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Abstract

Wireless spectrum is a valuable and scarce resource that currently suffers from

under-use because of the dominant paradigm of exclusive-use licensing. We pro-

pose the SATYA auction (Sanskrit for truth), which allows short-term leases to

be auctioned and supports diverse bidder types, including those willing to share

access and those who require exclusive-use access. Thus, unlike unlicensed spec-

trum such as Wi-Fi, which can be shared by any device, and exclusive-use licensed

spectrum, where sharing is precluded, SATYA improves efficiency through support-

ing sharing alongside quality-of-service protections. The auction is designed to be

scalable, and also strategyproof, so that simple bidding protocols are optimal. The

primary challenge is to handle the externalities created by allocating shared-use

alongside exclusive-use bidders. Using realistic Longley-Rice based propagation

modeling and data from the FCC’s CDBS database, we conduct extensive simu-

lations that demonstrate SATYA’s ability to handle heterogeneous bidders involving

different transmit powers and spectrum needs.

0.1 Introduction

Currently, spectrum is licensed by governments in units covering large areas at

high prices and for long periods of time, which creates a large barrier to entry

for new applications. The main alternative, unlicensed bands such as Wi-Fi, has

offered tremendous benefit, but is subject to a “tragedy of the commons” where

these bands become congested and performance suffers [6].

Many researchers and firms (e.g., [4, 35, 18]) have proposed creating a sec-

ondary market for dynamic spectrum access to provide a new way to access spec-

trum. The idea is that primary spectrum owners would be able to sell short-term

leases. The same technology could also be used by the government to provide a

new approach to the licensing of government owned spectrum, by selling short-

term licenses in a primary market. This is made possible by recent advances in

building spectrum registries [29, 18].

Rather than just sell exclusive-use access to spectrum, we advocate the adop-

tion of auction technology to allocate spectrum to both exclusive-use and shared-

use. An exclusive-use license guarantees a winner no interference but can be inef-

ficient. For example, devices such as wireless microphones are only used occasion-

ally, and other devices can use the same spectrum when the wireless microphone

is not in use. This heterogeneity of devices and demand patterns presents an op-

portunity for sharing. In addition, many devices are capable of using a medium

access controller (MAC) to share spectrum when there is contention.

Auctions generate revenue and also enable efficient spectrum use through the

dynamic reprovisioning of spectrum. Auctions improve efficiency relative to fixed

price schemes by allowing prices to adapt dynamically in response to varying

demand. In addition, auctions provide incentives for different users to describe
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through bids their access requirements, for example specifying exclusive-use or

allowing sharing.

We describe the SATYA auction, which is designed to allocate short-term spec-

trum access across a wide range of scenarios, embracing different access technolo-

gies and different types of users, including individuals and service providers. This

makes SATYA well suited to handle the mixture of users found today in settings

such as Wi-Fi while still providing a better service than unlicensed spectrum.

In determining the allocation of spectrum, SATYA considers the effect of interfer-

ence on the value of the allocation to different bidders. Because of the possibility

of sharing spectrum, bidders in SATYA care about how spectrum is allocated to

other bidders, along with the dynamic access patterns of those bidders. Most

existing auction designs for wireless spectrum either fail to allow sharing, or fail

to scale to realistic problem sizes.

In order to make the algorithms for winner determination and determining

payments scalable we impose structure on the bidding language with which bid-

ders describe the effect of allocation to others on their value. The language allows

bidders to express their value for different allocations, given probabilistic activa-

tion patterns, an interference model, and under different requirements expressed

by bidders for shared vs exclusive-access spectrum. In determining the the value

of an allocation, the auction must determine the fraction of each bidder’s demand

that is satisfied in expectation, considering sharing and interference patterns. For

this purpose, we adopt a model for resolving contention by devices and assume

knowledge of which devices will interfere with each other given allocation (based

on device location), and represented through a conflict graph.

The SATYA auction is strategyproof, which is a property that makes simple bid-

ding protocols optimal for users or the devices representing users. In particular,

the utility-maximizing (the utility to a user is modeled as the difference between

the user’s value and the price) strategy is to bid truthfully, regardless of the bids,

and regardless of the kinds of activation patterns and sharing or exclusive-use

preferences of other users.

Strategyproofness is a property that is desirable for large-scale, distributed

systems involving self-interested parties because it promotes stability— the op-

timal bid is invariant to changes in bids from other users. In comparison, bidders

would need to keep changing their bids in a non-strategyproof auction in order

to maximize utility. This continual churn in bids imposes an overhead on system

infrastructure as well as participants.

Even without sharing, the problem of finding a value-maximizing (and thus ef-

ficient) allocation of spectrum is NP-hard [19]. In obtaining scalability, we adopt

a greedy algorithm for determining the winners and the spectrum allocation.

A crucial difficulty that arises because of externalities is that a straightforward

greedy approach to allocation fails to be monotonic. What this means is that

a user can submit a larger bid but receive less spectrum (in expectation, given

the interference, sharing and activation patterns). Monotonicity is sufficient, and
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essentially necessary, for strategyproof auctions [30]. This leads to a significant

design challenge.

In recovering monotonicity, SATYA modifies the greedy algorithm through a

novel combination of bucketing bids into value intervals in which they are treated

equally (this idea was employed in Ghosh and Mahdian [12]), along with a “com-

putational ironing” procedure that is used to validate the monotonicity of an

allocation and perturb the outcome as necessary to ensure monotonicity (this

idea was introduced by Parkes and Duong [31]). These techniques prevent cases

in which an increase in bid can change the decision of the greedy algorithm to

something that looks just as good given decisions made so far, but turns out to be

worse for the bidder because of interference with other bids that are subsequently

allocated.

