RADAR: An In-Building RF-based User Location and Tracking System

Venkat Padmanabhan Microsoft Research

Joint work with Victor Bahl

Infocom 2000 Tel Aviv, Israel March 2000

Outline

Motivation and related work

RADAR

- generating a radio mapNNSS algorithm
- Performance evaluation
- Summary and follow-on work

Motivation

- Location-aware services are a key ingredient of mobile computing
- Determining user location is a prerequisite to building such services
- Solutions designed for the outdoors (e.g., GPS) are ineffective indoors

Related Work in Indoor Positioning Systems

Infrared-based systems (e.g., Active Badge)

- Accurate due to short range and line-of-sight property
 But scales poorly & requires specialized infrastructure
- Radio Frequency-based systems
 Cell-level granularity using point of attachment
 Duress Alarm Location System, PinPoint
- Alternative technologies: magnetic, optical, acoustic
 Very accurate (mm to cm resolution)
 But requires dedicated infrastructure
 Targeted at specialized applications, e.g., head tracking

Traditional approach has been based on dedicated technology and infrastructure

Our Approach

- Leverage existing infrastructure
- Use an off-the-shelf RF wireless LAN
- Several advantages
 WLAN deployed primarily to provide data connectivity
 software adds value to wireless hardware
 better scalability and lower cost than dedicated technology

RADAR

- Key idea: signal strength matching
- Offline calibration:
 - tabulate <location,SS> to construct radio map

Real-time location & tracking:
extract SS from base station beacons
find table entry that best matches the measured SS

Constructing a Radio Map

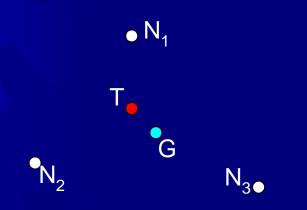
Empirical method

- measure SS at various locations using BS beacons
- record SS along with corresponding coordinates
 - user orientation needs to be included too!
 - tuples of the form $(x, y, z, d, s_1, \dots, s_n)$
- accurate but laborious

Mathematical method

- compute SS using a simple propagation model
 - factor in free space loss and wall attenuation
 - apply Cohen-Sutherland line clipping algorithm on building layout
- more convenient but less accurate

$$P(d)[dBm] = P(d_o)[dBm] - 10n \log\left(\frac{d}{d_o}\right) - \begin{cases} nW * WAF & nW < C\\ C * WAF & nW \ge C \end{cases}$$

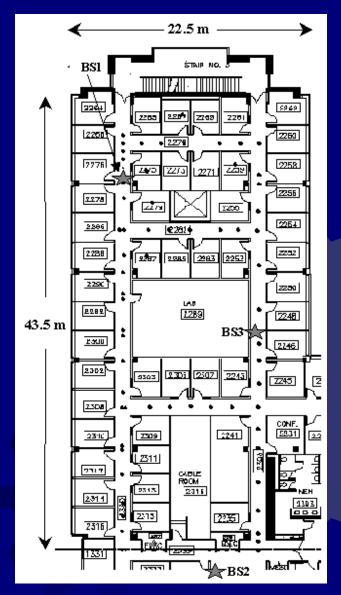

Determining Location

Find nearest neighbor in signal space (NNSS)
 default metric is Euclidean distance

• Physical coordinates of NNSS \Rightarrow user location

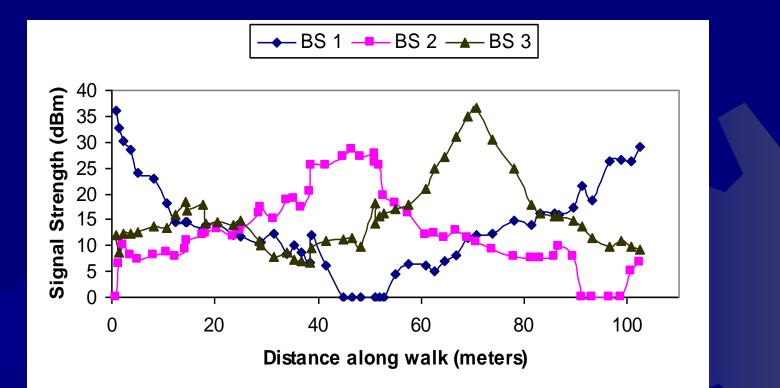
Refinement: k-NNSS

average the coordinates of k nearest neighbors



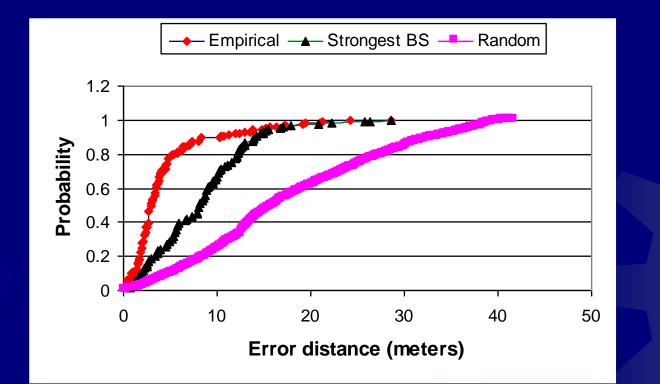
N₁, N₂, N₃: neighbors T: true location of user G: guess based on averaging

