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Abstract—As quantum computers of non-trivial size become
available in the near future, it is imperative to develop tools to
emulate small quantum computers. This allows for validation
and debugging of algorithms as well as exploring hardware-
software co-design to guide the development of quantum hard-
ware and architectures. The simulation of quantum computers
entails multiplications of sparse matrices with very large dense
vectors of dimension 2", where n denotes the number of qubits,
making this a memory-bound and network bandwidth-limited
application. We introduce the concept of a quantum computer
emulator as a component of a software framework for quantum
computing, enabling a significant performance advantage over
simulators by emulating quantum algorithms at a high level
rather than simulating individual gate operations. We describe
various optimization approaches and present benchmarking
results, establishing the superiority of quantum computer
emulators in terms of performance.

1. Introduction

Sustaining the pace of Moore’s law [1] has become in-
creasingly difficult over recent years. Despite the significant
amount of innovation in the last decade, which helps to
meet the power and performance requirements of exa-scale
systems, it is likely that an alternative approach will enable
the steady growth of computing power beyond exa-scale.

One such alternative may be quantum computers, which
offer the potential of exponential speedup for certain types
of calculations. In recent years, many quantum algorithms
with substantial speedup over the best known classical algo-
rithms have been developed [2], with applications ranging
from factoring large numbers [3|] to quantum chemistry [4]
and materials science [5]. Due to the fact that the major-
ity of high-performance computing time is spent to solve
problems in chemistry and materials science, this approach
is especially lucrative and worth of further investigation, as
it could result in sustained performance improvements of
these applications.

While large-scale quantum computers are not yet avail-
able, their performance can be inferred using quantum
compilation frameworks and estimates of potential hard-
ware specifications. However, without testing and debugging
quantum programs on small scale problems, their correct-

ness cannot be taken for granted. Simulators and emulators
of small quantum computers are essential to address this
need. Specifically, they increase the productivity in the
field of quantum algorithm development by facilitating the
testing, debugging, and exploration of new algorithms before
large-scale quantum computers become available. Further-
more, they allow for hardware-software co-design and guide
the development of quantum hardware architectures.

The state of a quantum computer with n qubits
can be represented by a state vector of 2" complex
amplitudes. Operations on qubits, called gates, correspond
to multiplications of this state vector with (typically)
sparse unitary matrices of dimension 2" x 2". Due to the
exponential overhead of simulating a quantum system on a
classical computer, it is crucial to make use of parallelism
and all possible optimizations in order to reduce runtime
and enable the simulation of as many qubits as possible.

Our contribution. In this paper, we introduce the
concept of a quantum computer emulator, which extends
the notion of a simulator to the case where a comprehensive
compilation framework for quantum programs is available
[8], enabling an entirely new class of optimizations useful
for the simulation of quantum computers. An emulator
makes use of the availability of an abstract, high-level
quantum code by directly employing classical emulation
for quantum subroutines at the level of their mathematical
description instead of compiling them into elementary gates
prior to applying them using a series of sparse matrix vector
multiplications. As a consequence, the overall runtime
of simulating the execution of quantum programs can be
drastically reduced, arriving at an unprecedented level of
performance.

We present various examples of such optimizations,
accompanied by performance measurements showing the
merits of quantum computer emulation. Furthermore, in
order to arrive at heuristics for cases where multiple
classical shortcuts exist, an analysis of cross-over points
is carried out. Finally, to demonstrate that our simulator,
against which we achieve a speedup using our new quantum
emulator, is state-of-the-art, we benchmark it against other
existing simulators on a subset of quantum circuits, and
show its superior performance.



Related work. Emulation is a widely recognized tool
commonly used in many aregs of computer science.
A fitting example is the Intel> Software Development
Emulator tool [9], which allows fast emulation of upcoming
or experimental hardware features, such as new SIMD
or transactional memory extensions, before they become
available. We extend this approach to the domain of
quantum computers.

QOutline. This paper is organized as follows: In Section
we give an introduction to quantum computer simulation,
followed by a description of the tricks an emulator can
use in order to gain speedups over simulators in Section [3]
In Section we present timings supporting this claim
and compare the performance of our simulator to other
state-of-the-art simulators in order to assert that the speedup
stems from emulation and not from a badly implemented
simulator. Finally, we summarize our findings in Section [5]

2. Quantum Computer Simulation

Information on a quantum computer is stored in the
quantum generalization of bits, called qubits, and compu-
tations are performed by applying quantum gates and mea-
surement operations to these qubits, similar to how classical
gates are applied to classical bits.

