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Social influence
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Social influence occurs when one's 
emotions, opinions, or behaviors are 
affected by others.
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[Christakis and Fowler, NEJM’07,08]
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Booming of online social networks 
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Opportunities on online social influence 
research and applications
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 massive data set, real time, dynamic, open

 help understand social interactions, influence 
propagation patterns in grand scale 

 help identifying influencers

 facilitate decision making in health care, business, 
politics, and economics

SocInf Workshop, IJCAI'2015, July 27, 2015



Voting mobilization: A Facebook study
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 Voting mobilization [Bond et al, Nature’2012]

 show a facebook msg. on voting day with faces of friends who voted

 generate 340K additional votes due to this message, among 60M 
people tested



Three pillars of computational social 
influence
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Influence modeling
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 Discrete-time models:
 independent cascade (IC), linear threshold (LT), general 

cascade models [KKT‘03]
 topic-aware IC/LT models [BBM’12]

 Continuous-time models [GBS‘11]

 Competitive diffusion models
 competitive IC [BAA‘11], competitive LT [HSCJ‘12], etc.

 Competitive & complementary diffusion model 
[LCL‘15]

 Others, epidemic models (SIS/SIR/SIRS…), voter model 
variants



Influence optimization
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 Scalable inf. max.
 Greedy approximation [KKT’03, LKGFVG’07, CWY’09, 

BBCL’14, TXS’14, TSX’15]
 Fast heuristics [CWY’09, CWW’10, CYZ’10, GLL’11, JHC’12, 

CSHZC’13]

 Multi-item inf. max. [BAA’11, SCLWSZL’11, HSCJ’12, 
LBGL’13, LCL’15]

 Non-submodular inf. max. [GL’13, YHLC’13, ZCSWZ’14, 
CLLR’15]

 Topology change for inf. max. [TPTEFC’10,KDS’14]

 Inf. max with online learning [CWY’13, LMMCS’15]

 many others …



Influence learning
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 Based on user action / adoption traces

 Learning the diffusion graph [GLK’10]

 Learning (the graph and) the parameters 

 frequentist method [GBL’10]

 maximum likelihood [SNK’08]

 MLE via convex optimization [ML’10,GBS’11,NS’12]



Rest of this talk
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 Quick review of influence model and maximization 

 Amphibious influence maximization

 Comparative influence diffusion --- from competition 
to complementarity
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Quick Review of Influence Model 
and Maximization
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Example: viral marketing in social networks

 Viral (word-of-mouth) marketing is believed to be a promising 
advertising strategy. 

 Increasing popularity of online social networks may enable 
large  scale viral marketing 

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good
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Influence diffusion model
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 Directed graph 𝐺 = (𝑉, 𝐸)

 𝑉: set of nodes, representing users

 𝐸: set of directed edges, representing 
influence relationships

 Influence probabilities on edges

 𝑝(𝑢, 𝑣): the probability that 𝑢 activates 𝑣

 Independent cascade model

 Initially nodes in a seed set 𝑆 are activated

 At step 𝑡, each node 𝑢 activated at step 
𝑡 − 1 has one chance to activate each of 
its out-going neighbor 𝑣, with success 
probability 𝑝(𝑢, 𝑣)

 influence spread 𝜎(𝑆): expected number 
of active nodes when 𝑆 is the seed set

0.3

0.1



Influence maximization
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 Given a social network, a diffusion model with given 
parameters, and a number 𝑘, find a seed set 𝑆 of at 
most 𝑘 nodes such that the influence spread of 𝑆, 
𝜎(𝑆), is maximized. 

 Many possible variants 

 non-uniform cost, minimize seed set size, etc.

 NP hard
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Greedy approximation framework
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 influence spread 𝜎(𝑆) is 
submodular:

 for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇, 
𝜎 𝑆 ∪ 𝑣 − 𝜎 𝑆 ≥ 𝜎 𝑇 ∪ 𝑣 − 𝜎(𝑇)

 diminishing marginal return

 Submodular function maximization

 Greedy algorithm: iteratively 
finding the next seed with the 
largest marginal influence spread 

 1 − 1/𝑒 approximation

|𝑆|

𝑓(𝑆)
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Fast MIA heuristic
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 Pure greedy algorithm is very 
slow

