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Pure	Exploration	of	MAB

A/B testing, clinical	trials, wireless	network, crowdsourcing, ...

....

• n arms	= n variants

• play	arm i =	a	page	view	on	the i-th	variant

• reward	=	a	click	on	the	ads

• finding	the	best	arm	=	finding	the	variant
with	the	highest	average	ads	clicks
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Pure	exploration: two	settings

fixed	budget

• play	for T rounds.

• report	the	best	arm	after
finished.

• goal: minimize	the	probability
of	error Pr[out ̸= i∗]

fixed	confidence

• play	for	any	number	of	rounds.

• report	the	best	arm	after
finished

• guarantee	that	probability	of
error Pr[out ̸= i∗] < δ.

• goal: minimize	the	number	of
rounds	(sample	complexity).
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Combinatorial	Pure	Exploration	of	MAB

Combinatorial	Pure	Exploration	(CPE)
• play	one	arm	at	each	round

• find	the	optimal set of	arms M∗ satisfying	certain	constraint

M∗ = argmax
M∈M

∑
e∈M

w(e)

▶ [n]: set	of	arms
▶ M ⊆ 2[n]: decision	class with	a	combinatorial	constraint
▶ maximize	the sum	of	expected	rewards of	arms	in	the	set

size-k-sets spanning	trees

paths

s t

matchings
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Motivating	Examples

• matching

worker task

productivity
(unknown)

Goal:
1) estimate the productivities from tests. 
2) find the optimal 1-1 assignment.

• spanning	trees	and	paths

link delay

Goal:
1) estimate the delays from measurements
2) find the minimum spanning tree 
          or shortest path.

• size-k-sets
▶ finding	the	top-k arms.
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Existing	Work

• find	top-k arms [KS10,GGL12,KTPS12,BWV13,KK13,ZCL14]

• find	top	arms	in	disjoint	groups	of	arms [GGLB11,GGL12,BWV13]

• separate	treatments, no	unified	framework
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Our	Results

• general	framework
▶ for	a	wide	range	of	combinatorial	constraints M.

• algorithms
▶ two	generic	learning	algorithms.

• upper	bounds
▶ sample	complexity	/	probability	of	error.

• lower	bound
▶ algorithms	are optimal (within	log	factors)	for	many	types	of M (in

particular, bases	of	a	matroid).

• compared	with	existing	work
▶ the	first	lower	bound	for	the	top-k problem
▶ the	first	upper	and	lower	bounds	for	other	combinatorial

constraints.
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CLUCB:	Fixed	confidence	algorithm

input

• confidence: δ ∈ (0, 1)

• access	to	a maximization	oracle: Oracle(·) : Rn → M
▶ Oracle(v) = maxM∈M

∑
i∈M v(i) for weights v ∈ Rn

output

• a set of	arms: M ∈ M.
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CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)

radt(i)

all arms

notations

• for	each	arm i ∈ [n] in	each	round t
▶ empirical	mean: w̄t(i)
▶ confidence	radius: radt(i) (proportional	to 1/

√
nt(i))
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CLUCB:	Fixed	confidence	algorithm
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M̄t
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Oracle(w̃t)

M̃t
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CLUCB:	Fixed	confidence	algorithm

maintain: for all i and t

0 1w̄t(i)
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Step 3
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3

10



CLUCB:	Sample	Complexity

Theorem	(Upper	bound)

With	probability	at	least 1− δ, CLUCB algorithm:

1. correctly	outputs	the	optimal	set M∗

2. uses	at	most O(width(M)2H log(nH/δ)) rounds.

Our	sample	complexity	bound	depends	on	two	quantities.

• H: depends	on	expected	rewards

• width(M): depends	on	the	structure	of M
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Results	at	a	glance

Theorem	(Upper	bound)

With	probability	at	least 1− δ, CLUCB algorithm:

1. outputs	the	optimal	set M∗ ≜ argmaxM∈M w(M).

2. uses	at	most O(width(M)2H log(nH/δ)) rounds.

Theorem	(Lower	bound)

Given	any	expected	rewards, any δ-correct	algorithm	must	use	at	least
Ω(H log(1/δ)) rounds. (An	algorithm A is δ-correct	algorithm, if A’s
probability	of	error	is	at	most δ for	any	instances)

Example	(Sample	Complexities)

• k-sets, spanning	trees, bases	of	a	matroid: Õ(H) optimal!

• matchings, paths	(in	DAG): Õ(|V|2H).

• in	general: Õ(n2H)
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H and	gaps

• ∆e: gap of	arm e ∈ [n]

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗

▶ stability	of	the	optimality	of M∗ wrt. arm e.

• H =
∑

e∈[n]∆
−2
e

▶ for	the top-K problem: recover	the	previous	definition	of H.
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Width	and	exchange	class

Intuitions

• we	need	a	unifying	method	of	analyzing	different M
▶ an exchange	class is	a	“proxy”	for	the	structure	of M.

• an	exchange	class B is	a	collection	of	“patches”
((b+, b−), b+, b− ⊆ [n])	that	are	used	to	interpolate	between
valid	sets	(M \ b− ∪ b+ = M′,M,M′ ∈ M).

size-k-sets

...