In this paper, we discuss the simulation of an ideal
quantum computer on a logical level, ignoring all noise
which would occur in an actual physical device. In this case,
a quantum computer with n qubits can be simulated by rep-
resenting the quantum state (the so-called “wave function”)
of the qubits as a vector of size 2" with complex entries
a; (i € {0,1}") satisfying the normalization condition
S leu]® = 1. A general state of the n qubits is thus
represented by a vector of the form

azny) (1)

Information stored in qubits is retrieved using measure-
ments, which convert qubits into classical bits. While the
quantum state is, in general, a superposition of all classical
states ¢, a measurement of all qubits “collapses” this state
to a single classical n-bit conﬁ§urati0r1 7, where 7 is chosen
randomly with probability |ay;|”.

In this representation, the application of quantum gates
to qubits results in a modification of the 2 complex entries
of the n-qubit state vector. Fundamental physical principles
dictate that every quantum gate is required to be unitary,
which means that it can be represented by a unitary matrix of
dimension 2" x 2”. The application of a quantum gate then
corresponds to a multiplication of the n-qubit state vector
with the unitary gate matrix, which is sparse for gates acting
on a small number of qubits.

Most experimental implementation of quantum comput-
ers are only capable of performing operations on one or
two qubits. This is not a limitation as there exist sets of
one- and two-qubit quantum gates which are universal for
quantum computation. Therefore, most quantum algorithms
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are decomposed into one- and two-qubit gates, which can
each be represented by 2™ x 2™ sparse unitary matrices.
They are often expressed in an even more compact form.
One qubit gate operations, for example, can be represented
by 2 x 2 matrices acting on the state of a single qubit. The
2™ x 2™ size unitary matrix acting on the 2" complex entries
of the state vector can then be constructed from these small
matrices. A few of the most frequently used gate matrices
and symbols are shown in Table [T} The NOT operation, for

example, is given by
0 1
(3 5) @

As an example on how to construct the 2" x 2" matrix from
this, consider applying the quantum NOT gate to qubit <.
The matrix corresponding to this operation is equal to the
Kronecker product of a series of matrices m; (0 < j < n)
of size 2 x 2, where m; is equal to the identity matrix
except for j = ¢, where it is the NOT gate matrix instead.
For a quantum computer with n = 2 qubits, the matrix
corresponding to a NOT operation on qubit 5 = 0 is
therefore given by

0 1 1 0

From this construction it becomes obvious that one- and
two-qubit gates are very sparse 2" x 2" matrices with
compile-time fixed entries. Hence a simulator can apply var-
ious low-level optimization strategies compared to generic
sparse matrix vector multiplication, including optimizing
away multiplications by ones and zeros and reducing com-
munication in distributed implementations. While this can
improve the performance of the simulation by a fair amount,
it is still no match for an emulator, as we will show in the
next sections.
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3. Quantum Computer Emulation

Simulation and emulation of quantum computers are
inherently different concepts. As a simulation of a quantum
computer we understand the exact calculation of the effects
of every single gate. This directly mimics the operations that
a quantum computer performs and the simulation can also
include effects of classical and quantum noise as well as
calibration or control errors.

Quantum computer emulation, on the other hand, is only
required to return the same result as a perfect quantum
computation would. Instead of compiling an algorithm down
to elementary gates for specific quantum hardware, certain
high-level subroutines can be replaced by calls to faster clas-
sical shortcuts to be executed by the emulator. Depending on
the level of abstraction at which the emulation is carried out,
there is a large potential for optimizations and substantial
speedup [8].

To illustrate this point, consider performing classical
functions on a quantum computer which is needed in order
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TABLE 1. STANDARD QUANTUM GATES WITH THEIR CORRESPONDING
MATRICES AND SYMBOLS.

to apply classical functionality to a superposition of inputs.
The most famous application of this is Shor’s algorithm [3].
In order to satisfy the reversibility constraint of quantum me-
chanics, these functions need to be implemented reversibly,
which leads to a large overhead in the number of quantum
gates compared to a non-reversible classical computation.
This is due to the fact that temporary variables need to be
reset by employing a so called uncomputation step [10].

