Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks

Wei Chen Microsoft Research Asia

In collaboration with

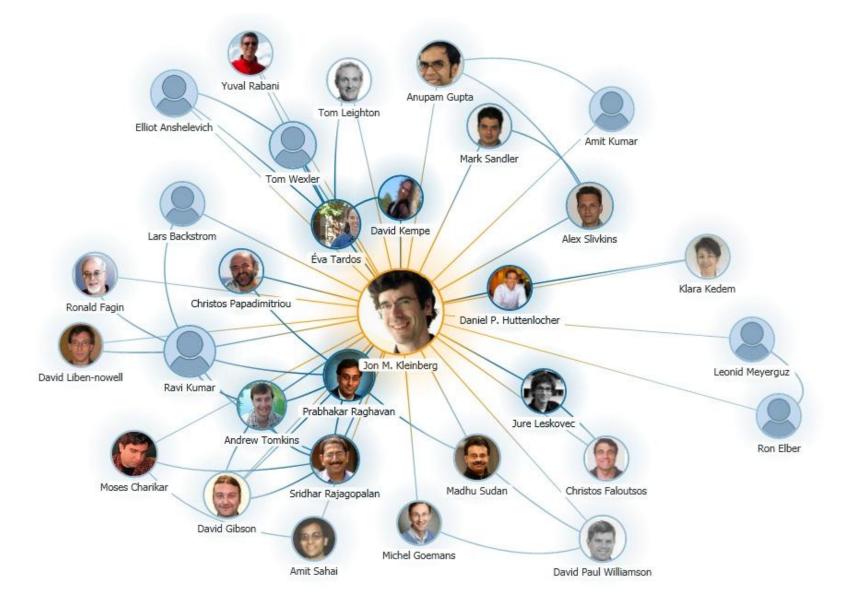
Chi WangUniversity of Illinois at Urbana-ChampaignYajun WangMicrosoft Research Asia

KDD'10, July 27, 2010

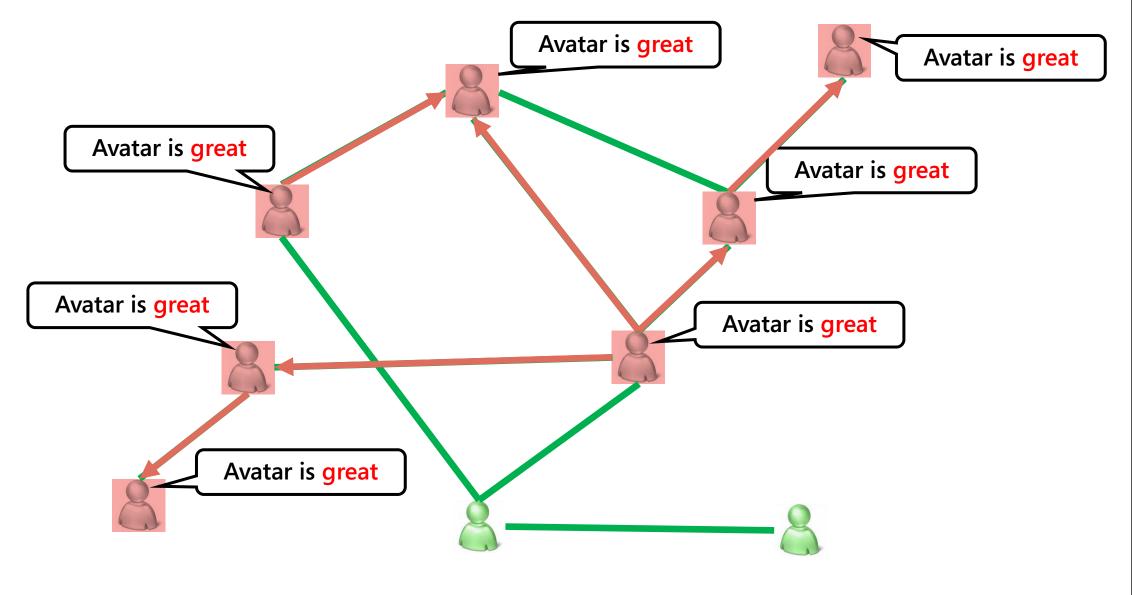
Outline

- Background and problem definition
- Maximum Influence Arborescence (MIA) heuristic
- Experimental evaluations
- Related work and future directions

