opens the effect of e with effect ϵ – this is generated whenever
the ඈඉൾඇ rule is applied as discussed in Section 3.2 on simplifying
types.

The type checking rules for the explicitly typed core calculus are
given in Figure 6. A rule ⊢ e : σ | ϵ states that a given expression
e has type σ under a given ϵ, where the effect ϵ is inherited and
not synthesized. We can see this in rule අൺආ where the annotated
effect determines the effect of the body. Moreover, we avoid having
to pass around an explicit type environment in the type rules by
annotating all variables and constants with their type – which should
match the type of the binder by convention.

5.1.1. Selective Translation
For a selective translation we need a function H (for handled ef-
fects) that determines based on the type if a CPS translation is
needed. The handler function has the form H(θ, ϵ) where θ is a
set of ‘unhandled’ effect variables (µ):
H(θ, ⟨l|ϵ⟩)= H(l) ∨H(θ, ϵ)
H(θ, ⟨⟩) = false
H(θ, µ) = µ ̸∈ θ

We also overload H(l) to determine if a particular effect l may
need CPS translation. For now, we assume H(l) is always true.
In the Koka implementation though, we distinguish built-in ef-
fects from user defined effects through the kind system. The built-
in effects consist of exceptions (exn), non-termination (div), non-
determinism (ndet), polymorphic state (st⟨h⟩), and general I/O op-
erations (io). All of these are usually provided directly by the target
system (like JavaScript) and can thus be directly compiled without
needing CPS translation. This turns out to be an important optimiza-

Static expression e ::= e (expression)
| λλx.e (abstraction)
| e[e] (application)

θ ⊢ cσ ⇝ λλk.k[c] [ർඈඇ]

θ ⊢ xσ ⇝ λλk.k[x] [ඏൺඋ]

θ ⊢ e ⇝ e
θ ⊢ e⟨τ⟩ ⇝ e [ඍൺඉඉ]

θ ⊢ e ⇝ e
θ ⊢ Λα. e ⇝ e [ඍඅൺආ]

θ ⊢ e ⇝ e ⊢ e : τ1 → ϵ′ τ2
H(θ, ϵ′) ∨ ¬H(θ, ϵ)

θ ⊢ e⟨⟨ϵ⟩⟩ ⇝ e [ඈඉൾඇ]

θ ⊢ e ⇝ e ⊢ e : τ1 → ϵ′ τ2
¬H(θ, ϵ′) ∧H(θ, ϵ)

θ ⊢ e⟨⟨ϵ⟩⟩ ⇝ λλk.k[λx k. e[λλf.k(f(x))K [ඈඉൾඇ-ർඉඌ]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2
θ ⊢ val x = e1; e2 ⇝ λλk.e1[λλx.val x = x; e2[k]]

[ඏൺඅ]

θ ⊢ e ⇝ e θ ⊢ er ⇝ er θ ⊢ ei ⇝ ei

θ ⊢ handle⟨l⟩{ opi(x : σi)→ ei; return x : σr → er }(e) ⇝
λλk.handlel{ opi(x)→ ei[k]; return x→ er[k] }(e[λλx.x])

[ඁൺඇൽඅൾ]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2 ⊢ e1 : τ1 → ϵ τ2 ¬H(θ, ϵ)

θ ⊢ e1(e2) ⇝ λλk.e1[λλf.e2[λλx.k[f(x)]]] [ൺඉඉ]

θ ⊢ e1 ⇝ e1 θ ⊢ e2 ⇝ e2 ⊢ e1 : τ1 → ϵ τ2 H(θ, ϵ)

θ ⊢ e1(e2) ⇝ λλk.e1[λλf.e2[λλx.f(x, λy. k[y])]] [ൺඉඉ-ർඉඌ]

θ ⊢ e ⇝ e ¬H(θ, ϵ) ϵ ̸= ⟨l1, ..., ln |µ⟩
θ ⊢ λϵx : τ. e ⇝ λλk.k[λϵx. e[λλx.x]] [අൺආ]

θ ⊢ e ⇝ e H(θ, ϵ) ϵ ̸= ⟨l1, ..., ln |µ⟩
θ ⊢ λϵx : τ. e ⇝ λλk.k[λx k. e[λλx.k(x)K [අൺආ-ർඉඌ]

ϵ = ⟨l1, ..., ln |µ⟩ θ/{µ} ⊢ e ⇝ ecps θ ∪ {µ} ⊢ e ⇝ eplain

θ ⊢ λϵx : τ. e ⇝ λλk.k[λx k. if k? then (ecps[λλx.k(x)]) else (eplain[λλx.x])] [අൺආ-ൽඎඉ]

Figure 7. Type directed selective CPS translation.

tion as many (leaf) functions do not use any user defined effects and
can thus be compiled directly – and implies there is no cost for effect
handlers for any code that does not use them.