A straight-forward approach to translating a classical
function to a reversible quantum circuit is to replace all
NAND gates by the reversible Toffoli gate (also called
CCNQOT), which requires an additional bit for each NAND to
store the result. After completion of the circuit, the result can
be copied using CNOT gates prior to clearing all (temporary)
work bits by running the entire circuit in reverse [[10]. This
can also be run on a quantum computer using a quantum
version of the Toffoli gate (which can be composed from
single-qubit gates and CNOT gates). This transformation
causes a doubling of gates and an overhead of one addi-

tional qubit for each original NAND gate. There are more
sophisticated approaches [11] which reduce the number of
work qubits by uncomputing intermediate results early. Yet,
those intermediate results have to be recomputed’| during
the uncomputation step which follows after completion of
the circuit, resulting in an increase of gate operations. This
is bad news for a simulator, since both approaches cause a
significant increase in runtime. Hence, the simulation of a
classical function on a quantum computer is a very costly
endeavor.

An emulator, on the other hand, does not need to compile
the classical function down to reversible gates, nor does it
have to simulate the additional work qubits that may be
needed during function execution. Instead, the emulator can
just evaluate the classical function directly for each of its
arguments, thereby saving huge amounts of computational
power. Below we will discuss four examples where emu-
lation may gain a substantial performance advantage over
simulation.

3.1. Arithmetic
Functions

Operations and Mathematical

The most straight-forward example is the execution of
arithmetic operations and mathematical functions on a quan-
tum computer. Instead of simulating the vast number of
Toffoli gates required to implement e.g. a multiplication
or a trigonometric function reversibly, one can perform the
classical multiplication or trigonometric function directly for
each computational basis state using the hardware imple-
mentation available on classical computers.

We consider the multiplication and division of two num-
bers a and b into a new register ¢ as examples. Specifically,
we implement the mapping for multiplication

(a,b,c=0) = (a1, ...,an, b1, ...,bn,0, ..., 0)
— (a,b,ab) ,

and for division (with remainder r),

(a,b,c=0) = (a1,...,an, b1,...,bn,0, ..., 0)
— (r,b,a/b) ,

where the N-qubit input registers a and b may be in an
arbitrary superposition, allowing this computation to be
carried out on all (exponentially many) possible input states
in parallel on a quantum computer.

On a simulator, the 3N-qubit wavefunction is stored as a
vector of 23V complex numbers with indices i € {0,1}3",
which can be written as ¢ = a1, ...,an,b1,...,bn,0,...,0 in
binary notation, where xj denotes the k-th bit of x. The
action of a multiplication corresponds to a permutation of
the state vector, mapping the complex value at location
to the index j = ai,...,an,b1,...,bn, (ab)1, ..., (ab)n. In
order to achieve this transformation, a simulator would apply
the corresponding Toffoli network. An emulator, on the other

1. As the uncomputation of an uncomputate step is recomputing the
original result.



hand, can simply perform the described mapping directly.
The simulation and emulation of a division can be carried
out analogously.

For benchmarking the simulation, we implement these
operations using the adder of Ref. [[12] combined with a
repeated-addition-and-shift and a repeated-subtraction-and-
shift approach for multiplication and division, respectively.
The runtimes of emulation and simulation can be found in
section [

3.2. Quantum Fourier Transform

The quantum Fourier transform (QFT) [[13]] is a common
quantum subroutine that is used in many quantum algo-
rithms due to its ability to detect periods and patterns. At
a formal mathematical level, the QFT performs a Fourier
transform on the state vector a of n qubits, where each
entry o (0 <1 < 2™) gets transformed as

1 A= Kl
o oo Z Qg exp (27m'2n> . )
k=0

On a quantum computer, the QFT can be implemented by
a sequence of O(n?) Hadamard and conditional phase shift
gates. Simulating this circuit is expensive as each gates acts
on the state vector of size 2. An emulator, on the other
hand, can just directly perform a Fast Fourier Transform
(FFT) on the state vector using optimized classical libraries.
We consider performance models of both algorithms on
a distributed system in order to understand the advantage
of FFT over QFT. Let Tgpr(n) and Torr(n) denote the
execution times of node-local FFT and QFT, respectively,
where N = 2" is the size of the input vector. It is well
known that a all industry high-performance implementation
of a distributed 1D FFT require three all-to-all broadcasts
(see [14] and [15]), for example), due to three transposition
steps. Hence, its performance can be modeled as follows:

5Nn 16N
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where Effprr denotes the efficiency of the FFT, which
typically ranges between 10% — 20% on current architec-
tures and B, is the aggregate injection bandwidth of the
distributed system in question.

