

Robust Influence Maximization

Wei Chen

Microsoft Research

Joint work with Tian Lin, Zihan Tan, Mingfei Zhao Xuren Zhou

Tsinghua University **HKUST**

KDD'2016, Aug. 15, 2016 1

Influence Maximization in Social Networks

- Influence maximization: selecting important nodes in a network to maximize the influence coverage [Kempe et al.'03]
- Applications of Influence Maximization
	- Viral marketing
	- Outbreak detection
	- Rumor monitoring and control
- In this work, we consider the robustness in Influence Maximization.

Motivating Example

• A company is to carry out the promotion campaign for their product, by sending free samples to initial users.

• Nodes are users, and edges are their relation.

Influence spread $\sigma_{\theta}(S)$: expected number of activated nodes given seed set S and edge parameters θ Influence Maximization Problem [Kempe et al.'03]: Given $G =$ (V, E, θ) , find k nodes $S \subseteq V$ as seeds to maximize $\sigma_{\theta}(S)$. Greedy Algorithm: achieves $1 - 1/e - \epsilon$ approximation ratio

Robustness in Influence Maximization

Influence probability: $\boldsymbol{\theta}$

But where are these influence parameters from? Learned from actual cascade data;

Ground-truth never known;

using confidence intervals is more realistic

Will influence maximization still work with these intervals?

Model and Problem

- Probability of information diffusion is usually learned from data.
- Uncertainty caused by insufficient samples, noise, etc.
- What if the estimation error occurs?

(exact probability) (with estimation error)

The true probability is somewhere in [0.65, 0.75] and is unknown. No distribution assumption made for ground truth within the interval

Model and Problem

Robust Influence Maximization (RIM)

• Given $G = (V, E, \Theta)$, find k nodes $S \subseteq V$ as seeds to maximize the robust ratio $g(\Theta, S)$

$$
S_{\Theta}^* \coloneqq \underset{S \subseteq V, |S| = k}{\arg \max} g(\Theta, S) = \underset{S \subseteq V, |S| = k}{\arg \max} \underset{\theta \in \Theta}{\min} \frac{\sigma_{\theta}(S)}{\sigma_{\theta}(S_{\theta}^*)}
$$

Maximize the worst-case value

- Follow the robust optimization approach in operation research
- Theorem 1. RIM is NP-hard, and it is NP-hard to achieve RIM with robust ratio $1 - 1/e + \epsilon$ for any $\epsilon > 0$.

 $(z 63\%)$

$$
\boldsymbol{\theta}^- = (l_e)_{e \in E}, \boldsymbol{\theta}^+ = (r_e)_{e \in E}
$$

Algorithm $LUGreedy(G, k, \Theta)$

Input: Graph
$$
G = (V, E)
$$
, budget k , parameter space $\Theta = \frac{\times_{e \in E}[l_e, r_e]}{1: S^g_{\theta^-} \leftarrow \text{Greedy}(G, k, \theta^-)}$
2: $S^g_{\theta^+} \leftarrow \text{Greedy}(G, k, \theta^+)$
3: **return** $\arg \max_{S \in \{S^g_{\theta^-}, S^g_{\theta^+}\}} {\sigma_{\theta^-}(S)}$

Demonstration of LUGreedy

KDD'2016, Aug. 15, 2016

Solution-Dependent Bound

- Define *gap ratio:* $\alpha(\mathbf{\Theta}) \coloneqq$ $\sigma_{\boldsymbol\theta^-} (S^{LU}_{\boldsymbol\Theta}$ $\frac{\sigma_{\theta}(\mathcal{S}_{\theta}^{g})}{\sigma_{\theta^{+}}(S_{\theta^{+}}^{g})}=$ max $\{\sigma_{\boldsymbol{\theta}^{-}}(S_{\boldsymbol{\theta}^{-}}^{y}%)\}_{0\leq\alpha\leq\theta}$ $_g^{g}$ -), σ_{θ} - $(S_{\theta^+}^g)$ \overline{g} $\sigma_{\boldsymbol{\theta}^+} (S^g_{\boldsymbol{\theta}^+})$ \overline{g}). LUGreedy solution
- Theorem 2. LUGreedy outputs a seed set S^{LU}_{Θ} such that:

$$
g(\mathbf{\Theta}, S_{\mathbf{\Theta}}^{LU}) \ge \alpha(\mathbf{\Theta}) \cdot \left(1 - \frac{1}{e}\right).
$$

Example: When $\alpha(\Theta)$ is large (e.g., ≥ 0.7), then the result is reasonably good!

Worst-case Bound on Robust Ratio

- Unfortunately, a good input $\mathbf{\Theta} = \mathsf{x}_{e \in E} [l_e, r_e]$ is required (when the graph is bad)
	- Argument related to sharp threshold for the emergence of giant components in Erdös-Rényi Graphs

Theorem 3. For RIM, denote $\delta = \max_{\mathbf{x}}$ $\max_{e \in E} |r_e - l_e|$ as the maximum *interval width*.