For any function f with a function type with effect ϵ where
H(θ, ϵ) is true, f is translated in CPS style and will have an extra
continuation parameter k at runtime. When H(θ, ϵ) is false, the
function is compiled as usual without a continuation parameter.

The last case of H for a polymorphic effect variable µ is only
false if µ is an element of the set θ. In general we always need to
assume a CPS translation is needed for any µ as such a variable
may get instantiated later on with a user-defined effect. However,
as we will see, for polymorphic functions we need to generate two
translations and the θ set is used to force certain effect variables to
be treated as needing no CPS translation.

In the case of polymorphic functions, the simplified types of
Section 3.2 turn out to have a performance impact as well: many
functions that would otherwise get a type with an open polymorphic
effect, are now closed and thus do not need a CPS translation as H
will be false. In the Koka core library, this reduced the set of CPS
translated functions by over 80%.

5.1.2. Translation Rules
Using the H function, Figure 7 defines a type directed selective
CPS translation for our explicitly typed core calculus. Each rule of
the form θ ⊢ e ⇝ e states that expression e gets translated into a
static expression e assuming a set of unhandled effect variables θ
(initially empty). Following Nielsen [33], we write the translation
itself in a continuation passing style; to distinguish the translation
lambda’s and applications from the ones in the program we write
static applications as e[e] and static lambda’s as λλ.In a rule e ⇝ e
the e expression is a function that takes itself a continuation function
k, which takes expressions to cps expressions.

The rules translate explicitly typed core into a untyped lambda
calculus. We would have liked the target calculus to be explicitly
typed as well, but as we will see, that would require further type

rules to deal with variadic functions. In the actual Koka implemen-
tation we do translate to an explicitly typed core though.

Most rules are standard, except for the ඈඉൾඇ and අൺආ rules. Rules
ർඈඇ and ඏൺඋ pass the value on to the continuation. The ඍൺඉඉ and
ඍඅൺආ rules just pass on the translation of their bodies. In the ඏൺඅ
rule we can see why a continuation based translation works well,
as we can pass the binding of x as a static continuation itself.
The ൺඉඉ rule is specialized depending on whether effect is CPS
translated or not. The ඁൺඇൽඅൾ rule is straightforward and translates
all its subexpressions. In practice we would need to provide a shared
binding for k though since the rule as state might duplicate code.
The result is an application handlel which is a handler for effect l.
On every target platform this must be implemented as a primitive.

That leaves the ඈඉൾඇ and අൺආ rules which need more explanation.

5.2. Opening: Non-CPS to CPS
The ඈඉൾඇ and ඈඉൾඇ-ർඉඌ rule open an effect type. However, opening
an effect type ⟨l1, ..., ln⟩ to ⟨l1, ..., ln|ϵ⟩ may change the runtime
representation: in particular, if l1 to ln are all built-in effects, but ϵ
is a handled effect, the function type changes from being non-CPS
to CPS translated! – the CPS translated result should now take a
continuation k as its last argument. The rule ඈඉൾඇ-ർඉඌ defines this
case and wraps the non-CPS translated function in a lambda that
takes a continuation k and applies that k directly to the result of
applying the translated non-CPS function. This is effectively the
point where non-CPS functions are lifted into the CPS world at
runtime.

5.3. Closing: CPS to Non-CPS
With the ඈඉൾඇ rules, the runtime representation can be changed
directly with a small and constant cost. There is one other place
where the runtime representation can change and that is due to type
instantiation. Unfortunately, in this case we cannot so easily change
the term at runtime. In particular, a function type may be hidden
inside some other type. For example, if we define a data type as:

type hide⟨e⟩ { Hide(f : int → e int) }

then we can have terms of the form Hide(id) : ∀µ. hide⟨µ⟩. When
this is instantiated it is not clear how to convert such a term at
runtime back to a non-CPS form. This is a deep problem and in other
work on monadic effects [49] led to restrictions on the amount of
polymorphism allowed in the effect system to avoid this situation.