The direct simulation of a QFT, on the other hand,
requires the application of n single-qubit Hadamard gates
and n(n — 1)/2 controlled phase shift operations, which
thus dominate the execution time. Furthermore, phase shifts
are diagonal matrices with the first diagonal entry of 1
(see Table [T). Thus we implement this controlled opera-
tion by reading and writing only a quarter of the dou-
ble complex state vector. This results in approximately
L [operations] - 2 [accesses (read/write)]- 16 [bytes/entry] -

&

& Taccessed entries] = 4 - N - n? bytes of data being

1
. . . 2
accessed. This results in compute time 4]?' - where Bem

is the aggregate memory bandwidth of the system.

Only the application of Hadamard gates to high-order
qubits k, where k& > (n — logy(P)) and P is number
of nodes, requires communication. This occurs log,(P)
times during the application of the entire QFT. Thus QFT
performance is:

Nn? 16 N
% logy(P)

mem Bl’lCt ’

Note that QFT scales worse than FFT in both computa-
tional and communication complexity under ideal assump-
tions. Therefore, we expect the performance advantage of
FFT to grow with the number of qubits.

Torr(n) = 2 ©)

3.3. Quantum Phase Estimation

Quantum phase estimation (QPE) [13]] is another subrou-
tine that is used in many quantum algorithms, such as Shor’s
algorithm for factoring [3|]. Given a circuit of a unitary
operator U acting on n qubits and an eigenvector # stored
in an n-qubit register, the QPE algorithm calculates the
corresponding eigenvalue e“} In a wave function simulator
picture, the operator U is described by a unitary 2™ x 2"
matrix. While there are many versions of the QPE algorithm,
they all are based on repeatedly applying the controlled
operator U Specifically, the operators

Ut ur,utus,.. . Y 7)

need to be applied in order to arrive at a b-bit estimate of the
eigenvalue angle . In addition, at least one work qubit and
an inverse QFT are required when implementing the QPE
as done in Ref. [16]. In the following, we assume that U
is implemented on a quantum computer through a sequence
of G gates, i.e.,

G
v=][v:,
i=1

where U; is a single or two-qubit gate.

A simulator implements U; through multiplications of
sparse 2" x 2" matrices with the wave function. Apply-
ing powers of U corresponds to repeatedly applying the
sequence of G gates which each has complexity O(2").
From equation [/} it follows that we need to apply U exactly
2> —1 times. Hence, the runtime complexity of QPE without
accounting for the inverse QFT is O(G2"*?) for a quantum
computer simulator using an algorithm with the minimal
number of one ancilla qubit as done in [[16]. Coherent phase
estimation algorithms [[13]] that use b ancillas to optimize
runtime will incur an additional factor O(2°) in simulation
effort.

An emulator can take a shortcut by first building a
(dense) matrix representation of the unitary operator U and

2. All eigenvalues of a unitary matrix can be written in the form of ¢,
QPE calculates the angle 6.

3. Since the cost of simulating the application of the controlled version
of U is essentially the same as simulating U itself, we ignore this detail
in the further analysis.



then using repeated squaring to calculate U?" iteratively for
i = 0,1,...,b — 1. Building the matrix representation of
U requires O(G22") effort. Using standard matrix-matrix
multiplication, repeated squaring can be performed in time
O(23"b). Using Strassen’s algorithm, the complexity can be
reduced to O(22:8"b). Since G is typically polynomial in n,
G2" is sub-dominant. There is an advantage in the asymp-
totic scaling when switching from quantum simulation to
emulation if b > 2n, or b > (log, 7 — 1)n =~ 1.8n when
using Strassen.

