
UBC, March 27, 2015 1

Combinatorial optimization

• Well studied

– classics: shortest paths, min. spanning trees,
max. matchings

– modern applications: online advertising, viral
marketing

• What if the inputs are stochastic, unknown,
and has to be learned over time?

– link delays

– click-through probabilities

– influence probabilities in social networks

UBC, March 27, 2015 2

Combinatorial learning for combinatorial

optimizations

• Need new framework for learning and optimization:

• Learn inputs while doing optimization --- combinatorial online

learning

• Learning inputs first (and fast) for subsequent optimization ---

combinatorial pure exploration

UBC, March 27, 2015 3

Motivating application: Display ad placement

• Bipartite graph of pages and users who are interested in

certain pages

– Each edge has a click-through probability

• Find 𝑘 pages to put ads to maximize total number of users

clicking through the ad

• When click-through probabilities are known, can be solved

by approximation

• Question: how to learn click-through prob. while doing

optimization?

UBC, March 27, 2015 4

Main difficulties

• Combinatorial in nature

• Non-linear optimization objective, based on underlying

random events

• Offline optimization may already be hard, need

approximation

• Online learning: learn while doing repeated optimization

UBC, March 27, 2015 5

Multi-armed bandit: the canonical OL problem

• There are 𝑛 arms (machines)

• Arm 𝑖 has an unknown reward distribution

with unknown mean 𝜇𝑖
– best arm 𝜇∗ = max 𝜇𝑖

• In each round, the player selects one arm to

play and observes the reward

UBC, March 27, 2015 6

Multi-armed bandit problem

– Regret after playing 𝑇 rounds:

• Regret =𝑇𝜇∗ − 𝔼[𝑡=1
𝑇 𝑅𝑡(𝑖𝑡

𝐴)]

• Objective: minimize regret in 𝑇 rounds

• Balancing exploitation-exploration tradeoff

• Known results:

– UCB1 (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]

• Gap-dependent bound O(log 𝑇 𝑖:Δ𝑖>0
1/Δ𝑖), Δ𝑖 = 𝜇∗ − 𝜇𝑖, match lower bound

• Gap-free bound O(𝑛𝑇 log 𝑇), tight up to a factor of log 𝑇

UBC, March 27, 2015 7

Naïve application of MAB

• every set of k webpages is treated as an arm

• reward of an arm is the total click-through

counted by the number of people

• Issues

– combinatorial explosion

– ad-user click-through information is wasted

UBC, March 27, 2015 8

Issues when applying MAB to combinatorial setting

• The action space is exponential

– Cannot even try each action once

• The offline optimization problem may already be hard

• The reward of a combinatorial action may not be linear on its

components

• The reward may depend not only on the means of its component

rewards

UBC, March 27, 2015 9

A COL Trilogy

• On stochastic setting: Only a few scattered work exist before

• ICML’13: Combinatorial multi-armed bandit framework

– On cumulative rewards / regrets

– Handling nonlinear reward functions and approximation oracles

• ICML’14: Combinatorial partial monitoring

– Handling limited feedback with combinatorial action space

• NIPS’14: Combinatorial pure exploration

– On best combinatorial arm identification

– Handling combinatorial action space

UBC, March 27, 2015 10

The unifying theme

• Separate online learning from offline optimization

– Assume offline optimization oracle

• General combinatorial online learning framework

– Apply to many problem instances, linear, non-linear, exact solution or

approximation

UBC, March 27, 2015 11

ICML’2013, joint work with

Yajun Wang, Microsoft

Yang Yuan, Cornell U.

Chapter I:

Combinatorial Multi-Armed Bandit:

General Framework, Results and

Applications

UBC, March 27, 2015 12

Contribution of this work

• Stochastic combinatorial multi-armed bandit framework

– handling non-linear reward functions

– UCB based algorithm and tight regret analysis

– new applications using CMAB framework

• Comparing with related work

– linear stochastic bandits [Gai et al. 2012]
• CMAB is more general, and has much tighter regret analysis

– online submodular optimizations (e.g. [Streeter& Golovin’08,
Hazan&Kale’12])
• for adversarial case, different approach

• CMAB has no submodularity requirement

UBC, March 27, 2015 13

CMAB Framework

UBC, March 27, 2015 14

Combinatorial multi-armed bandit (CMAB) framework

• A super arm 𝑆 is a set of (base) arms, 𝑆 ⊆ [𝑛]