Here we take another approach: we are going to try to not change
the runtime representation of functions that are CPS translated, even
if they are called from a non-CPS context and the continuation ar-
gument is lacking. We assume that our target environment supports
some form of variadic functions and that we can check at runtime if
the k argument is present or not. This is well supported in JavaScript
but it works well in typed environments too. For example, for the
.NET target, first-class functions are represented by function objects
and we can modify the Apply methods to check if the k parameter
was present.

5.3.1. Assume Identity?
At first, we thought it was sufficient to default the continuation pa-
rameter to the identity function and assume k = λx.x if the argu-
ment was not present. That approach does not work though in the
presence of effect polymorphic higher-order functions. Consider the
map function:

fun map(xs : list⟨a⟩, f : a → e b) : e list⟨b⟩ {
match(xs) {

Nil → Nil
Cons(x,xx)→ Cons(f(x),map(xx,f))

}
}

which is effect polymorphic. A naïve CPS translation leads to (as-
suming a match construct and tupling):
val mapcps = λ(xs, f, k).

match(xs) {
Nil→ k(Nil)
Cons(x, xx)→ f(x, λy.map(xx, f, λyy. k(Cons(y, yy))))

}
Note in particular that f itself is called as a CPS function with a con-
tinuation argument. If we now have a call to map where the effect
type is immediately instantiated to the empty effect, the continu-
ation argument k will not be present. For example, the explicitly
typed expression,

map⟨⟨⟩, int, int⟩([1], inc)
where we assume inc : int→ int, would get translated to:

map([1], inc)
Even if map would detect that the k parameter is not present and
substitute k = λx.x, this would still go wrong at runtime as inc is
called inside map with a continuation argument!

5.3.2. Polymorphic Duplication
The solution is to generate two translations of every function poly-
morphic in some effect µ – one is the CPS translation (e.g. mapcps),
and one is a plain translation (e.g. mapplain). We then use a wrap-
per that chooses either implementation at runtime based on whether
the continuation argument is present. For example, the wrapper for
map becomes:
val map = λ(xs, f, k). if k? then mapcps(xs, f, k) else mapplain(xs, f)
where we assume k? tests if k was present. The implementation of
the question mark operator is dependent on the particular target en-

vironment. For example, in our JavaScript backend we can simply
use k !== undefined.

The duplicate translation rule is අൺආ-ൽඎඉ – here we finally use
the θ set to generate a CPS translated version of the body (using
θ/{µ}), and non-CPS version too (using θ ∪ {µ}). Finally we gen-
erate a wrapper to choose the correct version at runtime. The other
two rules, අൺආ and අൺආ-ർඉඌ are used for non effect polymorphic func-
tions.

There is a performance advantage too to this translation – sim-
ilarly to the worker-wrapper transformation [34] a target platform
can usually inline most call sites. Since many of these effect poly-
morphic functions abstract over iteration patterns (like map) this
gives the target platform more opportunities to optimize loops since
the plain versions will be more amenable to common loop opti-
mizations.

Since only the tail of an effect row can be polymorphic, there
is no risk of exponential code duplication. Even for the Koka core
library which contains many of these higher-order effect polymor-
phic functions, the code size increased by a modest 20%.

5.4. The Runtime System
The runtime system needs to implement the handlel primitive. In
general, the handlel function registers the operation and return
clauses and pushes a handler frame for effect l on the handler stack.
When an operation is performed, it searches along the handler stack
for a handler frame and calls into the appropriate operation clause
with the current continuation as an argument.

In our JavaScript implementation we have refined this where
we have a generic handler that implements a trampoline: operations
just return to this handler loop where they are handled and resumed.
This way we ensure the stack always gets unrolled for code that uses
operations – this essentially implements proper tail calls (except that
the programmer needs to call an operation every once in a while).