Alternatively, a dense matrix eigensolver can be em-
ployed to directly classically compute the eigenvalues of
U with effort O(G22" +23") for approaches based on Hes-
senberg reduction [|17]], which again will have a scaling ad-
vantage compared to simulation for b > 2n. Given the cost
of an eigendecomposition, this is advantageous especially
when performed for a coherent QPE, which requires not
just one, but b ancilla qubits, making the effort of simulation
O(G27+2%). In this case we have a scaling advantage for
b>n.

Which of these approaches is more efficient depends
on the required precision and the size of the matrix. An
analysis of this trade-off and the respective timing results
are presented in section [

3.4. Measurements

Finally, emulators have an advantage over actual quan-
tum computers when it comes to estimating the expecta-
tion values of measurements. On a quantum computer, a
measurement of n qubits only yields n bits of information,
returning one of the states ¢ as the result with probability
given by |a;|?. Our classical simulations are O(2") times
more expensive than running the algorithm on a quantum
computer, as we have to operate on the exponentially large
vector representation. However, in return, we get the com-
plete distribution of measurements and not just a single
measurement sample.

While a quantum computer will often have to repeat
an algorithm many times to get a (statistical) measurement
with high enough accuracy, the classical emulation of such
repeatedly executed measurements can easily be done in
one step and the expectation value can immediately be
evaluated. This removes the need for sampling and hence
greatly reduces the overall simulation time.

As the time savings of emulation compared to simu-
lation are just the number of repetitions of the circuit, no
benchmark measurements are needed.

4. Performance results

4.1. Experimental Setup

We compare performance quantum simulation and em-
ulation on several systems.

For distributed quantum FFT and phase estimation we
use Stampede [18] system at the Texas Advanced Com-
puting Center (TACC)/Univ. of Texas, USA (#10 in the
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Figure 1. Timings for emulation and simulation of a multiplication of two
m-qubit numbers into a third register consisting of m qubits (requiring a
total of n = 3m qubits). There is a clear speedup when emulating this
operation instead of simulating it at gate-level.

current TOP500 list). It consists of 6400 compute nodes,
each of which is equipped with two sockets of Xeon ES5-
2680 connected via QPI and 32GB of DDR4 memory
per node (16GB per socket), as well as one Intel®Xeon
Phi™SE10P co-processor. Each socket has 8 cores, with
hyperthreading disabled. We use OpenMP 4.0 [19] to paral-
lelize computation among threads. The nodes are connected
via a Mellanox FDR 56 Gb/s InfiniBand interconnect. We
have used Intel~> Compiler v15.0.2, Inte]™> Math Kernel
Library (MKL) v11.2.2, and Intel® MPI Library v5.0.

Additional si&gle—node and single-core benchmarks were
done on an IntelY Core™i7-5600U processor, unless spec-
ified otherwise.

4.2. Arithmetic
Functions

Operations and Mathematical

All experiments for arithmetic operations were per-
formed on a single core of an Intel Xeon E5-2697v2 proces-
sor due to the tremendous overhead in time when performing
calculations with numbers consisting of more qubits than
one node can handle. Such cases can only be dealt with by
emulating the classical function, which effectively performs
one global permutation of the (distributed) state vector.

Figure [I] shows performance results comparing the run-
times of simulating and emulating a multiplication of two
m-bit integers a and b into a third register c. The advantage
of the emulator, performing more than one hundred times
faster, can clearly be seen.

A much larger advantage can be seen for division, which
requires additional work qubits to perform the calculation.
This incurs an exponential cost on a simulator. In Figure [2]
the runtime advantage for a division can be seen. It can be
observed that the overhead grows with the number of qubits
used to represent the integers, as the number of required
work-qubits grows as well.



Even more dramatic effects can be expected when deal-
ing with complex mathematical operations such as trigono-
metric functions, where some kind of series expansion or
iterative procedure with many intermediate results is used.
For each of these temporary values, additional m qubits are
required, causing an exponential overhead of the simulation
in both space and time. Emulating such classical reversible
functions not only pays off but makes it feasible on today’s
classical supercomputers, which otherwise would not be able
to handle the enormous memory requirements.