 MIA uses local tree structure 
to replace general influence 
computation

 1000 fold speedup with 
similar seed quality

 new algorithms available

103 times 
speed up

close to Greedy, 
49% better than Degree, 15% 
better than DegreeDiscount

Influence spread vs. seed set size

running time



Amphibious Influence Maximization

with Fu Li, Tian Lin, and Aviad Rubinstein
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Traditional vs. viral marketing
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advertiser content providers consumers

traditional 
marketing

viral
marketing

advertiser
consumers



Amphibious marketing
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Amphibious influence maximization
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 Given:
 𝑈 – content providers
 𝑉 – consumers
 𝐺 = (𝑉, 𝑃) – social network graph with 

influence probability matrix 𝑃
 𝐵 = (𝑈, 𝑉,𝑀) – provider to consumer 

influence graph, with bi-adjacency matrix 𝑀

 Diffusion model: 
 From selected seed providers 𝑋 ⊆ 𝑈, to 

selected seed consumers 𝑌 ⊆ 𝑉, then to the 
rest of social network

 Same as IC model, with 𝑋 as seeds, and 
remove all edges from 𝑈 pointing to 𝑉 ∖ 𝑌

 Influence spread 𝜎(𝑋, 𝑌): expected number 
of active nodes in 𝑉

 Goal
 Find 𝑏1 seed providers 𝑋 and 𝑏2 seed 

consumers 𝑌 to maximize 𝜎(𝑋, 𝑌)

𝐺

𝐵



Main results
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 Difficulty:
 𝜎(𝑋, 𝑌) is submodular in 𝑋 when fixing 𝑌, or vice versa
 but the interaction of 𝑋 and 𝑌 makes it harder --- need both 𝑋

and 𝑌 to generate influence spread --- non-submodular behavior

 Hardness: NP-hard to approximate to any constant factor in 
general graphs
 reduced from a 𝑘-prover system

 Algorithm: When 𝑀 (weighted bi-adjacency matrix for provider-
consumer bipartite graph) has constant rank, polynomial-time 

algorithm with constant approx. factor 1 −
1

𝑒
− 𝜀

3

 constant rank assumption: 
 𝑀 dictated by a small number of provider/consumer features

 often used in recommender systems



The algorithm
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 Main observation:

Pr 𝑣 activated = 1 − 𝑢∈Γ(𝑣)(1 − 𝑀 𝑢→𝑣 𝑥𝑢) ≈ 1 − 𝑒
−  𝑢∈Γ(𝑣)𝑀 𝑢→𝑣 𝑥𝑢 (*)

 Linear term in the exponent allows us to use constant rank
 (polynomially sized) 𝜀-net 𝑆𝜀 over all vectors 𝐬 ≈ 𝑀𝐱

 (fixing 𝐬, we know from (*) the probability that each consumer is activated 
by the providers)

 for each choice of 𝐬
 pick feasible 𝐲𝐬 (indicator vector of 𝑉) that (approximately) maximizes the 

spread (standard submodular maximization)

 Pick feasible 𝐱𝐲𝐬 (indicator vector of 𝑈) that (approximately) maximizes the 
spread, given fixed 𝐲𝐬

 output (𝐱𝐲𝐬 , 𝐲𝐬) that maximizes 𝜎(𝐱𝐲𝐬 , 𝐲𝐬), among all 𝐬 ∈ 𝑆𝜀

(1 − 1/𝑒) factor

𝜀 error(1 − 1/𝑒 − 𝜀) factor

(1 − 1/𝑒 − 𝜀) factor



Contributions

SocInf Workshop, IJCAI'2015, July 27, 201527

 Conceptual: proposes amphibious 
marketing 

 using data from both content providers 
and social networks

 Technical: 

 hardness reduction from 𝑘-prover systems

 constant rank assumption to deal with 
non-submodularity

𝐺

𝐵



Open problems
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 Is the approximation factor 1 −
1

𝑒
− 𝜀

3
tight?

 Handling non-submodularity:

 Can constant rank assumption be applied to other 
context?

 Is there other reasonable assumptions on (weighted) 
influence networks?

 Better models for “amphibious marketing”?

 learning? privacy? incentives?



Comparative Influence Diffusion: 
From Competition to Complementarity

with Wei Lu and Laks Lakshmanan
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Competition and complementarity
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 Many competitions in the market

 Also many complementarity and cooperation

vs vs

and and

and



Influence diffusion with competition and 
complementarity
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 Most existing research focus on single-item diffusion 
or pure competitive diffusion

 Can we cover the diffusion of competitive and/or 
complementary items in a single unified model?