6. Related Work
Algebraic effects were described by Plotkin and Power [36] as an
algebraic model of computational effects. Later Plotkin and Pret-
nar [35] added algebraic effect handlers to describe exceptions. Var-
ious implementations of algebraic effects exist. Kammar et al. [18]
show an efficient implementation as a library in Template Haskell
where they use a continuation monad to implement handlers. Us-
ing first-class patterns, Wu et al. [51] also embed algebraic effects
as a library in Haskell. Brady [5] implements algebraic effects as
a DSL library in the dependently typed Idris language. Kiselyov
et al. [20, 21] implement a extensible effects in Haskell using the
‘freer’ monad.

The language Eff [3] is an ML-like language designed around
algebraic effect handlers. It also provides support for dynamic ef-
fect resources which can be used to model polymorphic mutable
references. There are designs for an effect type system with type
inference for Eff [2, 37] based subtyping and a region system.

The Links language [29] has recently been extended with sup-
port for algebraic effect handlers. Just like we reused the original ef-
fect system of Koka, Hillerström and Lindley [16] describe how the
original Links type system can be naturally extended to handle alge-
braic effects too. Their system is also based on row-polymorphism
but they use instead Remy style rows [38] where the kind system
is extended to record presence or absence of effects in the row. We
believe our approach based on scoped labels [24] is simpler in prac-
tice, but the Remy style can be more expressive as it can describe
the absence of effects.

Frank [30] is an experimental language based solely on effect
handlers where there is no primitive notion of a function: its han-
dlers all the way down. Just like scoped labels, effects may occur
multiple times in a row.

In contrast to our work, all of the previous implementations
have full control over the runtime stack being implemented as an
interpreter, a library, or by using specialized runtimes like OCaml.
Also, many other type systems use structural types for the effects
where each effect operation (and its type) occurs in the inferred
types. In this paper we use a nominal system where a single effect
type implies the available operations (also used by Frank [30]). We
believe this is better in practice to keep inferred types small and
understandable. For example, compare the type of the state handler
in Section 2.2 with the type inferred in Links [16] (where _ denotes
absence):

sig state : (s) -> (Comp({Get:s,Put:(s) {}-> ()|e},a))
-> Comp({Get{_},Put{_}|e},a)

where the operations of the state effect are explicit in the type. A
drawback of our approach is that an effect handler must handle all
operations of a particular effect type, and cannot pick and choose
arbitrarily.

There are also approaches to handling effects using monads [43,
49]. A significant drawback of these approaches is that monads do
not naturally compose and combining different effects is difficult in
these systems. An exception is Filinski’s work on layered monads
which do support a similar style of composing effects [12, 13].

7. Conclusion
Algebraic effect handlers concisely describe many complex control-
flow constructs in various programming languages. We hope that
the language design, the direct operational semantics, and com-
pilation scheme described in this article will contribute to wider
adoption of algebraic effects. In the future we plan use algebraic
effects to implement strongly typed asynchronous web services in
NodeJS.

References
[1] Kenichi Asai, and Yukiyoshi Kameyama. “Polymorphic Delimited

Continuations.” In APLAS’07, 239–254. 2007. doi:10.1007/978-3-
540-76637-7_16.

[2] Andrej Bauer, and Matija Pretnar. “An Effect System for Algebraic
Effects and Handlers.” Logical Methods in Computer Science 10 (4).
2014.

[3] Andrej Bauer, and Matija Pretnar. “Programming with Algebraic Ef-
fects and Handlers.” J. Log. Algebr. Meth. Program. 84 (1): 108–123.
2015. doi:10.1016/j.jlamp.2014.02.001.

[4] Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and
Mads Torgersen. “Pause ‘n’ Play: Formalizing Asynchronous C#.” In
ECOOP 2012 – Object-Oriented Programming: 26th European Con-
ference, Beijing, China, edited by James Noble, 233–257. Springer.
2012. doi:10.1007/978-3-642-31057-7_12.

[5] Edwin Brady. “Programming and Reasoning with Algebraic Ef-
fects and Dependent Types.” In Proc. of ICFP’13, 133–144. 2013.
doi:10.1145/2500365.2500581.

[6] Olivier Danvy, and Andrzej Filinski. A Functional Abstraction of
Typed Contexts. 1989.

[7] Olivier Danvy, and Andrzej Filinski. “Abstracting Control.” In
Proceedings of the 1990 ACM Conference on LISP and Func-
tional Programming, 151–160. LFP ’90. Nice, France. 1990.
doi:10.1145/91556.91622.

