

Robust Influence Maximization

Wei Chen

Microsoft Research

Joint work with Tian Lin, Zihan Tan, Mingfei Zhao Xuren Zhou

Tsinghua University HKUST

KDD'2016, Aug. 15, 2016

Influence Maximization in Social Networks

- Influence maximization: selecting important nodes in a network to maximize the influence coverage [Kempe et al.'03]
- Applications of Influence Maximization
 - Viral marketing
 - Outbreak detection
 - Rumor monitoring and control
- In this work, we consider the robustness in Influence Maximization.

Motivating Example

• A company is to carry out the promotion campaign for their product, by sending free samples to initial users.

• Nodes are users, and edges are their relation.

Influence spread $\sigma_{\theta}(S)$: expected number of activated nodes given seed set S and edge parameters θ Influence Maximization Problem [Kempe et al.'03]: Given $G = (V, E, \theta)$, find k nodes $S \subseteq V$ as seeds to maximize $\sigma_{\theta}(S)$. Greedy Algorithm: achieves $1 - 1/e - \epsilon$ approximation ratio

Robustness in Influence Maximization

Influence probability: $oldsymbol{ heta}$

But where are these influence parameters from?

Learned from actual cascade data; Ground-truth never known;

using confidence intervals is more realistic

Will influence maximization still work with these intervals?

Model and Problem

- Probability of information diffusion is usually learned from data.
- Uncertainty caused by insufficient samples, noise, etc.
- What if the estimation error occurs?

(exact probability)

(with estimation error)

The true probability is somewhere in [0.65, 0.75] and is unknown. No distribution assumption made for ground truth within the interval

Model and Problem

Robust Influence Maximization (RIM)

• Given $G = (V, E, \Theta)$, find k nodes $S \subseteq V$ as seeds to maximize the robust ratio $g(\Theta, S)$

$$S_{\Theta}^{*} \coloneqq \arg\max_{S \subseteq V, |S|=k} g(\Theta, S) = \arg\max_{S \subseteq V, |S|=k} \min_{\theta \in \Theta} \frac{\sigma_{\theta}(S)}{\sigma_{\theta}(S_{\theta}^{*})}$$

Maximize the worst-case value

- Follow the robust optimization approach in operation research
- Theorem 1. RIM is NP-hard, and it is NP-hard to achieve RIM with robust ratio $1 1/e + \epsilon$ for any $\epsilon > 0$.

(≈ 63%)

$$\boldsymbol{\theta}^- = (l_e)_{e \in E}, \boldsymbol{\theta}^+ = (r_e)_{e \in E}$$

Algorithm $LUGreedy(G, k, \Theta)$

Input: Graph G = (V, E), budget k, parameter space $\Theta = \underset{e \in E}{\times_{e \in E} [l_e, r_e]}$ 1: $S_{\theta^-}^g \leftarrow \text{Greedy}(G, k, \theta^-)$ 2: $S_{\theta^+}^g \leftarrow \text{Greedy}(G, k, \theta^+)$ 3: return $\arg \max_{S \in \left\{S_{\theta^-}^g, S_{\theta^+}^g\right\}} \left\{\sigma_{\theta^-}(S)\right\}$

Demonstration of LUGreedy

Solution-Dependent Bound

- Define *gap ratio*: LUGreedy solution $\alpha(\Theta) \coloneqq \frac{\sigma_{\theta^-}(S_{\Theta^+}^{LU})}{\sigma_{\theta^+}(S_{\theta^+}^g)} = \frac{\max\{\sigma_{\theta^-}(S_{\theta^-}^g), \sigma_{\theta^-}(S_{\theta^+}^g)\}}{\sigma_{\theta^+}(S_{\theta^+}^g)}.$
- Theorem 2. LUG reedy outputs a seed set S_{Θ}^{LU} such that:

$$g(\mathbf{\Theta}, S_{\mathbf{\Theta}}^{LU}) \geq \alpha(\mathbf{\Theta}) \cdot \left(1 - \frac{1}{e}\right).$$

Example: When $\alpha(\Theta)$ is large (e.g., ≥ 0.7), then the result is reasonably good!

Worst-case Bound on Robust Ratio

- Unfortunately, a good input $\Theta = \times_{e \in E} [l_e, r_e]$ is required (when the graph is bad)
 - Argument related to sharp threshold for the emergence of giant components in Erdös-Rényi Graphs

Theorem 3. For RIM, denote $\delta = \max_{e \in E} |r_e - l_e|$ as the maximum *interval width*.

• No constraint on δ . There exists a graph, such that $\max_{S \subseteq V, |S| = k} g(\Theta, S) = O\left(\frac{k}{n}\right);$

• Restrict
$$\delta = O\left(\frac{1}{n}\right)$$
. There exists a graph, such that $\max_{S \subseteq V, |S|=k} g(\Theta, S) = O\left(\frac{\log n}{n}\right)$;

• Restrict $\delta = O\left(\frac{1}{\sqrt{n}}\right)$ and allow random seeds \tilde{S} . There exists a graph, such that

$$\max_{\Omega} \min_{\theta \in \Theta} \mathbb{E}_{\tilde{S} \sim \Omega} \left[\frac{\sigma_{\theta}(S)}{\sigma_{\theta}(S_{\theta}^*)} \right] = O\left(\frac{\log n}{\sqrt{n}} \right).$$

- How to improve this?
 - Sampling to improve Θ
 - Study on the impact of graph structures?