• In round 𝑡, a super arm 𝑆𝑡
𝐴 is played according algo 𝐴

• When a super arm 𝑆 is played, all based arms in 𝑆 are

played

• Outcomes of all played base arms are observed ---

semi-bandit feedback

• Outcome of arm 𝑖 ∈ [𝑛] has an unknown distribution

with unknown mean 𝜇𝑖

UBC, March 27, 2015 15

super arms

(base)

arms

Rewards in CMAB

• Reward of super arm 𝑆𝑡
𝐴 played in round 𝑡, 𝑅𝑡(𝑆𝑡

𝐴), is
a function of the outcomes of all played arms

• Expected reward of playing arm 𝑆, 𝔼[𝑅𝑡 𝑆], only

depends on 𝑆 and the vector of mean outcomes of

arms, 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑛), denoted 𝑟𝝁 𝑆

– e.g. linear rewards, or independent Bernoulli random

variables

• Optimal reward: opt𝝁 = max
𝑆

𝑟𝝁(𝑆)

UBC, March 27, 2015 16

super arms

(base)

arms

Handling non-linear reward functions ---

two mild assumption on 𝑟𝝁 𝑆

• Monotonicity

– if 𝝁 ≤ 𝝁′ (pairwise), 𝑟𝝁 𝑆 ≤ 𝑟𝝁′ (𝑆), for all super arm 𝑆

• Bounded smoothness

– there exists a strictly increasing function 𝑓 ⋅ , such that for any two expectation

vectors 𝝁 and 𝝁′,

|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝑓 Δ , where Δ = max𝑖∈𝑆|𝜇𝑖 − 𝜇𝑖
′|

– Small change in 𝝁 lead to small changes in 𝑟𝝁 𝑆

• A general version of Lipschitz continuity condition

• Rewards may not be linear, a large class of functions satisfy these

assumptions

UBC, March 27, 2015 17

Offline computation oracle ---

allow approximations and failure probabilities

• 𝛼, 𝛽 -approximation oracle:

– Input: vector of mean outcomes of all arms 𝝁 =
(𝜇1, 𝜇2, … , 𝜇𝑛),

– Output: a super arm 𝑆, such that with probability at

least 𝛽 the expected reward of 𝑆 under 𝝁, 𝑟𝝁 𝑆 , is

at least 𝛼 fraction of the optimal reward:

Pr 𝑟𝝁 𝑆 ≥ 𝛼 ⋅ opt𝝁 ≥ 𝛽

UBC, March 27, 2015 18

𝛼, 𝛽 -Approximation regret

• Compare against the 𝛼𝛽 fraction of the optimal

Regret = 𝑇 ⋅ 𝛼𝛽 ⋅ opt𝝁 − 𝔼[𝑖=1
𝑇 𝑟𝝁(𝑆𝑡

𝐴)]

• Difficulty: do not know

– combinatorial structure

– reward function

– arm outcome distribution

– how oracle computes the solution

UBC, March 27, 2015 19

Classical MAB as a special case

• Each super arm is a singleton

• Oracle is taking the max, 𝛼 = 𝛽 = 1

• Bounded smoothness function 𝑓 𝑥 = 𝑥

UBC, March 27, 2015 20

Our solution: CUCB algorithm

UBC, March 27, 2015 21

Offline computation
oracle

superarm 𝑆

play

superarm 𝑆

 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑛)

estimationadjustment

 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑛)

 𝜇𝑖 = 𝜇𝑖 +
3 ln 𝑇

2𝑇𝑖

 𝜇𝑖 : sample mean

outcome on arm 𝑖

𝑇𝑖 : # of times arm 𝑖 is played;

key tradeoff between

exploration and exploitation

Theorem 1: Gap-dependent bound

• The (𝛼, 𝛽)-approximation regret of the CUCB algorithm in 𝑛 rounds using an
(𝛼, 𝛽)-approximation oracle is at most

𝑖∈ 𝑛 ,Δmin
𝑖 >0

6 ln 𝑇 ⋅ Δmin
𝑖

(𝑓−1(Δmin
𝑖))2

+
Δmin
𝑖

Δmax
𝑖

6 ln 𝑇

(𝑓−1(𝑥))2
d𝑥 +

𝜋2

3
+ 1 ⋅ 𝑛 ⋅ Δmax

– Δmin
𝑖 (Δmax

𝑖) are defined as the minimum (maximum) gap between 𝛼 ⋅ opt𝝁 and
reward of a bad super arm containing 𝑖.
• Δmin = min