+-

spanning	tree

+

-

matching

+
++

- - -

...

...

path

+
+ +

+

- - -s t
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Width	and	exchange	class

definition
width(B): the	size	of	the	largest	“patch”

width(B) = max
(b+,b−)∈B

|b+|+ |b−|.

+
++

- - -

...

...

width(M): the	width	of	the	“thinnest”	exchange	class

width(M) = min
B∈Exchange(M)

width(B),

The	main	technical	contribution: Define	exchange	class	and	its	algebra
and	conduct	generic	analysis	using	exchange	classes.

Example	(Widths)

• k-sets, spanning	trees, bases	of	a	matroid: width(M) = 2.

• matchings, paths	(in	DAG): width(M) = O(|V|).
• in	general: width(M) ≤ n
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CSAR:	Fixed	budget	algorithm

input

• budget: T (play	for	at	most T rounds)

• access	to	a maximization	oracle

output

• a set of	arms: M ∈ M.

overview:

• break	the T rounds	into n phases.
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CSAR:	Fixed	budget	algorithm

phase 1

phase 2

phase 3

phase n

......

end

output

in	each	phase	(n phases	in	total):

• 1	arm	is accepted or rejected.

• active	arms are	sampled	for	a
same	number	of	times.

accepted: include in the output

rejected: exclude from the output

active: neither accepted nor rejected.
require more samples   
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CSAR:	Fixed	budget	algorithm

problem: which	arm	to	accept	or	reject?

• accept/reject	the	arm	with	the	largest empirical	gap.

∆̄e =

{
w̄t(M̄t)− max

M∈Mt:e∈M w̄t(M) if e ̸∈ M̄t,

w̄t(M̄t)− max
M∈Mt:e ̸∈M w̄t(M) if e ∈ M̄t

▶ Mt = {M : M ∈ M,At ⊆ M,Bt ∩M = ∅}.
▶ At: accepted	arms, Bt: rejected	arms	(up	to	phase t).
▶ -> ∆̄e can	be	computed	using	a	maximization	oracle.

• ->	recall	the	(unknown) gap of	arm e:

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e ̸∈ M∗,

w(M∗)−maxM∈M:e ̸∈M w(M) if e ∈ M∗
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CSAR:	Probability	of	error

Theorem	(Probability	of	error	of	CSAR)

Given	any	budget T > n, CSAR correctly	outputs	the	optimal	set M∗
with	probability	at	least

1− 2
Õ
(
− T

width(M)2H

)

and	uses	at	most T rounds.

Remark: To	guarantee	a	constant	probability	of	error	of δ, both	CSAR
and	CLUCB need T = Õ(width(M)2H) rounds.
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Summary

• Combinatorial	pure	exploration: a	general	framework	that	covers
many	pure	exploration	problems	in	MAB.

▶ find	top-k arms, optimal	spanning	trees, matchings	or	paths.

• Two	general	algorithms	(CLUCB,	CSAR) for	the	problem
▶ only	need	a	maximization	oracle	for M.
▶ comparable	performance	guarantees.

• Our	algorithm	is	optimal	(up	to	log	factors)	for	matroids.
▶ including k-sets	and	spanning	trees.

• Trilogy	on	stochastic	and	combinatorial	online	learning	: together
with	our	recent	work	on combinatorial	multi-armed	bandit
[CWY,ICML’13]	and combinatorial	partial	monitoring [LAKLC,
ICML’14], all	dealing	with	general	combinatorial	constraints
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Future	work

• Tighten	the	bounds	for	matching, paths	and	other	combinatorial
constraints

• Support	approximation	oracles

• Support	non-linear	reward	functions

19



Thank	you!



Exchange	class: Formal	definition

Exchange	set

An exchange	set b is	an	ordered	pair	of	disjoint	sets b = (b+, b−)
where b+ ∩ b− = ∅ and b+, b− ⊆ [n].
Let M be	any	set. We	also	define	two	operators:

• M⊕ b ≜ M\b− ∪ b+.

• M⊖ b ≜ M\b+ ∪ b−.

Exchange	class

We	call	a	collection	of	exchange	sets B an exchange	class	for M if B
satisfies	the	following	property. For	any M,M′ ∈ M such	that M ̸= M′

and	for	any e ∈ (M\M′), there	exists	an	exchange	set (b+, b−) ∈ B
which	satisfies	five	constraints: (a) e ∈ b−, (b) b+ ⊆ M′\M, (c)
b− ⊆ M\M′, (d) (M⊕ b) ∈ M and (e) (M′ ⊖ b) ∈ M.
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Experiments	of	CPE
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Width	and	exchange	class

definition
Let B be	an	exchange	class.

width(B) = max
(b+,b−)∈B

|b+|+ |b−|.

Let Exchange(M) denote	the	family	of	all	possible	exchange	classes	for
M. We	define	the	width	of M to	be	the	width	of	the	thinnest	exchange
class

width(M) = min
B∈Exchange(M)

width(B),

where Exchange(M) is	the	family	of	all	possible	exchange	classes	for
M.
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