

Influence Maximization: The New Frontier ---Non-Submodular Optimizations

Wei Chen

AMSS / NCMIS, CAS, Sept. 15, 2014 1

Motivating Example: Viral Marketing in Social Networks

• Increasing popularity of online social networks may enable large scale viral marketing

Influence Maximization Problem

- Given a social network and an influence diffusion model
	- Find the seed set of certain size
	- Provide the largest influence spread
- Application
	- Viral marketing [Kempe et al. 2003, etc.]
	- Cascade detection [Leskovec et al., 2007]
	- Rumor control [Budak et al. 2011, He et al. 2012]
	- Text summarization [Wang et al. 2013]
	- Gang violence reduction [Shakarian et al. 2014]

Summary of My Past Work

- Scalable influence maximization
	- Fast heuristics algorithms with thousand times speedup
		- DegreeDiscount: No.2 most cited paper in KDD'09 (462 times)
		- PMIA: No.1 most cited paper in KDD'10 (340 times)
		- LDAG: No.2 most cited paper in ICDM'10 (169 times)
- Competitive diffusion modeling and optimization [SDM'11 '12, WSDM'13]
- Alternative objectives: time-critical influence maximization [AAAI'12]; optimal influence route selection [KDD'13], etc.
- Monograph on influence diffusion, 2013

Common Theme

- Based on submodularity property
	- Diminishing marginal return
	- $-f: 2^V \to R$; for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$, $f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$
- Submodularity allow greedy solution
	- expected influence coverage is submodular
	- Select node with largest marginal influence one by one
	- Guarantee
		- $\left(1-\frac{1}{e}\right)$ approximation for maximizing influence
		- In n approximation for minimizing seed set size

Issue: Conformity (Group Psychology, Herd Mentality) in Influence Diffusion

Issue: Not All Diffusion Is Submodular

• Threshold behavior – tipping point: when diffusion reaches a critical mass, a drastic increase in further diffusion

New Frontier: Non-Submodular Influence Maximization

 $f(S)$

 $|S|$

Seed Minimization with Probabilistic Coverage Guarantee

KDD'13, joint work with Peng Zhang, Purdue U. Xiaoming Sun, Jialin Zhang, ICT of CAS Yajun Wang, Microsoft

Motivation

- Our first attempt at non-submodular influence maximization
- Consider influencing mass media (e.g. sina.com)
	- Mass media pay attention only when a topic is discussed by a large portion of people (e.g. hot topic list on weibo.com)
		- Threshold behavior
	- Need probabilistic guarantee (e.g. 70%)
		- expected influence coverage is not informative enough

Independent Cascade Model

- Each edge (u, v) has a *influence probability* $p(u, v)$
- Initially seed nodes in S_0 are activated
- At each step t , each node u activated at step $t - 1$ activates its neighbor v independently with probability $p(u, v)$

Problem Definition

- Seed Minimization with Probabilistic Coverage Guarantee (SM-PCG)
- Input: directed graph $G = (V, E)$, influence probabilities p_e 's on edges under IC model, the target set U , coverage threshold η < $|U|$, probability threshold $P \in (0, 1)$.
- Output: $S^* = \operatorname{argmin}_{S:Pr(Inf(S) \geq \eta) \geq P} |S|.$

 $-Inf(S)$: random variable, number of nodes activated by seed set S

Non-Submodularity of Objective Functions

- Fix η , $f_n(S) = Pr(Inf(S) \ge \eta)$,
	- $-S^* = \text{argmin}_{S: f_\eta(S) \geq P} |S|$
	- not submodular

Edge probabilities are 1. Fix $\eta = 5$, $f_n(S \cup \{c\}) - f_n(S) = 0,$ $f_n(T \cup \{c\}) - f_n(T) = 1.$ • Fix P , $g_P(S) = max_{\eta':\Pr(Inf(S) \ge \eta') \ge P} \eta'$,

- $-S^* = \text{argmin}_{S: g_P(S) \ge \eta} |S|$
- not submodular

Edge probabilities are 0.5. Fix $P = 0.8$, $g_P(S \cup \{c\}) - g_P(S) = 0,$ $g_P(T \cup \{c\}) - g_P(T) = 1.$

Influence Coverage Computation

- $P = f_n(S)$: #P-hard, but approximable by Monte Carlo simulation
	- $-$ Simulate diffusion from S for R times, use
		- \hat{P} = fraction of cascades with coverage at least η

— To achieve $|\widehat{P} - P| \leq \varepsilon$ with probability $1 - \frac{1}{n}$ n^{δ} , set $R \geq$ $\ln (2n^{\delta}$ $\frac{(2\pi)^{2}}{2\varepsilon^{2}}$.