𝑖
Δmin
𝑖 , Δmax = max

𝑖
Δmax
𝑖

• Here, we define the set of bad super arms as

• Match UCB regret for classic MAB

UBC, March 27, 2015 22

Proof ideas (for a looser bound)

• Each base arm has a sampling threshold ℓ𝑡 =
6 ln 𝑡

𝑓−1(Δmin)
2

– 𝑇𝑖,𝑡−1 > ℓ𝑡 : base arm 𝑖 is sufficiently sampled at time 𝑡

– 𝑇𝑖,𝑡−1 ≤ ℓ𝑡 : base arm 𝑖 is under-sampled at time 𝑡

• At round 𝑡, with high probability (1 − 2𝑛𝑡−2), the round is nice ---
empirical means of all base arms are within their confidence radii:

– ∀𝑖 ∈ 𝑛 , | 𝜇𝑖,𝑇𝑖,𝑡−1 − 𝜇𝑖| ≤ Λ𝑖,𝑡 , Λ𝑖,𝑡 =
3 ln 𝑡

2𝑇𝑖,𝑡−1
(by Hoeffding inequality)

• In a nice round 𝑡 with selected super arm 𝑆𝑡, if all base arms of 𝑆𝑡 are
sufficiently sampled, then using their UCBs the oracle will not select a
bad super arm 𝑆𝑡

• Continuity and monotonicity conditions

UBC, March 27, 2015 23

Why bad super arm cannot be selected in a nice

round when its base arms are sufficiently sampled

• define Λ =
3 ln 𝑡

2ℓ𝑡
, Λ𝑡 = max Λ𝑖,𝑡 𝑖 ∈ 𝑆𝑡}, thus Λ > Λ𝑡 (by sufficient sampling condition)

• ∀𝑖 ∈ [𝑛], 𝜇𝑖,𝑡≥ 𝜇𝑖, and ∀𝑖 ∈ 𝑆𝑡 , | 𝜇𝑖,𝑡 − 𝜇𝑖| ≤ 2Λ𝑡 (since 𝜇𝑖,𝑡 = 𝜇𝑖,𝑇𝑖,𝑡−1 + Λ𝑖,𝑡)

• Then we have:

𝑟𝝁 𝑆𝑡 + 𝑓 2Λ > 𝑟𝝁 𝑆𝑡 + 𝑓(2Λ𝑡) {strict monotonicity of 𝑓}

≥ 𝑟 𝝁𝑡 𝑆𝑡 {bounded smoothness of 𝑟𝝁 𝑆 }

≥ 𝛼 ⋅ opt 𝝁𝑡 {𝛼-approximation w.r.t. 𝝁𝑡}

≥ 𝛼 ⋅ 𝑟 𝝁𝑡 𝑆𝝁
∗ {definition of opt 𝝁𝑡}

≥ 𝛼 ⋅ 𝑟𝝁 𝑆𝝁
∗ = 𝛼 ⋅ opt𝝁 {monotonicity of 𝑟𝝁 𝑆 }

• Since 𝑓 2Λ = Δmin, by the def’n of Δmin, 𝑆𝑡 is not a bad super arm with probability

1 − 2𝑛𝑡−2.
UBC, March 27, 2015 24

Counting the regret

• Sufficiently sampled part:

– 𝑡=1
𝑇 2𝑛𝑡−2 ⋅ Δmax ≤

𝜋2

3
⋅ 𝑛 ⋅ Δmax

• Under-sampled part: pay regret Δmax for each under-sampled round
– If a round is under-sampled (meaning some of the base arms of the played super arm is

under-sampled), the under-sampled base arms must be sampled once

– Thus total number of under-sampled round is at most 𝑚 (ℓ𝑇 + 1) =
6 ln 𝑇

(𝑓−1(Δmin))
2 + 1 ⋅ 𝑛

• . Thus, getting a loose bound:

6 ln 𝑇

(𝑓−1(Δmin))2
+
𝜋2

3
+ 1 ⋅ 𝑛 ⋅ Δmax

• To tighten the bound, fine-tune sufficient sampling condition and under-sampled
part regret computation.

UBC, March 27, 2015 25

Theorem 2: Gap-free bound

• Consider a CMAB problem with an (𝛼, 𝛽)-approximation oracle.