Experimental Setting

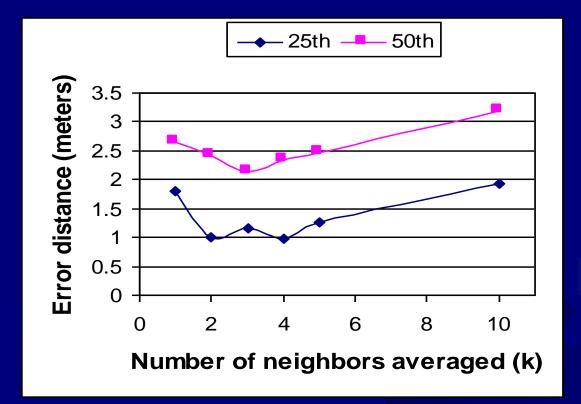

- Digital RoamAbout (WaveLAN)
- 2.4 GHz ISM band
- Albor data rate
- 3 base stations
- 70x4 = 280 (x,y,d) tuples

How good an indicator of location is signal strength?

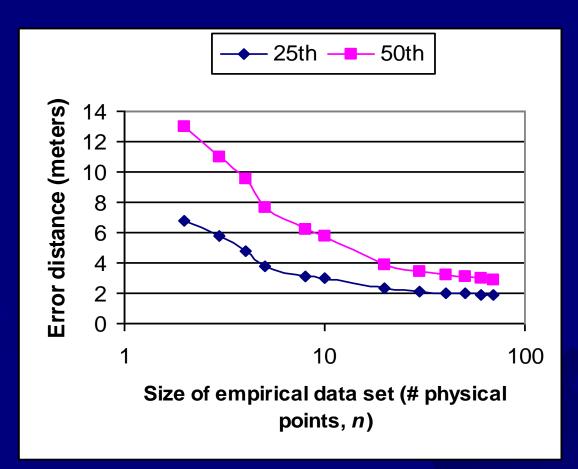
Microsoft Research


Radar

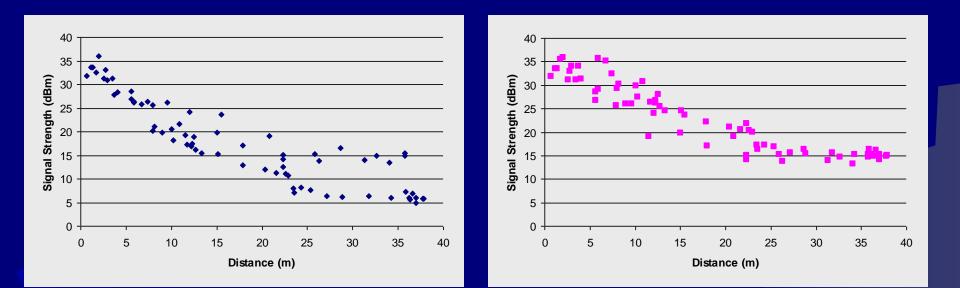
Signal strength correlates well with location


Baseline Performance

Median error distance is 2.94 meters

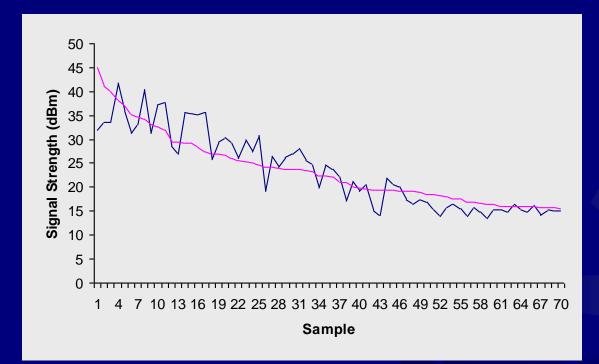

Performance with averaging

Median error distance is 2.13 meters when averaging is done over 3 neighbors


How extensive does the Radio Map have to be?

Diminishing returns as the number of physical points mapped increases

Signal Propagation Model



$$P(d)[dBm] = P(d_o)[dBm] - 10n \log\left(\frac{d}{d_o}\right) - \begin{cases} nW * WAF & nW < C\\ C * WAF & nW \ge C \end{cases}$$

Model parameters: $P(d_0) = 58 \text{ dBm}$, n = 1.53, WAF = 3.1 dBm, C = 4 walls

How well does it work?

Median error distance is 4.94 m compared to 2.94 m with empirically constructed radio map and 8.16 m with nearest base station method

Summary

Determine user location via signal strength matching

- Radio map constructed via empirical measurements or mathematical modeling
- Median error 2-3 meters with empirical map
- Leverages existing wireless LAN infrastructure
 wireless hardware agnostic

RADAR: a software solution to indoor location determination

Probabilistic modeling of user motion

- models constraints imposed by building geometry
- thins down the tail of the error distance CDF

Environmental profiling

- adapts the system to varying radio environment
- Multiple floors

MSR Technical Report MSR-TR-2000-12

For more info

- Visit <u>http://www.research.microsoft.com/sn/</u>
 - Email {bahl,padmanab}@microsoft.com