Comparative IC (Com-IC) model
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 Consider two items A and B
 Comparative: user compares two items

 covers both competition and complementarity, partial or 
complete

 Social graph 𝐺 = (𝑉, 𝐸)
 edge probabilities 𝑝(𝑢, 𝑣): probability that 𝑢 will pass 

information about A or B to 𝑣
 open once for both items

 Node adoption states and their transitions
 four states for each item: 

 idle, suspended, adopted, rejected

 four global adoption probability (GAP) parameters: 
 𝑞𝐴|∅, 𝑞𝐴|𝐵 , 𝑞𝐵|∅, 𝑞𝐵|𝐴



Node level state transition
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 Principle
 If not adopt B and get informed about A, use 𝑞𝐴|∅ to test A adoption
 If already adopted B and get A-informed, use 𝑞𝐴|𝐵
 If failed adopting A initially (becoming A-suspended) and later adopt B, 

reconsider A with probability 𝜌𝐴

 𝜌𝐴 =
max{𝑞𝐴|𝐵−𝑞𝐴|∅,0}

1−𝑞𝐴|∅

 only reconsider when 𝑞𝐴|𝐵 ≥ 𝑞𝐴|∅, and overall A adoption probability is 𝑞𝐴|𝐵



The competition to complementarity 
spectrum
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 Mutual competition: 
 𝑞𝐴|𝐵 ≤ 𝑞𝐴|∅ and 𝑞𝐵|𝐴 ≤ 𝑞𝐵|∅
 pure competition: 𝑞𝐴|𝐵 = 0

and 𝑞𝐵|𝐴 = 0

 Mutual complementarity: 
 𝑞𝐴|𝐵 ≥ 𝑞𝐴|∅ and 𝑞𝐵|𝐴 ≥ 𝑞𝐵|∅
 perfect complementarity: 
𝑞𝐴|𝐵 = 1 and 𝑞𝐵|𝐴 = 1

 Mutual indifference: 
 𝑞𝐴|𝐵 = 𝑞𝐴|∅ and 𝑞𝐵|𝐴 = 𝑞𝐵|∅

 One way complementarity: 
 𝑞𝐴|𝐵 ≥ 𝑞𝐴|∅ and 𝑞𝐵|𝐴 = 𝑞𝐵|∅

vs

vs

vs

vs



Submodularity on complementary cases
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 influence spread 𝜎𝐴(𝑆𝐴, 𝑆𝐵): expected number of A-
adopted nodes with A seed set 𝑆𝐴 and B seed set 𝑆𝐵
 self-submodularity: fix 𝑆𝐵, 𝜎𝐴 changes on 𝑆𝐴
 cross-submodularity: fix 𝑆𝐴, 𝜎𝐴 changes on 𝑆𝐵

 Submodularity only holds in some sub-cases

 self-submodularity holds for one-way complementarity: 
𝑞𝐴|𝐵 ≥ 𝑞𝐴|∅ and 𝑞𝐵|𝐴 = 𝑞𝐵|∅

 cross-submodularity holds when A perfectly 
complements B: 𝑞𝐵|𝐴 = 1



Influence maximization on 
complementary cases
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 SelfInfMax: For a fixed set 𝑆𝐵, find 𝑆𝐴 of size 𝑘 to 
maximize 𝜎𝐴(𝑆𝐴, 𝑆𝐵)

 CompInfMax: For a fixed set 𝑆𝐴, find 𝑆𝐵 of size 𝑘 to 
maximize 𝜎𝐴 𝑆𝐴, 𝑆𝐵 − 𝜎𝐴 𝑆𝐴, ∅

 Our results:

 for submodular cases: design fast approximation 
algorithm based on Reverse-Reachable sets

 for non-submodular cases: finder upper/lower bounded 
submodular cases, and use sandwich approximation



Experimental evaluation
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SelfInfMax on Flixster CompInfMax on Flixster Running time



Contribution
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 Conceptual: propose a unified diffusion model covering 
both competition and complementarity

 Technical: 

 new problems arises from the new model

 self- and cross-submodularity analysis

 generalize RR-set approach and design fast approximation 
algorithms for SelfInfMax and CompInfMax

 sandwich approximation dealing with non-submodularity



Open problems
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 Can SelfInfMax and CompInfMax be made near-linear 
time?

 Can we fully characterize monotonicity and 
submodularity for the entire GAP space?

 Can we efficiently generalize Com-IC to multiple 
items?

 How to efficiently learn GAP parameters?

 What are other interesting problems in the Com-IC 
model?



Conclusion
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CSI still in its early stage
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 Many models and problems still need to be studied

 non-binary, non-progressive models

 dealing with dynamic graphs

 Influence analysis and learning is still a big challenge

 data is still not big enough!
 too sparse, too noisy, non-critical

 need smart methods in learning influence model 
parameters

 need robust optimization methods dealing with 
uncertainty in the model

 combine online learning with influence maximization



Grand challenge
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 Understand from data the true peer influence and viral diffusion scenarios, online and 
offline

 Apply social influence research to explain, predict, and control influence and viral 
phenomena 

 Network and diffusion dynamics would be focus of network science in the next decade
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Further resources

Search “Wei Chen Microsoft”

• Monograph: “Information and 
Influence Propagation in Social 
Networks”, Morgan & Claypool, 
2013

• KDD’12 tutorial on influence 
spread in social networks

• my papers and talk slides
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Thank you!
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