Ubiquitous Social Networks



A Hypothetical Example of Viral Marketing



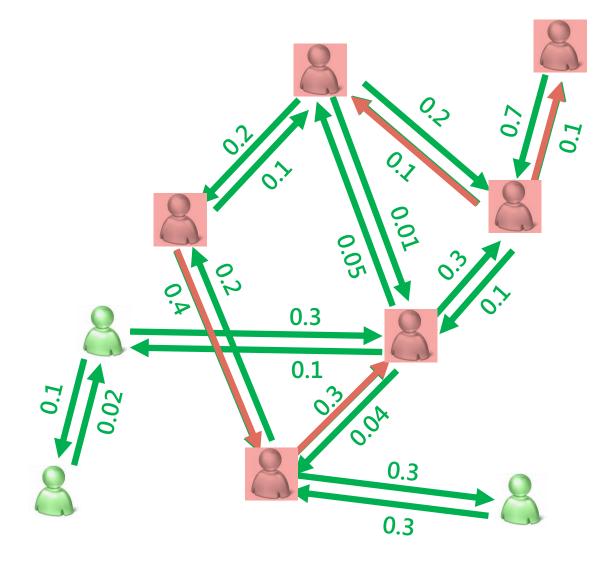
Effectiveness of Viral Marketing

level of trust on different types of ads^{*} very effective family and friends consumer posts on boards newspaper magazine Radio TV outdoor online ads mobile phone ads 0% 20% 40% 60% 80% 100%

*source from Forrester Research and Intelliseek

The Problem of Influence Maximization

- Social influence graph
 - vertices are individuals
 - links are social relationships
 - number p(u,v) on a directed link from u to v is the probability that v is activated by u after u is activated
- Independent cascade model
 - initially some seed nodes are activated
 - At each step, each newly activated node u activates its neighbor v with probability p(u,v)
 - influence spread: expected number of nodes activated
- Influence maximization:
 - find k seeds that generate the largest influence spread



Research Background

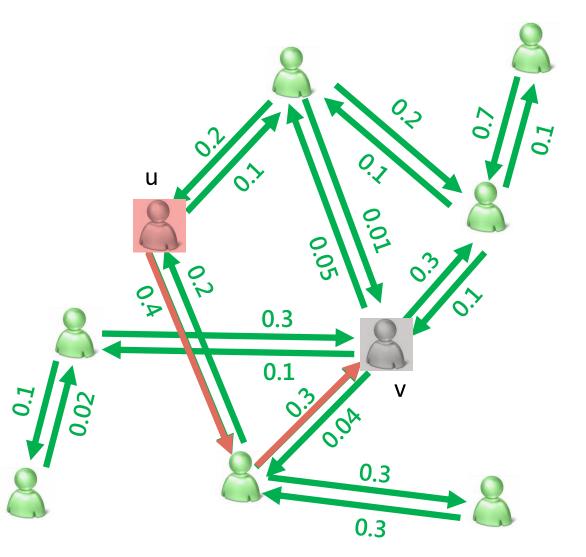
- Influence maximization as a discrete optimization problem proposed by Kempe, Kleinberg, and Tardos, in KDD'2003
 - Finding optimal solution is provably hard (NP-hard)
 - Greedy approximation algorithm, 63% approximation of the optimal solution
 - Repeat k rounds: in the i-th round, select a node v that provides the largest marginal increase in influence spread
 - require the evaluation of influence spread given a seed set --- hard and slow
- Several subsequent studies improved the running time
- Serious drawback:
 - very slow, not scalable: > 3 hrs on a 30k node graph for 50 seeds

Our Work

- Design new heuristics
 - MIA (maximum influence arborescence) heuristic
 - for general independent cascade model
 - 10³ speedup --- from hours to seconds (or days to minutes)
 - influence spread close to that of the greedy algorithm of [KKT'03]
- We also show that computing exact influence spread given a seed set is #P-hard (counting hardness)
 - resolve an open problem in [KKT'03]
 - indicate the intrinsic difficulty of computing influence spread