• $\eta = g_P(S)$: #P-hard to approximate within any nontrivial multiplicative ratio

Idea for Solving SM-PCG

- Connect SM-PCG problem with another problem, Seed Minimization with Expected Coverage Guarantee (SM-ECG), which has submodular objective function
	- $-$ Output: $S^* = argmin_{S: E[Inf(S)] \geq \eta} |S|.$
	- $-\mathbb{E}[\ln f(S)]$ is submodular $\Rightarrow \ln n$ greedy approximation algorithm
- Need additional seeds for probabilistic quarantee, resulting in an additive term in approximation guarantee
	- related to the concentration of the influence coverage distribution
	- Our contribution: build such connection and detailed analysis

Approximation Algorithm

• Main idea: connect SM-PCG with SM-ECG

MinSeed-PCG(ε): $\varepsilon \in$ $\vert 0,$ $1-P$ 2 is a control parameter

 $S_0 = \emptyset$

For $i = 1$ to n do $u = \text{argmax}_{v \in V \setminus S_{i-1}} E[Inf(S_{i-1} \cup \{v\})] - E[Inf(S_{i-1})]$ $S_i = S_{i-1} \cup \{u\}$ $prob =$ Monte Carlo estimate of $Pr(Inf(S_i) \geq \eta)$ **if** $prob \geq P + \varepsilon$

return S_i

end if

End for

Approximation Algorithm

- Let $n = |V|, m = |U|$
- Theorem: Let S_a be the output of MinSeed-PCG(ε), $c =$ $\max\{\eta - E[Inf(S^*)], 0\}, c' = \max\{E[Inf(S_{a-1})] - \eta, 0\}.$ Then, $|S_a| \leq \left[\ln \frac{\eta n}{m}\right]$ $m-\eta$ S^* + $\frac{(c+c')n}{n}$ $\frac{(c+c)^n}{m-(\eta+c')}+3.$
- Theorem: When using Monte Carlo estimate of $Pr(Inf(S_i) \geq \eta)$ with at least $\ln{(2n^2)}$ (2 ε^2) iterations, with probability at least $1 - 1/n$, $Pr(In \hat{f}(S_a) \geq n) \geq P$, and

$$
c \leq \sqrt{\frac{Var(lnf(S^*))}{P}}, c' \leq \sqrt{\frac{Var(lnf(S_{a-1}))}{1-P-2\varepsilon}}.
$$

• Assume $m = \Theta(n)$, $c + c' = O(\sqrt{m})$, then $|S_a| \leq (\ln n + O(1)) |S^*| + O(\sqrt{n}).$

Analysis I

• Result on submodular function approximation:

Let f be a real-valued nonnegative, monotone, submodular set function on V, $0 < \eta < f(V)$. Let $S^* = \operatorname{argmin}_{S: f(S) \geq \eta} |S|$, S be the greedy solution satisfying $f(S) \geq \eta$. Then,

$$
|S| \le \alpha |S^*| + 1, \alpha = \max \{ \left[\ln \frac{\eta |V|}{f(V) - \eta} \right], 0 \}.
$$

Analysis II

- $\sigma(S) = E[Inf(S)]$
- Greedy seed sets: S_1 , S_2 , ... S_i , ..., S_j , ..., S_n min *i* s.t. $\sigma(S_i) \geq n - c$.

Let
$$
S_i^* = \operatorname{argmin}_S \sigma(S) \ge \eta - c
$$
.
\n $\Rightarrow |S_i| \le \left[\ln \frac{(\eta - c)n}{m - (\eta - c)} \right] |S_i^*| + 1 \le \left[\ln \frac{\eta n}{m - \eta} \right] |S^*| + 1$.

min *j* s.t. $\sigma(S_i) \geq \eta + c'$, thus $|S_a| \leq |S_i| + 1$. By submodularity and greedy seed selection: $\forall i \leq t \leq k, \sigma(S_t) - \sigma(S_{t-1}) \geq \sigma(S_k) - \sigma(S_{k-1}),$ $\Rightarrow \forall i < t < j$, $\sigma(S_t) - \sigma(S_{t-1}) \geq \frac{m - \sigma(S_{t-1})}{n}$ \boldsymbol{n} $> \frac{m-(\eta+c')}{m}$ \boldsymbol{n} \Rightarrow $|S_{j-1} \setminus S_i|$ \leq $\sigma(S_{j-1})-\sigma(S_j)$ min $\min_{i \leq t \leq j} {\{\sigma(S_t) - \sigma(S_{t-1})\}}$ ≤ $c+c^{\prime}\bigr)n$ $\frac{(c+c)^n}{m-(\eta+c')}$