[8] Olivier Danvy, and John Hatcliff. “CPS-Transformation After Strict-
ness Analysis.” ACMLett. Program. Lang. Syst. 1 (3). ACM: 195–212.
Sep. 1992. doi:10.1145/151640.151641.

[9] Olivier Danvy, Jung-taek Kim, and Kwangkeun Yi. “Assessing the
Overhead of ML Exceptions by Selective CPS Transform.” In In Pro-
ceedings of the 1998 ACMSIGPLANWorkshop onML, 103–114. 1998.

[10] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. “On One-Pass
CPS Transformations.” J. Funct. Program. 17 (6): 793–812. Nov.
2007. doi:10.1017/S0956796807006387.

[11] S Dolan, L White, Sivaramakrishnan K, Yallop J, and A Mad-
havapeddy. “Effective Concurrency through Algebraic Effects.” In
OCaml Workshop. Sep. 2015.

[12] Andrzej Filinski. “Representing Layered Monads.” In Proceedings of
the 26th ACM Symposium on Principles of Programming Languages,
175–188. ACM Press. 1999.

[13] Andrzej Filinski. “Monads in Action.” In Proceedings of the 37th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 483–494. 2010. doi:10.1145/1706299.1706354.

[14] Ben R. Gaster, and Mark P. Jones. A Polymorphic Type System for
Extensible Records and Variants. NOTTCS-TR-96-3. University of
Nottingham. 1996.

[15] Jean-Yves Girard. “The System F of Variable Types, Fifteen Years
Later.” TCS. 1986.

[16] Daniel Hillerström, and Sam Lindley. “Liberating Effects
with Rows and Handlers.” TyDe 2016. Nara, Japan. 2016.
doi:10.1145/2976022.2976033.

[17] Graham Hutton, and Erik Meijer. Monadic Parser Combinators.
NOTTCS-TR-96-4. Dept. of Computer Science, University of Not-
tingham. 1996. http://www.cs.nott.ac.uk/Dept.{}/Staff/
gmh/monparsing.ps.

[18] Ohad Kammar, Sam Lindley, and Nicolas Oury. “Handlers in Action.”
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, 145–158. ICFP ’13. ACM, New York,
NY, USA. 2013. doi:10.1145/2500365.2500590.

[19] Ohad Kammar, and Matija Pretnar. “No Value Restriction Is Needed
for Algebraic Effects and Handlers.” CoRR abs/1605.06938. 2016.

[20] Oleg Kiselyov, and Hiromi Ishii. “Freer Monads, More Extensible
Effects.” In Proceedings of the 2015 ACM SIGPLAN Symposium
on Haskell, 94–105. Haskell ’15. Vancouver, BC, Canada. 2015.
doi:10.1145/2804302.2804319.

[21] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible Effects:
An Alternative to Monad Transformers.” In Proceedings of the 2013
ACM SIGPLAN Symposium on Haskell, 59–70. Haskell ’13. Boston,
Massachusetts, USA. 2013. doi:10.1145/2503778.2503791.

[22] Peter J. Landin. A Generalization of Jumps and Labels. UNIVAC
systems programming research. 1965.

[23] Peter J. Landin. “A Generalization of Jumps and Labels.”
Higher-Order and Symbolic Computation 11 (2): 125–143. 1998.
doi:10.1023/A:1010068630801. reprint from [22].

[24] Daan Leijen. “Extensible Records with Scoped Labels.” In In: Pro-
ceedings of the 2005 Symposium on Trends in Functional Program-
ming, 297–312. 2005.

[25] Daan Leijen. “Koka: Programming with Row Polymorphic Effect
Types.” In MSFP’14, 5th Workshop on Mathematically Structured
Functional Programming. 2014. doi:10.4204/EPTCS.153.8.

[26] Daan Leijen. “Madoko: Scholarly Documents for the Web.” In Pro-
ceedings of the 2015 ACM Symposium on Document Engineer-
ing, 129–132. DocEng ’15. ACM, Lausanne, Switzerland. 2015.
doi:10.1145/2682571.2797097.

[27] Daan Leijen. “Koka Overview and Reference.” 2016. http://bit.
do/kokabook.

[28] Daan Leijen, and Erik Meijer. Parsec: Direct Style Monadic Parser
Combinators for the Real World. UU-CS-2001-27. Dept. of Computer
Science, Universiteit Utrecht. 2001.