If the bounded smoothness function 𝑓 𝑥 = 𝛾 ⋅ 𝑥𝜔 for some 𝛾 >
0 and 𝜔 ∈ (0,1], the regret of CUCB is at most:

2𝛾

2 − 𝜔
⋅ 6𝑛 ln 𝑇

𝜔
2 ⋅ 𝑇1−

𝜔
2 +

𝜋2

3
+ 1 ⋅ 𝑛 ⋅ Δmax

• When 𝜔 = 1, the gap-free bound is 𝑂(𝛾 𝑛𝑇 ln 𝑇)

UBC, March 27, 2015 26

Applications of CMAB

UBC, March 27, 2015 27

Application to ad placement

• Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)
• Each edge is a base arm

• Each set of edges linking 𝑘 webpages is a super
arm

• Bounded smoothness function
𝑓 Δ = 𝐸 ⋅ Δ

• (1 − 1 𝑒 , 1)-approximation regret

𝑖∈𝐸,Δmin
𝑖 >0

12 𝐸 2 ln 𝑇

Δmin
𝑖

+
𝜋2

3
+ 1 ⋅ |𝐸| ⋅ Δmax

• improvement based on clustered arms is available

UBC, March 27, 2015 28

Application to linear bandit problems

• Linear bandits: matching, shortest path, spanning tree (in

networking literature)

• Maximize weighted sum of rewards on all arms

• Our result significantly improves the previous regret bound on

linear rewards [Gai et al. 2012]

– Also provide gap-free bound

UBC, March 27, 2015 29

Application to social influence maximization

• Each edge is a base arm

• Require a new model extension to allow probabilistically

triggered arms

– Because a played base arm may trigger more base arms to be played --

- the cascade effect

• Use the same CUCB algorithm

• See full report arXiv:1111.4279 for complete details

UBC, March 27, 2015 30

Summary and future work

• Summary
– Avoid combinatorial explosion while utilizing low-level observed information

– Modular approach: separation between online learning and offline
optimization

– Handles non-linear reward functions

– New applications of the CMAB framework, even including probabilistically
triggered arms

• Future work
– Improving algorithm and/or regret analysis for probabilistically triggered arms

– Combinatorial bandits in contextual bandit settings

– Investigate CMABs where expected reward depends not only on expected
outcomes of base arms

UBC, March 27, 2015 31

ICML’2014, joint work with

Tian Lin, Tsinghua U.

Bruno Abrahao, Robert Kleinberg, Cornell U.

John C.S Lui, CUHK

Chapter II:

Combinatorial Partial Monitoring Game

with Linear Feedback and Its Applications

UBC, March 27, 2015 32

New question to address:

What if the feedback is limited?

UBC, March 27, 2015 33

Motivating example: Crowdsourcing

– In each timeslot, one user works on one task, and the performance is probabilistic

• Matching workers with tasks in a bipartite graph 𝐺 = (𝑉, 𝐸).

• The total reward is based on the performance of the matching.

• Want to find the matching yielding the best performance

Users
Tasks

1

2

3

1

2

3

44

The total number of possible matchings is exponentially large!

UBC, March 27, 2015 34

Motivating example: Crowdsourcing

• Feedback may be limited:

• workers may not report their

performance

• Some edges may not be

observed in a round.

• Feedback may or may not equal

to reward.

1

2

3

1

2

3

44

0.3

0.2

0.1

?

Question: Can we maximize rewards by learning the best matching?

35UBC, March 27, 2015

Features of the problem

• Features of the problem：

– Combinatorial learning

• Possible choices are exponentially large

– Stochastic model: e.g. human behaviors are stochastic

– Limited feedback:

• Users may not want to provide feedback (need extra work)

• Other examples in combinatorial recommendation

– Learning best matching in online advertising, buyer-seller markets, etc.

– Learning shortest path in traffic monitoring and planning, etc.

UBC, March 27, 2015 36

Full information [Littlestone &
Warnuth, 1989]

MAB [Robbin, 1985; Auer et al. 2002]

Finite partial monitoring [Piccolboni
& Schindelhauer, 2001; Cesa et al.,
06; Antos et al., 12]

Issue: algorithm and regret linearly
depends on 𝒳

CMAB [Cesa-Bianchi et al., 2010; Gai
et al., 2012; Chen et al., 2012]

Issue: require sufficient feedback
?

