Combinatorial Pure Exploration in Multi-Armed Bandits

Shouyuan Chen 1 Tian Lin 2 Irwin King 1 Michael R. Lyu 1 Wei Chen 3

 1 CUHK 2 Tsinghua University 3 Microsoft Research Asia

Single-armed bandit

Single-armed bandit

Single-armed bandit

sampled independently from an **unknown** distribution

(reward distribution)

n arms

- **1.** each arm has an **unknown** reward distribution
- **2.** the reward distributions can be **different**.

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

rules

- *•* plays arm *i^t ∈* [*n*]
- receives reward $X_{it} \sim \phi_i$

n arms

in the end...

take all rewards $\bullet \bullet$

goal: maximize the cumulative reward

exploitation v.s. exploration

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

n arms pure exploration

in the end...

take all rewards $\left\langle \cdot \right\rangle \Rightarrow \left\langle \cdot \right\rangle$

goal: maximize the cumulative reward

exploitation v.s. exploration

pure exploration *n* arms 山山山山山 play **reward** player

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

rules

- *•* plays arm *i^t ∈* [*n*]
- receives reward $X_{it} \sim \phi_i$

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

- *• n* arms = *n* variants
- play arm *i* = a page view on the *i*-th variant
- reward = a click on the ads
- finding the best arm $=$ finding the variant with the highest average ads clicks

Pure exploration: two settings

fixed budget

- play for *T* rounds.
- report the best arm after finished.
- **goal**: minimize the probability of error Pr[out $\neq i_*$]

fixed confidence

- play for any number of rounds.
- *•* report the best arm after finished
- guarantee that probability of error $Pr[out \neq i_*] < \delta$.
- **goal**: minimize the number of rounds (sample complexity).

Combinatorial Pure Exploration of MAB

Combinatorial Pure Exploration (CPE)

- play one arm at each round
- find the optimal **set** of arms *M*^{*∗*} satisfying certain constraint

$$
M_* = \underset{M \in \mathcal{M}}{\arg \max} \sum_{e \in M} w(e)
$$

- \blacktriangleright $[n]$: set of arms
- ► $M \subseteq 2^{[n]}$: decision class with a combinatorial constraint
- maximize the sum of expected rewards of arms in the set

Motivating Examples

• matching

Goal:

1) estimate the productivities from tests. 2) find the optimal **1-1 assignment**.

Motivating Examples

• matching

Goal:

1) estimate the productivities from tests. 2) find the optimal **1-1 assignment**.

• spanning trees and paths

Goal:

1) estimate the delays from measurements 2) find the minimum spanning tree or shortest path.

Motivating Examples

• matching

Goal:

1) estimate the productivities from tests. 2) find the optimal **1-1 assignment**.

• spanning trees and paths

Goal:

1) estimate the delays from measurements 2) find the minimum spanning tree or shortest path.

- *•* size-*k*-sets
	- \blacktriangleright finding the top- k arms.

Existing Work

- find top-*k* arms [KS10,GGL12,KTPS12,BWV13,KK13,ZCL14]
- find top arms in disjoint groups of arms [GGLB11,GGL12,BWV13]
- separate treatments, no unified framework

- general framework
	- \blacktriangleright for a wide range of combinatorial constraints M .

- general framework
	- \blacktriangleright for a wide range of combinatorial constraints M .
- *•* algorithms
	- \blacktriangleright two generic learning algorithms.

- general framework
	- \blacktriangleright for a wide range of combinatorial constraints M .
- *•* algorithms
	- \blacktriangleright two generic learning algorithms.
- upper bounds
	- \blacktriangleright sample complexity / probability of error.

- general framework
	- \triangleright for a wide range of combinatorial constraints \mathcal{M} .
- *•* algorithms
	- \blacktriangleright two generic learning algorithms.
- upper bounds
	- \blacktriangleright sample complexity / probability of error.
- lower bound
	- \blacktriangleright algorithms are optimal (within log factors) for many types of $\mathcal M$ (in particular, bases of a matroid).