[29] Sam Lindley, and James Cheney. “Row-Based Effect Types
for Database Integration.” In TLDI’12, 91–102. 2012.
doi:10.1145/2103786.2103798.

[30] Sam Lindley, Connor McBride, and Craig McLaughlin. “Do Be Do Be
Do.” In POPL 2017. Paris, France. 2016.

[31] Florian Loitsch, Manuel Serrano, and Inria Sophia Antipolis. “Hop
Client-Side Compilation.” In Proceedings of the 8th Symposium on
Trends on Functional Languages. 2007.

https://dx.doi.org/10.1007/978-3-540-76637-7_16
https://dx.doi.org/10.1007/978-3-540-76637-7_16
https://dx.doi.org/10.1016/j.jlamp.2014.02.001
https://dx.doi.org/10.1007/978-3-642-31057-7_12
https://dx.doi.org/10.1145/2500365.2500581
https://dx.doi.org/10.1145/91556.91622
https://dx.doi.org/10.1145/151640.151641
https://dx.doi.org/10.1017/S0956796807006387
https://dx.doi.org/10.1145/1706299.1706354
https://dx.doi.org/10.1145/2976022.2976033
http://www.cs.nott.ac.uk/Dept.%7B%7D/Staff/gmh/monparsing.ps
http://www.cs.nott.ac.uk/Dept.%7B%7D/Staff/gmh/monparsing.ps
https://dx.doi.org/10.1145/2500365.2500590
https://dx.doi.org/10.1145/2804302.2804319
https://dx.doi.org/10.1145/2503778.2503791
https://dx.doi.org/10.1023/A:1010068630801
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/2682571.2797097
http://bit.do/kokabook
http://bit.do/kokabook
https://dx.doi.org/10.1145/2103786.2103798

[32] Eugenio Moggi. “Notions of Computation and Monads.” Infor-
mation and Computation 93 (1): 55–92. 1991. doi:10.1016/0890-
5401(91)90052-4.

[33] Lasse R. Nielsen. “A Selective CPS Transformation.” Electronic Notes
in Theoretical Comp. Sc. 45: 311–331. 2001. doi:10.1016/S1571-
0661(04)80969-1. MFPS 2001, 17th Conf. on the Mathematical Foun-
dations of Prog. Semantics.

[34] Simon L. Peyton Jones, and André L. M. Santos. “A Transformation-
Based Optimiser for Haskell.” Science of Computer Programming 32
(1): 3–47. 1998. doi:10.1016/S0167-6423(97)00029-4.

[35] Gordon D. Plotkin, and Matija Pretnar. “Handling Algebraic Ef-
fects.” In Logical Methods in Computer Science, volume 9. 4. 2013.
doi:10.2168/LMCS-9(4:23)2013.

[36] Gordon Plotkin, and John Power. “Algebraic Operations and Generic
Effects.” Applied Categorical Structures 11 (1): 69–94. 2003.
doi:10.1023/A:1023064908962.

[37] Matija Pretnar. “Inferring Algebraic Effects.” Logical Methods in
Computer Science 10 (3). 2014. doi:10.2168/LMCS-10(3:21)2014.

[38] Didier Rémy. “Type Inference for Records in Natural Extension of
ML.” In Theoretical Aspects of Object-Oriented Programming, 67–95.
1994.

[39] John Reppy. “Optimizing Nested Loops Using Local CPS Conver-
sion.” Higher-Order and Symbolic Computation 15 (2): 161–180.
2002. doi:10.1023/A:1020839128338.

[40] Tiark Rompf, Ingo Maier, and Martin Odersky. “Implementing First-
Class Polymorphic Delimited Continuations by a Type-Directed Se-
lective CPS-Transform.” In . ICFP. 2009.

[41] Chung-chieh Shan. “A Static Simulation of Dynamic Delimited Con-
trol.”Higher-Order and Symbolic Computation 20 (4): 371–401. 2007.
doi:10.1007/s10990-007-9010-4.

[42] Martin Sulzmann.Designing Record Systems. YALEU/DCS/RR-1128.
Yale University. Apr. 1997.

[43] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks.
“Lightweight Monadic Programming in ML.” In ICFP. 2011.

doi:10.1145/2034773.2034778.