Related work

Sufficient Feedback (easier) Limited Feedback (harder)

Simple action space
𝒳 = poly(𝑛)

Combinatorial action
space 𝒳 = exp(𝑛)

(CPM: The first step
towards this problem)

UBC, March 27, 2015 37

Our contributions

• Generalize FPM to Combinatorial Partial Monitoring Games (CPM):

– Action set 𝒳 : poly 𝑛 → exp(𝑛)

– Environment outcomes: Finite set 1, 2,⋯ ,𝑀 → Continuous space 0, 1 𝑛 (𝑛 base

arms)

– Reward: linear → non-linear (with Lipschitz continuity)

– Algorithm only needs a weak feedback assumption

– use information from a set of actions jointly

• Achieve regret bounds: distribution-independent O 𝑇
2

3 log 𝑇 + log 𝒳
and distribution-dependent O log 𝑇 + log 𝒳

– Regret depends on log |𝒳| instead of 𝒳

UBC, March 27, 2015 38

Our solution

• Ideas: consider actions jointly

– Use a small set of actions to “observe” all actions

• Borrowing linear regression idea

– One action only provides limited feedback, but their combination may

provide sufficient information.

UBC, March 27, 2015 39

Example application to crowdsourcing

• Model: Matching workers with tasks，
bipartipe 𝐺 = (𝑉, 𝐸)

– Each edge 𝑒𝑖𝑗 is a base arm (the outcome 𝑣𝑖𝑗 is

the utility of worker 𝑖 on the task 𝑗)

– each matching is a super arm, or an action 𝒙

– Find a matching 𝑥 to maximize total utilities

argmax
𝑥

𝐄[𝑒𝑖𝑗∈𝑥 𝑣𝑖𝑗]

UBC, March 27, 2015 40

Workers Tasks

1

2

3

1

2

3

44

Example application to crowdsourcing

• Feedback: Only for certain observable actions,
observe the a partial sum of three edge outcomes

– Represented by a transformation matrix 𝑀𝑥

– Outcome of edges in vector 𝒗

– 𝑀𝑥 ⋅ 𝒗 is the feedback of action 𝑥

– When stacking 𝑀𝑥 together, it is full column rank

• Algorithm solution:

– Use these observable actions to explore

– Use linear regression to estimate and find best action
and explore

– Properly set switching condition between exploration
and exploitation

UBC, March 27, 2015 41

Workers Tasks

1

2

3

1

2

3

44

Conclusion and future work

• Propose CPM model:

– Exponential number of actions/Infinite outcomes/non-linear reward

– Succinct representation by using transformation matrices

• Global observer set:

– Use combination of action for limited feedbacks, and it is small

• Algorithm and results:

– Use global confidence bound to raise the probability of finding the optimal action

– Guarentee O(𝑇2/3) and O(log 𝑇) (assume unique optimum), only linearly depends
on log |𝑋|

• Future work:

– More flexible feedback model

– More applications

UBC, March 27, 2015 42

NIPS’2014, joint work with

Shouyuan Chen, Irwin King, Michael R. Lyu, CUHK

Tian Lin, Tsinghua U.

Chapter III:

Combinatorial Pure Exploration in Multi-

Armed Bandits

UBC, March 27, 2015 43

Pure exploration

UBC, March 27, 2015 44

Multi-armed bandit

You go to Vegas trying to explore

different slot machines while gaining as

much as possible --- cumulative reward

Pure exploration bandit

You and your boss go to Vegas together

trying to explore the slot machines and

find the best machine for your boss to

win --- best machine identification

vs.

Pure exploration bandit

• 𝑛 arms

• Fixed budget model --- with a fixed time period 𝑇
– Learn in first 𝑇 rounds, and output one arm at the end

– Maximize the probability of outputting the best arm

• Fixed confidence model --- with a fixed error confidence 𝛿
– Explore arms and output one arm in the end

– Guarantee that the output arm is the best arm with probability of error at
most 𝛿

– Minimize the number of rounds needed for exploration

• How to adaptively explore arms to be more effective

– Arms less (more) likely to be the best one should be explored less (more)

UBC, March 27, 2015 45

Pure exploration vs. Online learning

UBC, March 27, 2015 46

Online learning Pure exploration

Learning while optimization A dedicate learning period, with a

learning output for subsequent

optimization

Adaptive for both learning and

optimization

Adaptive for more effective learning

Exploration vs. exploitation tradeoff Focus on adaptive exploration in the

learning period

Multi-armed bandit Pure exploration bandit

Application of pure exploration

• A/B testing

• Others: clinical trials, wireless networking

(e.g. finding the best route, best spanning

tree)