,

pdf of $Inf(S^*)$

pdf of $Inf(S_{a-1})$

Analysis III

$$
\bullet \ \ c \leq \sqrt{\frac{Var\big(\ln f(S^*)\big)}{P}}
$$

$$
P \le \Pr(\inf(S^*) \ge \eta)
$$

= $\Pr(\inf(S^*) - E[\inf(S^*)] \ge \eta - E[\inf(S^*)])$
 $\le \Pr(\inf(S^*) - E[\inf(S^*)] \ge \eta - E[\inf(S^*)])$
 $\le \frac{\text{Var}(\inf(S^*))}{(\eta - E[\inf(S^*)])^2}$ {Chebeshev's inequality}
= $\frac{\text{Var}(\inf(S^*))}{c^2}$.

•
$$
c' \le \sqrt{\frac{Var(Inf(s_{a-1}))}{1 - P - 2\varepsilon}}
$$
 with high prob.

∧

∧

pdf of $Inf(S_{a-1})$

Results on Bipartite Graphs

• $G = (V_1, V_2, E)$ is a one-way bipartite graph.

• Observation: activation of nodes in U is mutually independent.

Results on Bipartite Graphs

- $Pr(Inf(S) \geq \eta)$ can be computed exactly by dynamic programming.
- $A(S, i, j)$: probability that S activates *j* nodes of the first *i* nodes. $A(S, 1, j) = \{$ $p(S, v_1), \t j = 1$ $1 - p(S, v_1), \quad j = 0$

$$
A(S, i, j) = \begin{cases} A(S, i - 1, 0) \cdot (1 - p(S, v_i)), & j = 0 \\ A(S, i - 1, j - 1) \cdot p(S, v_i) + \\ A(S, i - 1, j) \cdot (1 - p(S, v_i)), & 1 \le j < i \\ A(S, i - 1, j - 1) \cdot p(S, v_i), & j = i \end{cases}
$$

Results on Bipartite Graphs

• Theorem:

$$
c \le \sqrt{\frac{m}{2} \ln \frac{1}{P}}, c' \le \sqrt{\frac{m}{2} \ln \frac{2}{1 - P}}.
$$

• Corollary:

$$
|S| \le \left(\ln n + O(1)\right)|S^*| + O\left(\frac{n}{\sqrt{m}}\right).
$$

Experiment Datasets

Experiment (Concentration)

• Standard deviation of influence distribution $(c + c' = O(\sqrt{m}))$

Wiki-vote, 7115 nodes, Standard deviation \leq 130.

NetHEPT, 15233 nodes, Standard deviation ≤ 105 .

Experiment (Concentration)

• Standard deviation of influence distribution $(c + c' = O(\sqrt{m}))$

Flixster with topic 1, 28317 nodes, Flixster with topic 2, 25474 nodes, Standard deviation \leq 760. Standard deviation \leq 270.

- MinSeed-PCG (ε) : generate seed set sequence by PMIA ([Chen et al, KDD 2010]), set $\varepsilon = 0.01$.
- Random: generate seed set sequence randomly.
- High-degree: generate seed set sequence according to the decreasing order of out-degree of nodes.
- PageRank: generate seed set sequence according to the importance measured by PageRank.

• Performance of our algorithm $(P = 0.1)$

Wiki-vote, 88.2% less than Random, 20.2% less than High-degree, 30.9% less than PageRank.

NetHEPT,

56.7% less than Random, 46.0% less than High-degree, 24.4% less than PageRank.

• Performance of our algorithm $(P = 0.1)$

Flixster with topic 1, 94.4% less than Random, 54.0% less than High-degree, 29.2% less than PageRank.

3000

 η

6000

5000

3000

2500

2000

1000

500

පු
ஃ 1500

 σ $\bar{+}$ … + … Random

1000

2000

High-degree

-+-MinSeed-PCG[0.01]

PageRank

• Performance of our algorithm $(P = 0.5)$

29

• Performance of our algorithm (fixed η)

• Performance of our algorithm (fixed η)

Conclusion and Future Work

- First to propose the problem emphasizing probabilistic coverage guarantee
	- Objective functions are not submodular
- Approximate SM-PCG with theoretical analysis
- Future work
	- Other nonsubmodular influence maximization tasks
		- Generating a hot topic as the first step, with further diffusion steps
	- Study concentration properties of influence coverage on graphs

Thank you!

AMSS / NCMIS, CAS, Sept. 15, 2014 33