- general framework
	- \triangleright for a wide range of combinatorial constraints \mathcal{M} .
- *•* algorithms
	- \blacktriangleright two generic learning algorithms.
- upper bounds
	- \blacktriangleright sample complexity / probability of error.
- lower bound
	- \blacktriangleright algorithms are optimal (within log factors) for many types of $\mathcal M$ (in particular, bases of a matroid).
- compared with existing work
	- \blacktriangleright the first lower bound for the top- k problem
	- \triangleright the first upper and lower bounds for other combinatorial constraints.

input

- confidence: $\delta \in (0,1)$
- access to a maximization oracle: $Oracle(\cdot): \mathbb{R}^n \to \mathcal{M}$
	- ▶ Oracle(*v*) = max_{*M*∈*M*} $\sum_{i \in M}$ *v*(*i*) for weights *v* ∈ \mathbb{R}^n

output

• a set of arms: $M \in \mathcal{M}$.

notations

- for each arm $i \in [n]$ in each round t
	- **•** empirical mean: $\bar{w}_t(i)$
	- ▶ confidence radius: $\text{rad}_t(i)$ (proportional to $1/\sqrt{n_t(i)}$)

CLUCB: Sample Complexity

Our sample complexity bound depends on two quantities.

- **H**: depends on expected rewards
- width (M) : depends on the structure of M

CLUCB: Sample Complexity

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. *correctly outputs the optimal set M*[∗]
- 2. *uses at most O*(width($\mathcal{M})^2\mathbf{H}\log(n\mathbf{H}/\delta)$) *rounds.*

Our sample complexity bound depends on two quantities.

- **H**: depends on expected rewards
- width (M) : depends on the structure of M

Results at a glance

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. *outputs the optimal set* $M_* \triangleq \arg \max_{M \in M} w(M)$.
- 2. $\,\,$ uses at most O $(\,\,$ width $(\mathcal{M})^2\mathbf{H}\log(n\mathbf{H}/\delta)\,$ rounds.

Theorem (Lower bound)

Given any expected rewards, any δ-correct algorithm must use at least $\Omega(H \log(1/\delta))$ *rounds. (An algorithm* $\mathbb A$ *is* δ *-correct algorithm, if* $\mathbb A$ *'s probability* of error *is* at most δ for any instances)

Example (Sample Complexities)

- *k*-sets, spanning trees, bases of a matroid: $\tilde{O}(\mathbf{H})$ optimal!
- **matchings, paths (in DAG)**: $\tilde{O}(|V|^2\mathbf{H})$.
- in general: $\tilde{O}(n^2H)$

H and gaps

• Δ_e : gap of arm $e \in [n]$

$$
\Delta_{\mathrm{e}} = \begin{cases} w(M_*) - \max_{M \in \mathcal{M}: \mathrm{e} \in M} w(M) & \text{if } \mathrm{e} \notin M_*, \\ w(M_*) - \max_{M \in \mathcal{M}: \mathrm{e} \notin M} w(M) & \text{if } \mathrm{e} \in M_* \end{cases}
$$

- ▶ stability of the optimality of *M[∗]* wrt. arm *e*.
- *•* **H** = ∑ *^e∈*[*n*] [∆]*−*² *e*

 \blacktriangleright for the top-*K* problem: recover the previous definition of **H**.

Width and exchange class

Intuitions

- we need a unifying method of analyzing different *M*
	- \triangleright an exchange class is a "proxy" for the structure of M.
- an exchange class *B* is a collection of "patches" $((b_+, b_-), b_+, b_- \subseteq [n])$ that are used to interpolate between valid sets $(M \setminus b_- \cup b_+ = M', M, M' \in \mathcal{M}).$

Width and exchange class

definition width(\mathcal{B}): the size of the largest "patch"

$$
width(B) = \max_{(b_+,b_-) \in B} |b_+| + |b_-|.
$$

width (M) : the width of the "thinnest" exchange class

$$
\textnormal{width}(\mathcal{M}) = \min_{\mathcal{B} \in \textnormal{Exchange}(\mathcal{M})} \textnormal{width}(\mathcal{B}),
$$

The main technical contribution: Define exchange class and its algebra and conduct generic analysis using exchange classes.

Example (Widths)

- *k*-sets, spanning trees, bases of a matroid: width $(\mathcal{M}) = 2$.
- **matchings, paths (in DAG)**: width $(\mathcal{M}) = O(|V|)$.
- **in general**: width $(\mathcal{M}) \leq n$

input

- budget: *T* (play for at most *T* rounds)
- access to a maximization oracle

output

• a set of arms: $M \in \mathcal{M}$.

overview:

• break the *T* rounds into *n* phases.

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

in each phase (*n* phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

problem: which arm to accept or reject?

problem: which arm to accept or reject?