UBC, March 27, 2015 47

Combinatorial pure exploration

• Play one arm at each round

• Find the optimal set of arms 𝑀∗ satisfying certain constraint

𝑀∗ = arg max
𝑀∈ℳ

𝑒∈𝑀

𝑤(𝑒)

– ℳ ⊆ 2[𝒏] decision class with certain combinatorial constraint
• E.g. k-sets, spanning trees, matchings, paths

– maximize the sum of expected rewards of arms in the set

• Prior work

– Find top-k arms [KS10, GGL12, KTPS12, BWV13, KK13, ZCL14]

– Find top arms in disjoint groups of arms (multi-bandit) [GGLB11, GGL12, BWV13]

– Separated treatments, no unified framework

UBC, March 27, 2015 48

Applications of combinatorial pure exploration

• Wireless networking

– Explore the links, and find the expected

shortest paths or minimum spanning trees

• Crowd sourcing

– Explore the worker-task pair performance,

and find the best matching

UBC, March 27, 2015 49

CLUCB: fixed-confidence algo

UBC, March 27, 2015 50

input parameter: 𝛿 ∈ 0,1
(max. allowed probability of error)

maximization oracle:
Oracle(): 𝑅𝑛 →ℳ

Oracle 𝑣 = arg max
𝑀∈ℳ

 𝑖∈𝑀 𝑣(𝑀) for

weights 𝑣 ∈ 𝑅𝑛

CLUCB result

• With probability at least 1 − 𝛿
– Correctly find the optimal set

– Uses at most 𝑂 width2 ℳ H log
𝑛H

𝛿
rounds

• H: hardness, width ℳ : width of the decision class

• Hardness:

– Δ𝑒: Gap of arm 𝑒

Δ𝑒 =
𝑤 𝑀∗ − max

𝑀∈𝑀:𝑒∈𝑀
𝑤 𝑀 if 𝑒 ∉ 𝑀∗,

𝑤 𝑀∗ − max
𝑀∈𝑀:𝑒∉𝑀

𝑤 𝑀 if 𝑒 ∈ 𝑀∗,

– 𝐇 = 𝑒∈[𝑛]Δ𝑒
−2

– Recover previous definitions of H for the top-1, top-K and multi-bandit problems.

UBC, March 27, 2015 51

Exchange class and width ---

arm interdependency measure

• exchange class: a unifying method for analyzing
different decision classes
– a ``proxy’’ for the structure of decision class

– An exchange class 𝐵 is a collection of ``patches’’

– (𝑏+, 𝑏−) (where 𝑏+, 𝑏− ⊆ [𝑛]) are used to interpolate
between valid sets 𝑀′ = 𝑀 ∪ 𝑏+ ∖ 𝑏− (𝑀,𝑀′ ∈ ℳ)

• width of exchange class B: size of largest patch

– width 𝐵 = max
𝑏+,𝑏− ∈𝐵

𝑏+ + 𝑏−

• width of decision class ℳ: width of the ``thinnest’’
exchange class

– width ℳ = min
𝐵∈Exchange(ℳ)

width(𝐵)

UBC, March 27, 2015 52

width

2

2

O(|V|)

O(|V|)

k-sets

spanning trees

matchings

paths

Other results

• Lower bound: Ω(H)

• Fixed budget algo: CSAR

– successive accepting / rejecting arms

– Correct with probability at least 1 − 2
 𝑂 −

𝑇

width2 ℳ H

• Extend to PAC learning (allow 𝜀 off from optimal)

UBC, March 27, 2015 53

Future work

• Narrow down the gap (dependency on the width)

• Support approximation oracles

• Support nonlinear reward functions

UBC, March 27, 2015 54

Overall summary on combinatorial learning

• Central theme

– deal with stochastic and unknown inputs for combinatorial optimization

problems

– modular approach: separate offline optimization with online learning

• learning part does not need domain knowledge on optimization

• More wait to be done

– Many other variants of combinatorial optimizations problems --- as

long as it has unknown inputs need to be learned

– E.g., nonlinear rewards, approximations, expected rewards depending

not only on means of arm outcomes, adversarial unknown inputs, etc.

UBC, March 27, 2015 55

Thank you!

UBC, March 27, 2015 56