Sampling for Improving RIM

• Intuition: sampling edges to shrink the confidence intervals in Θ – Law of large numbers

Empirical mean
$$\hat{p}_t = \frac{1}{t} \sum_{i=1}^t X_{i}$$
, true mean $\lim_{t \to \infty} \hat{p}_t = p$.

- "Tail probability diminishes fast"

- Sampling method
 - Uniform sampling: every edge has the same number of samples
 - Non-uniform / adaptive sampling

Theoretical Result on Uniform Sampling (US)

• Based on the additive and multiplicative relationship between influence spread error bound and sampling complexity:

Theorem 6. For any $\epsilon, \gamma > 0$, denote empirical vector $\boldsymbol{\theta} = (p_e)_{e \in E}$, |V| = n, and |E| = m. Then, (1) Set $t = \frac{2m^2n^2\ln(2m/\gamma)}{k^2\epsilon^2}$, and $\delta_e = \frac{k\epsilon}{nm}$; (2) Or, assume that the lower bound $p': 0 < p' < \min_e p_e$. Set $t = \frac{3\ln(2m/\gamma)}{p'} \left(\frac{2n}{\ln(1/1-\epsilon)} + 1\right)$, and $\delta_e = \frac{1}{n}\hat{p}_e \ln(1/\gamma)$. We have $g(\boldsymbol{\Theta}_{out}, S_{out}) \ge (1 - 1/e)(1 - \epsilon)$

and

$$\Pr[\theta \in \Theta_{out}] \ge 1 - \gamma.$$

Adaptive Sampling: Information Cascade Sampling (ICS)

 Idea: important edges should be sampled more; edges appear in cascades may be more important

Given threshold $\epsilon > 0$. repeat:

- Call **LUGreedy** to get seeds S_i^g .
- Starting from seeds S_i^g , do *information cascade* and sample touched edges.
- $\Theta_{i+1} \leftarrow \text{Update}(\Theta_i); i \leftarrow i+1;$ until ($\alpha(\Theta_i) > 1 - \epsilon$) return $\Theta_{out} \leftarrow \Theta_{i+1}, S_{out} \leftarrow S_i^g$

In practice, we samples τ times of information cascade, then change the seed set.

• The information cascade naturally samples edges along its trace.

Use **LUGreedy** to select seeds, and sample the trace of the information cascade.

Next time, we may sample different seeds and information cascade.

From time to time, we can refine parameter space Θ_{out} .

$$g(\boldsymbol{\Theta}_{out}, S_{out}) \ge \left(1 - \frac{1}{e}\right)(1 - \epsilon)$$

with probability $\Pr[\theta \in \boldsymbol{\Theta}_{out}] \ge 1 - \gamma$.

Empirical Evaluation

• Datasets

Name	Description	# of nodes	# of edges	Edge probability
NetHEPT	Academic collaboration network	15233	62774	Weighted cascade (synthetic)
Flixster (topic 8)	Movie rating induced network	14473	64934	Learned from trace
Flixster (Mixed, topics 1 & 4)	Movie rating induced network	7118	23252	Learned from trace, then evenly mixed between topics 1 & 4

Trend for Gap Ratio vs. Interval Width

 α : gap ratio (lower bound) $\overline{\alpha}$: upper bound (estimated)

k = 50

Comparison of Different Sampling Algorithms

Sampling Algorithm: US: Uniform sampling

ICS: Information cascade sampling OES: Outgoing edge only sampling

Related Works

- [Saito et al.'08] [Tang et al.'09] [Rodriguez et al.'11] etc., on methods to learn the probability on edges.
- [Chen et al. '09, '10] [Borgs et al. 14] [Tang et al. '14 '14] etc., on scalable influence maximization
- [He & Kempe'15] attempt to address the uncertainty by using a different model.
- [Krause et al.'08]: the hardness of general robust submodular optimization on a finite set of submodular functions; and bi-criteria solution
- [He & Kempe'16] (next talk): same objective function, but
 - Using the bi-criteria approach of [Krause et al'08]
 - For finite number of possible choices of diffusion models

Conclusion and Future Work

- We propose
 - the RIM problem to handle data uncertainty
 - the LUGreedy algorithm with a provable bound
 - the information cascade based sampling method to reduce the uncertainty and increase the robustness.
- Future work
 - The upper bound of the best robust ratio given a graph?
 - How to provide confidence intervals for a learning algorithm (e.g. MLE)?
 - The big data challenge for social influence analysis
 - Data is not big enough!
 - How to do better sampling, better model learning, and better optimization under the data constraint?

Thank You!