• accept/reject the arm with the largest **empirical gap**.

$$
\bar{\Delta}_{e} = \begin{cases} \bar{w}_{t}(\bar{M}_{t}) - \max_{M \in \mathcal{M}_{t}: e \in M} \bar{w}_{t}(M) & \text{if } e \notin \bar{M}_{t}, \\ \bar{w}_{t}(\bar{M}_{t}) - \max_{M \in \mathcal{M}_{t}: e \notin M} \bar{w}_{t}(M) & \text{if } e \in \bar{M}_{t} \end{cases}
$$

$$
\blacktriangleright \mathcal{M}_t = \{M : M \in \mathcal{M}, A_t \subseteq M, B_t \cap M = \emptyset\}.
$$

- \blacktriangleright A_t : accepted arms, B_t : rejected arms (up to phase *t*).
- \triangleright -> $\bar{\Delta}_{e}$ can be computed using a maximization oracle.
- \rightarrow recall the (unknown) **gap** of arm *e*:

$$
\Delta_{\mathrm{e}} = \begin{cases} w(M_*) - \max_{M \in \mathcal{M}: \mathrm{e} \in M} w(M) & \text{if } \mathrm{e} \notin M_*, \\ w(M_*) - \max_{M \in \mathcal{M}: \mathrm{e} \notin M} w(M) & \text{if } \mathrm{e} \in M_* \end{cases}
$$

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_{} with probability at least*

$$
1-2^{\tilde{O}\left(-\frac{7}{\text{width}(\mathcal{M})^2\mathbf{H}}\right)}
$$

and uses at most T rounds.

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_{} with probability at least*

$$
1-2^{\tilde{O}\left(-\frac{7}{\text{width}(\mathcal{M})^2\mathbf{H}}\right)}
$$

and uses at most T rounds.

Remark: To guarantee a constant probability of error of δ , both CSAR and CLUCB need $T = \tilde{O}(\text{width}(\mathcal{M})^2\mathbf{H})$ rounds.

Summary

- Combinatorial pure exploration: a general framework that covers many pure exploration problems in MAB.
	- \blacktriangleright find top-*k* arms, optimal spanning trees, matchings or paths.
- Two general algorithms (CLUCB, CSAR) for the problem
	- \triangleright only need a maximization oracle for *M*.
	- \triangleright comparable performance guarantees.
- Our algorithm is optimal (up to log factors) for matroids.
	- \blacktriangleright including *k*-sets and spanning trees.
- Trilogy on stochastic and combinatorial online learning : together with our recent work on combinatorial multi-armed bandit [CWY,ICML'13] and combinatorial partial monitoring [LAKLC, ICML'14], all dealing with general combinatorial constraints

Future work

- Tighten the bounds for matching, paths and other combinatorial constraints
- Support approximation oracles
- Support non-linear reward functions

Thank you!

Exchange class: Formal definition

Exchange set

An **exchange set** *b* is an ordered pair of disjoint sets $b = (b_+, b_-)$ where $b_+ \cap b_- = \emptyset$ and $b_+, b_- \subset [n]$. Let *M* be any set. We also define two operators:

•
$$
M \oplus b \triangleq M \backslash b_- \cup b_+
$$
.

•
$$
M \ominus b \triangleq M \backslash b_+ \cup b_-.
$$

Exchange class

We call a collection of exchange sets B an **exchange class for** M if B satisfies the following property. For any $M, M' \in \mathcal{M}$ such that $M \neq M'$ and for any $e \in (M \setminus M')$, there exists an exchange set $(b_+, b_-) \in \mathcal{B}$ which satisfies five constraints: **(a)** *e* ∈ *b*_−, **(b)** *b*₊ ⊂ *M[']\<i>M*, **(c)** *^b[−] ⊆ ^M\M′* , **(d)** (*M ⊕ b*) *∈ M* and **(e)** (*M′ ⊖ b*) *∈ M*.

Experiments of CPE

Width and exchange class

definition Let β be an exchange class.

$$
width(B) = \max_{(b_+,b_-) \in B} |b_+| + |b_-|.
$$

Let Exchange(M) denote the family of all possible exchange classes for M . We define the width of M to be the width of the thinnest exchange class

$$
\text{width}(\mathcal{M}) = \min_{\mathcal{B} \in \text{Exchange}(\mathcal{M})} \text{width}(\mathcal{B}),
$$

where Exchange(\mathcal{M}) is the family of all possible exchange classes for *M*.