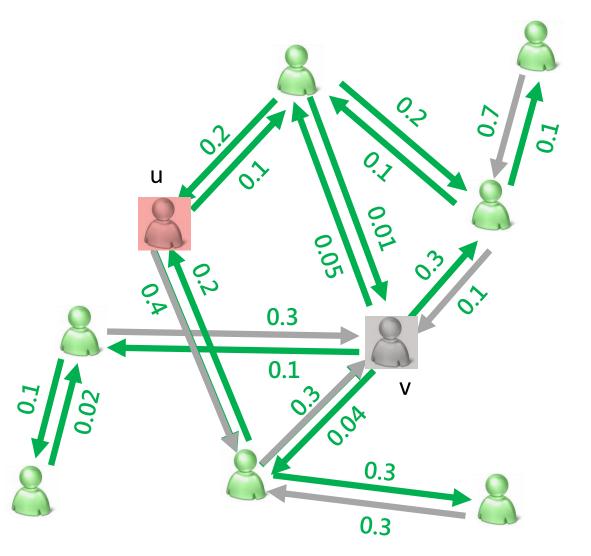
Maximum Influence Arborescence (MIA) Heuristic I: Maximum Influence Paths (MIPs)

- For any pair of nodes u and v, find the maximum influence path (MIP) from u to v
- ignore MIPs with too small
 probabilities (< parameter θ)



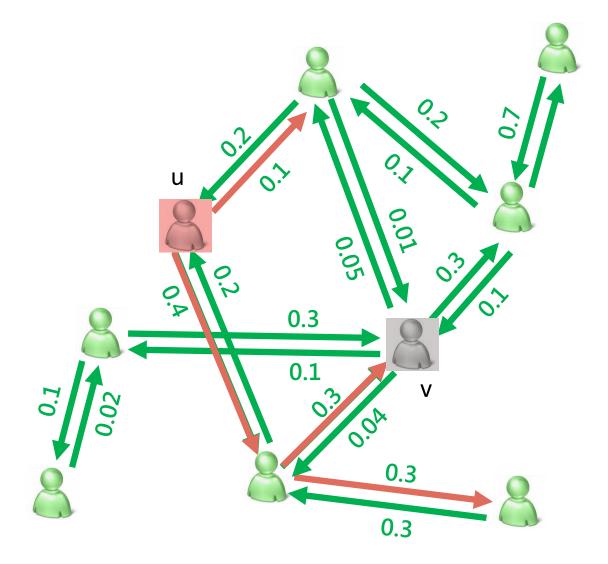
MIA Heuristic II: Maximum Influence in-(out-) Arborescences

- Local influence regions
 - for every node v, all MIPs to v form its maximum influence in-arborescence (MIIA)



MIA Heuristic II: Maximum Influence in-(out-) Arborescences

- Local influence regions
 - for every node v, all MIPs to v form its maximum influence in-arborescence (MIIA)
 - for every node u, all MIPs from u form its maximum influence outarborescence (MIOA)
 - These MIIAs and MIOAs can be computed efficiently using the Dijkstra shortest path algorithm



MIA Heuristic III: Computing Influence through the MIA structure

Recursive computation of activation probability ap(u) of a node u in its in-arborescence, given a seed set S

```
Algorithm 2 ap(u, S, MIIA(v, \theta))1: if u \in S then2: ap(u) = 13: else if Ch(u) = \emptyset then4: ap(u) = 05: else6: ap(u) = 1 - \prod_{w \in Ch(u)} (1 - ap(w) \cdot pp(w, u))7: end if
```

Can be used in the greedy algorithm for selecting k seeds, but not efficient enough

MIA Heuristic IV: Efficient Updates on Activation Probabilities

If v is the root of a MIIA, and u is a node in the MIIA, then their activation probabilities have a linear relationship:

 $ap(v) = \alpha(v, u) \cdot ap(u) + \beta(v, u)$

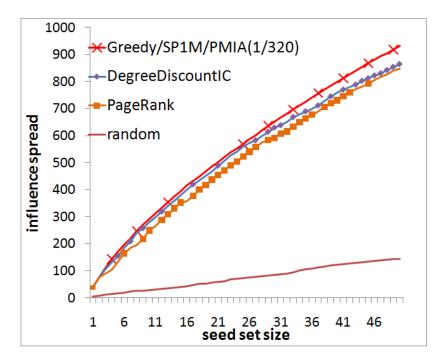
- All $\alpha(v, u)$'s in a MIIA can be recursively computed
 - time reduced from quadratic to linear time
- If u is selected as a seed, its marginal influence increase to v is $\alpha(v, u) \cdot (1 - ap(u))$
- Summing up the above marginal influence over all nodes v, we obtain the marginal influence of u
- Select the u with the largest marginal influence
- Update $\alpha(v, w)$ for all w's that are in the same MIIAs as u

MIA Heuristic IV: Summary

- Iterating the following two steps until finding k seeds
 - Selecting the node u giving the largest marginal influence
 - Update MIAs (linear coefficients) after selecting u as the seed
- Key features:
 - updates are local, and linear to the arborescence size
 - tunable with parameter θ : tradeoff between running time and influence spread

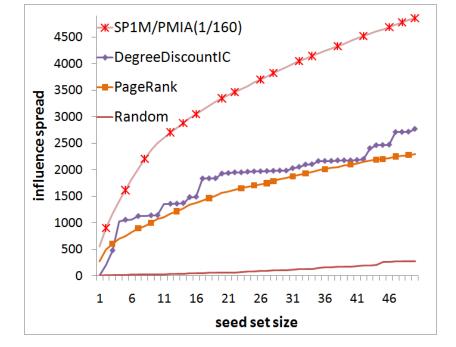
Experiment Results on MIA Heuristic

Influence spread vs. seed set size



NetHEPT dataset:

- · collaboration network from physics archive
- 15K nodes, 31K edges



Epinions dataset:

- who-trust-whom network of Epinions.com
- 76K nodes, 509K edges

weighted cascade model:

influence probability to a node v = 1 / (# of in-neighbors of v)

15

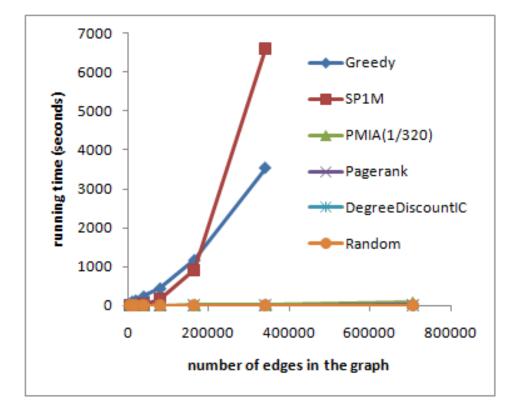
Experiment Results on MIA Heuristic

running time



Running time is for selecting 50 seeds

Scalability of MIA Heuristic



- synthesized graphs of different sizes generated from power-law graph model
- weighted cascade model
- running time is for selecting 50 seeds

Related Work

- Greedy approximation algorithms
 - Original greedy algorithm [Kempe, Kleinberg, and Tardos, 2003]
 - Lazy-forward optimization [Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, and Glance, 2007]
 - Edge sampling and reachable sets [Kimura, Saito and Nakano, 2007; C., Wang, and Yang, 2009]
 - reduced seed selection from days to hours (with 30K nodes), but still not scalable
- Heuristic algorithms
 - SPM/SP1M based on shortest paths [Kimura and Saito, 2006], not scalable
 - SPIN based on Shapley values [Narayanam and Narahari, 2008], not scalable
 - Degree discounts [C., Wang, and Yang, 2009], designed for the uniform IC model
 - CGA based on community partitions [Wang, Cong, Song, and Xie 2010]
 - complementary
 - our local MIAs naturally adapt to the community structure, including overlapping communities

Future Directions

- Theoretical problem: efficient approximation algorithms:
 - How to efficiently approximate influence spread given a seed set?
- Practical problem: Influence analysis from online social media
 - How to mine the influence graph?

Thanks! and questions?