4.3. Quantum Fourier Transform

To benchmark the quantum Fourier transform, we use
parallel implementations of both the simulator and the em-
ulator, storing the wave function for 28 qubits locally and us-
ing 2V =28 nodes for N (> 28) qubits, which corresponds to
weak scaling (keeping the problem size per node constant).
In Figure |3| one can clearly see that simulating the QFT
circuit is worse than directly performing a one-dimensional
distributed classical fast Fourier transform. For the latter we
used Intel Cluster FFT from Intel MKL library, which we
found to be faster than FFTW [15].

We observe that quantum emulation is 15x faster than
quantum simulation on a single node. Equations [6| and [3]
show that FFT is expected to be faster than QFT on a single
node by a factor of %, where n is number of qubits
(28 in our case). On ameéningle node, FFT achieves ~ 20
Gflops. Since Bpen is 40 GB/s, the expected speedup is
28-20/40 = 14, which is very close to the observed speedup.

As we increase both the system size and the number
of nodes, we observe degradation of the weak scaling
times. This is expected due to the increasing amount of
communication. We also observe a drop in the speedup of
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Figure 2. Timings for emulation and simulation of an integer division of two
m-qubit numbers into a third register consisting of m qubits (requiring a
total of n = 3m qubits). The speedup is far greater than for multiplication,
which is due to the extra work qubits required to do the test for less/equal
by checking for overflow. In addition, the numbers used for the division
are limited to 7 bits due to the larger memory requirements caused by the
extra work qubits.
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Figure 3. Execution times for emulation and simulation of a quantum
Fourier transform of /N-qubits. Both emulation and simulation are run on
2N =28 nodes in order to keep the problem size per node constant. The
emulator shows a clear advantage even when executing the QFT on a large
number of qubits.

FFT over QFT. As Equations [6] and [5] show, the ratio of
communication times between QFT and FFT is log,(P)/3.
Hence, for 2 and 4 nodes, we expect FFT to communicate
more than QFT, resulting in some degradation in speedup
and indeed, it drops to 11x. As P increases, we expect the
speedup of FFT over QFT to increase. However, we observe
further slowdown, which we believe is due to the fact that
the all-to-all communication phase of FFT becomes more
limited by network congestion and thus does not follow the
simplistic performance model of Equation [5} Nevertheless,
we find a substantial 6 — 15x speedup due to emulation.

4.4. Quantum Phase Estimation

We have used the Intel MKL implementations of com-
plex matrix-matrix multiplication (zgemm) and a general
eigensolver (zgeev) to perform repeated squaring and to
determine the eigensystem, respectively. For the QPE tim-
ings, we focus on single-node performance, due to the fact
that the ScalaPACK implementation of zgeev scales very
poorly with number of nodes. There exist more scalable
general eigensolvers, such as e.g. FEAST [20], but a de-
tailed analysis of such solvers is beyond the scope of this
paper. Table 2] depicts the results for applying QPE to a
unitary operator U acting on different numbers of qubits
n € {8,...,14}. For each n, we determine the number of
bits of precision corresponding to the cross-over point at
which emulation becomes faster than quantum simulation.

For small n, the cross-over points for zgemm are very
close to n, which is a clear discrepancy from the analytical
model (see subsection @, which is due to the fact that
the model ignores constant overheads, such as achievable
bandwidth and flops. The ratio of these two overheads, while
constant, has a much higher impact for small values of n,
resulting in a digression from the model. As n increases,
this impact decreases and the cross-over values begin to



# qubits n acted on by U 8 9 10 11 12 13 14
Number of gates G 29 33 37 41 45 49 53

Tapply U with simulator [S] 1.44-107* 1.60-107% 1.80-107% 2.11-107% 2.44.107% 3.46-107% 4.92.1074
Teonstruction of dense U 1S] 7.60-10"% 346-10% 1.55-1072 6.88-102 3.02-10"! 1.32 5.69
Tygemm of densels 5] 8.39-10* 6.71-1073 5.37-1072 4.29-10"! 3.44 2.75- 10! 2.20 - 102
Tgeev of dense U 18] 9.60-10"2 5.27-10"' 1.70 6.72 3.22- 10! 1.80 - 102 9.01-102
Cross-over [# bits of precision]