• No constraint on δ . There exists a graph, such that $\max_{\delta \in \mathcal{I}}$ $S \subseteq V$, $|S| = k$ $g(\mathbf{\Theta}, S) = O\left(\frac{k}{n}\right)$ $\frac{n}{n}$);

• Restrict
$$
\delta = O\left(\frac{1}{n}\right)
$$
. There exists a graph, such that $\max_{S \subseteq V, |S| = k} g(\mathbf{0}, S) = O\left(\frac{\log n}{n}\right)$;

• Restrict $\delta = O\left(\frac{1}{\sqrt{2}}\right)$ $\left(\frac{1}{n}\right)$ and allow random seeds \widetilde{S} . There exists a graph, such that max Ω min min $\mathbb{E}_{\tilde{S} \sim \Omega}$ $\sigma_{\boldsymbol{\theta}}(\tilde S)$ $\sigma_{\boldsymbol{\theta}}(s_{\boldsymbol{\theta}}^*)$ $= 0$ log n \overline{n} .

• How to improve this?

- \rightarrow Sampling to improve \odot
- Study on the impact of graph structures?

Sampling for Improving RIM

• Intuition: sampling edges to shrink the confidence intervals in Θ – Law of large numbers

Empirical mean
$$
\hat{p}_t = \frac{1}{t} \sum_{i=1}^t X_i
$$
, true mean $\lim_{t \to \infty} \hat{p}_t = p$.

– "Tail probability diminishes fast"

- Sampling method
	- Uniform sampling: every edge has the same number of samples
	- Non-uniform / adaptive sampling

Theoretical Result on Uniform Sampling (US)

• Based on the additive and multiplicative relationship between influence spread error bound and sampling complexity:

Theorem 6. For any ϵ , $\gamma > 0$, denote empirical vector $\boldsymbol{\theta} = (p_e)_{e \in E}$, $|V| = n$, and $|E| = m$. Then, (1) Set $t =$ $2m^2n^2\ln(2m/\gamma)$ $\frac{2\ln(2m/\gamma)}{k^2\epsilon^2}$, and $\delta_e = \frac{k\epsilon}{nm}$ $\frac{nc}{nm}$; (2) Or, assume that the lower bound p' : $0 < p' <$ min $\lim_{e} p_e$. Set $t=$ $3 \ln(2m/\gamma)$ p_l $2n$ $\frac{2n}{\ln(1/1-\epsilon)}+1$), and $\delta_e = \frac{1}{n}$ $\frac{1}{n} \hat{p}_e \ln(1/\gamma)$. We have $g(\mathbf{\Theta}_{out}, S_{out}) \geq (1 - 1/e)(1 - \epsilon)$

and

$$
\Pr[\theta \in \Theta_{out}] \ge 1 - \gamma.
$$

$$
\begin{array}{|c|}\n\hline\n\text{O} & \text{O} & \text{O} \\
\hline\n\text{O}_{out} = \mathsf{x}_{e\in E} \text{ } [l_e, r_e] \\
\text{O}_{out} = \mathsf{x}_{e\in E} \text{ } [l_e, r_e] \\
\text{O}_{i_e} = \max \{0, \hat{p}_e - \delta_e\} \\
\text{O}_{i_e} = \min \{1, \hat{p}_e + \delta_e\}\n\end{array}
$$

Adaptive Sampling: Information Cascade Sampling (ICS)

• Idea: important edges should be sampled more; edges appear in cascades may be more important

Given threshold $\epsilon > 0$. **repeat**:

- Call **LUGreedy** to get seeds S_i^g .
- Starting from seeds S_i^g , do *information cascade* and sample touched edges.
- $\mathbf{\Theta}_{i+1} \leftarrow \text{Update}(\mathbf{\Theta}_i); i \leftarrow i + 1;$ **until** $(\alpha(\Theta_i) > 1 - \epsilon)$ $\mathbf{return}\ \mathbf{\Theta}_{out} \leftarrow \mathbf{\Theta}_{i+1}, S_{out} \leftarrow S_i^g$

In practice, we samples τ times of information cascade, then change the seed set.

• **The information cascade naturally samples edges along its trace.**

Use **LUGreedy** to select seeds, and sample the trace of the information cascade.

Next time, we may sample different seeds and information cascade.

From time to time, we can refine parameter space $\mathbf{\Theta}_{out}$.

with probability $Pr[\theta \in \Theta_{out}] \geq 1 - \gamma$.

Empirical Evaluation

• Datasets

Trend for Gap Ratio vs. Interval Width

 α : gap ratio (lower bound) $\bar{\alpha}$: upper bound (estimated)

 $k = 50$

Comparison of Different Sampling Algorithms

Sampling Algorithm:

US: Uniform sampling ICS: Information cascade sampling OES: Outgoing edge only sampling

Related Works

- [Saito et al.'08] [Tang et al.'09] [Rodriguez et al.'11] etc., on methods to learn the probability on edges.
- [Chen et al. '09, '10] [Borgs et al. 14] [Tang et al. '14 '14] etc., on scalable influence maximization
- [He & Kempe'15] attempt to address the uncertainty by using a different model.
- [Krause et al.'08]: the hardness of general robust submodular optimization on a finite set of submodular functions; and bi-criteria solution
- [He & Kempe'16] (next talk): same objective function, but
	- Using the bi-criteria approach of [Krause et al'08]
	- For finite number of possible choices of diffusion models

Conclusion and Future Work

- We propose
	- the RIM problem to handle data uncertainty
	- the LUGreedy algorithm with a provable bound
	- the information cascade based sampling method to reduce the uncertainty and increase the robustness.
- Future work
	- The upper bound of the best robust ratio given a graph?
	- How to provide confidence intervals for a learning algorithm (e.g. MLE)?
	- The big data challenge for social influence analysis
		- Data is not big enough!
		- How to do better sampling, better model learning, and better optimization under the data constraint?

Thank You!

KDD'2016, Aug. 15, 2016 32