[44] Wouter Swierstra. “Data Types à La Carte.” Journal of
Functional Programming 18 (4): 423–436. Jul. 2008.
doi:10.1017/S0956796808006758.

[45] The EcmaScript committee. “ES6: The EcmaScript 2015 Lan-
guage Specification.” 2015. http://www.ecma-international.
org/ecma-262/6.0/ECMA-262.pdf.

[46] The EcmaScript committee. “ES7: The Draft EcmaScript 2017 Lan-
guage Specification.” 2016. https://tc39.github.io/ecma262.

[47] Hayo Thielecke. “Using a Continuation Twice and Its Implications for
the Expressive Power of Call/Cc.” Higher Order Symbol. Comput. 12
(1). Kluwer Academic Publishers, Hingham, MA, USA: 47–73. Apr.
1999. doi:10.1023/A:1010068800499.

[48] Eric Thivierge, and Marc Feeley. “Efficient Compilation of Tail
Calls and Continuations to JavaScript.” In Proc. of the 2012
Annual Workshop on Scheme and Funct. Prog., 47–57. 2012.
doi:10.1145/2661103.2661108.

[49] Niki Vazou, and Daan Leijen. “From Monads to Effects and Back.”
In 18th Int. Symp. on the Practical Aspects of Declarative Languages,
169–186. 2016. doi:10.1007/978-3-319-28228-2_11.

[50] Andrew K. Wright, and Matthias Felleisen. “A Syntactic Approach
to Type Soundness.” Inf. Comput. 115 (1): 38–94. Nov. 1994.
doi:10.1006/inco.1994.1093.

[51] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. “Effect Handlers in
Scope.” In Proceedings of the 2014 ACM SIGPLAN Symposium
on Haskell, 1–12. Haskell ’14. ACM, New York, NY, USA. 2014.
doi:10.1145/2633357.2633358.

[52] Danny Yoo, and Shriram Krishnamurthi. “Whalesong: Running Racket
in the Browser.” In Proceedings of the 9th Symposium on Dy-
namic Languages, 97–108. DLS ’13. ACM, Indianapolis, Indiana,
USA. 2013. doi:10.1145/2508168.2508172.

https://dx.doi.org/10.1016/0890-5401%252891%252990052-4
https://dx.doi.org/10.1016/0890-5401%252891%252990052-4
https://dx.doi.org/10.1016/S1571-0661%252804%252980969-1
https://dx.doi.org/10.1016/S1571-0661%252804%252980969-1
https://dx.doi.org/10.1016/S0167-6423%252897%252900029-4
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://dx.doi.org/10.1023/A:1023064908962
https://dx.doi.org/10.2168/LMCS-10%25283:21%25292014
https://dx.doi.org/10.1023/A:1020839128338
https://dx.doi.org/10.1007/s10990-007-9010-4
https://dx.doi.org/10.1145/2034773.2034778
https://dx.doi.org/10.1017/S0956796808006758
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
https://tc39.github.io/ecma262
https://dx.doi.org/10.1023/A:1010068800499
https://dx.doi.org/10.1145/2661103.2661108
https://dx.doi.org/10.1007/978-3-319-28228-2_11
https://dx.doi.org/10.1006/inco.1994.1093
https://dx.doi.org/10.1145/2633357.2633358
https://dx.doi.org/10.1145/2508168.2508172

	1. Introduction
	2. Overview
	2.1. Exceptions as Algebraic Effects
	2.2. State: Resuming Operations
	2.3. Iterators
	2.4. Ambiguity: Multiple Resumptions
	2.5. Asynchronous Programming
	2.6. Domain Specific Effects: Parsing

	3. Type Rules
	3.1. Type Inference
	3.2. Simplifying Types
	3.3. Type Inference

	4. Operational Semantics
	4.1. Optimizing Tail-Resumptions
	4.2. Comparison with Delimited Continuations
	4.3. Soundness: Well Typed Effect Handlers Cannot Go Wrong
	4.4. Faulty Expressions

	5. Compilation
	5.1. A Type-Directed Selective CPS Translation.
	5.1.1. Selective Translation
	5.1.2. Translation Rules

	5.2. Opening: Non-CPS to CPS
	5.3. Closing: CPS to Non-CPS
	5.3.1. Assume Identity?
	5.3.2. Polymorphic Duplication

	5.4. The Runtime System

	6. Related Work
	7. Conclusion