Repeated Squaring 6 9 12 15 18 21 24
Eigendecomposition 10 12 14 15 18 19 21

TABLE 2. TIMINGS OF THE VARIOUS STEPS INVOLVED WHEN SIMULATING OR EMULATING A QUANTUM PHASE ESTIMATION. OUR EXAMPLE IS FOR
THE TIME EVOLUTION OF A ONE-DIMENSIONAL TRANSVERSE FIELD ISING MODEL. THE LOWER PANEL SHOWS THE CROSS-OVER PRECISION IN BITS
AT WHICH EMULATION USING REPEATED SQUARING OR EIGENDECOMPOSITION BECOMES ADVANTAGEOUS OVER DIRECT SIMULATION.
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Figure 4. Comparison between qHiPSTER and our simulator for applying
a quantum Fourier transform. The performance advantage of our simulator
grows with the required communication, allowing simulations of larger
systems.

approach our analytical prediction. Similar arguments hold
for zgeev.

4.5. Comparison against other Simulators

In order to show that the obtained speedups result from
emulation and do not originate from a suboptimal implemen-
tation of our simulator, we provide benchmarks comparing
the performance of our simulator to other state-of-the-art
simulators, namely qHiPSTER [21]] and LIQU:|) [7].

The simulator benchmarks consist of two operations:
Applying a QFT and an entangling operation, where the
latter applies a Hadamard gate to the first qubit, followed by
a series of CNOTs acting on all other qubits, all conditioned
on the first qubit.

Since only qHiPSTER provides a distributed multi-node
implementation, the parallel QFT comparison is exclusively
carried out between qHiPSTER and our simulator. We show
the weak-scaling behavior in Figure {] where N varies

between 28 and 36 and the number of sockets is chosen
to keep the memory per node constant (i.e. using from 1 to
256 nodes). Note that our parallel simulator shows a growing
advantage as the requirement for communication increases.
This stems from the fact that our simulator takes advantage
of the structure of gate matrices, allowing e.g. to reduce the
communication for diagonal gates such as the conditional
phase shift.

LIQUi |)
qQHiPSTER +—e—t
Our simulator +=——

0.1

Time per QFT [s]

Speedup over LIQU |)

N T 1]

Speedup over qHiPSTER

0.01 |

Number of qubits

Figure 5. Comparison of our simulator to gHiPSTER and LIQU: |) for
applying a quantum Fourier transform on a single node. Our simulator
clearly shows the best performance.

The single node performance is depicted in Figure [j]
for a QFT, and in Figure [f] for the entangling operation,
which provides further proof of our simulator outperforming
other ones. As a consequence, there will be an even larger
advantage of our emulator against those simulators.

5. Summary

The development of quantum algorithms that promise
to solve important open computational problems has caused
quantum computing to be viewed as a viable long-term
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Respective speedups

Time per entangle [s]

0.001

[ SR e K]
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15 16 17 18 19 20 21 22
Number of qubits

Figure 6. Comparison of our simulator to qHiPSTER and LIQU74 |) for
applying an entangling operation on a single node. Our simulator achieves
significant speedups of 2x and 62X, respectively.

candidate for post-exascale computing. Due to the current
lack of universal quantum computers, the testing, debugging,
and development of algorithms is done on classical systems,
employing high-performance simulators. For the case of
noiseless, perfect simulations, we propose to emulate the
algorithms instead, making use of the performance opti-
mizations presented in this paper. Yet, this emulation is only
possible if the quantum program is available in a high-level
language, where the higher levels of abstractions are easy
to identify. This is the case in the compilation framework
described in [8], where emulators have been suggested at
various levels, and can also be integrated into both the
LIQU3|) [7] and Quipper [6] quantum programming lan-
guages.

Our results show that emulating quantum programs al-
lows to test and debug large quantum circuits at a cost that
is substantially reduced when compared to the simulation
approaches which have been taken so far. The advantage
is already substantial for operations such as the quantum
Fourier transforms, and grows to many orders of magnitude
for arithmetic operations, since emulation avoids simulat-
ing ancilla qubits (needed for reversible arithmetic) at an
exponential cost. Emulation will thus be a crucial tool
for testing, debugging and evaluating the performance of
quantum algorithms involving arithmetic operations, which
includes quantum accelerated Monte Carlo sampling [22]
and machine learning applications [23]], [24]], [25].
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