In evaluating SATYA, we use real-world data sources to determine participants

in the auction, along with the Longley-Rice propagation model [3] and high-

resolution terrain information, to generate conflict graphs. We compare the per-

formance of SATYA against other auction algorithms and baselines. Our results

show that, when spectrum is scarce, allowing sharing through the SATYA auction

increases efficiency by 40% over previous approaches while generating revenue

for spectrum owners. The baseline also serves to provide an upper bound on

the potential cost of requiring strategyproofness relative to a protocol that is

designed to be efficient, but where participants in any case choose to behave in

a way that is approximately truthful.

0.1.1 Related Work

Most proposed auction designs for the sale of short-term spectrum licenses pre-

clude sharing amongst auction participants [5, 10, 33, 35, 36, 23]. From amongst

these, VERITAS [35] was the first strategyproof design. However, VERITAS does

not support sharing. We compare SATYA to VERITAS in the empirical analysis.

Ileri et al. [17, 16] consider models where users have exclusive access but only

for short time periods, which effectively permits some amount of sharing. Kas-

bekar and Sarkar [24] propose a strategyproof auction and allow for sharing

amongst winners. But the winner determination algorithm in their proposed

auction is not scaleable because bids are explicitly represented on different joint

spectrum allocations, which requires considering an exponential (in the number

of participants) number of allocations. In contrast, our use of a structured bid-

ding language allows us to achieve good efficiency while considering a polynomial

number of allocations. Huang et al. [15] propose an auction design where bidders

bid to share a single channel, but their design is not strategyproof and they do

not address the issue of how to assign channels when multiple are available.

Gandhi et al. [11] propose an auction that allows sharing amongst winners,

but differs from our approach in that it does not provide strategyproofness (and

thus lacks an equilibrium analysis and is otherwise hard to evaluate), and pre-

cludes sharing between users who want exclusive-use when active but are only
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intermittently active (e.g., wireless microphone devices) and other users. Exter-

nalities have also been considered in auction theory [21, 22], but without the

combinatorial aspect of our allocation problem and the difficulties this implies

for achieving strategyproofness. A number of papers have considered externali-

ties in online advertising [8, 12, 13, 25, 32]. However, this work (and similarly

that of Krysta et al. [26] on the problem of externalities in general combinatorial

auctions) is not directly relevant, as the externalities in spectrum auctions have

a special structure, of which SATYA takes advantage in order to achieve compact

bid representations and scalable winner determination.

0.2 Challenges in Auction Design

In this section we describe in some more detail the challenges that arise when

designing a spectrum auction that permits sharing. First, we discuss the general

form of an auction and define strategyproofness. Second, we present a cenreal

result due to Myerson [30] that provides a general framework for designing strat-

egyproof auctions through the use of a monotone allocation rule. Finally, we

introduce reserve prices, which are a standard approach to increasing the rev-

enue from an auction.

In the simplest type of auction, a single item is for sale. Each bidder i has

private information about his value Vi > 0. Let Bi ≥ 0 denote the bid from

bidder i. Each bidder receives an allocation Ai ∈ {0, 1}, where Ai = 1 if the

bidder gets the item and 0 otherwise. Feasibility insists that
∑
iAi ≤ 1. Writing

B = (B1, . . . , Bn) for bids from n bidders, then we can write the allocation

selected as a function A(B) = (A1(B), . . . , An(B)). Finally, each bidder makes

some payment Pi ≥ 0, that depends on the bids, so we write Pi(B).

In a standard model, a bidder’s utility, which captures his preference for the

outcome of an auction, is

Ui(B) = ViAi(B)− Pi(B), (0.1)

and represents the true value for the allocation minus the payment. There are

many ways such an auction can be run.

One approach, known as a first-price auction, is that each bidder names a

price and the bidder who bids the most wins the item and pays their bid with

Pi(B) = Bi for the winner. With perfect knowledge, a bidder should bid slightly

more than the highest bid of other bidders (to a maximum of Vi), in order to

pay as little as possible. Thus bidders try to anticipate how much others will bid,

and bid accordingly. This gives a first-price auction high strategic complexity.

Another approach, due to Vickrey [34], is a second-price auction, where each

bidder names a price and the bidder who bids the most wins the item. How-

ever, instead of paying the bid price, the payment is equal to the bid of the

second highest bidder. In such an auction, a bidder has a simple strategy that is
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(weakly) optimal no matter what: bid true value Bi = Vi. The Vickrey auction

is strategyproof.

definition 1. An auction defined with allocation rule A and payment rule P

is strategyproof if

Ui(Vi, B−i) ≥ Ui(B′i, B−i) (0.2)

for all bid profiles B, all agents i, and all alternate bids B′i, where B−i =

(B1, . . . , Bi−1, Bi+1, . . . , Bn) is the bid profile without agent i.

As explained in the introduction, a strategyproof auction is desirable because

of the effect it has in simplifying bidding strategies and because of the overhead it

removes from the infrastructure by precluding the need for bids to be continually

updated as bids from others change.

But how to design such an auction in our setting? One thing to recognize is

that the allocation will be much more complicated: analogous to an item is a

channel × location (where the location depends on the location of the bidder’s

device and the channel is a range of frequencies) In addition to there being

multiple items to allocate, there will be interference such that the value of an

item depends on the other bidders allocated similar items. In particular, bidders

that are geographically close to each other and are allocated the same channel

will interfere with each other.

Part of the challenge is to describe a concise language to represent a bidder’s

value for different possible allocations. Another part of the challenge is to ensure

that the allocation can be computed in polynomial time. The NP-hardness of the

winner determination problem precludes a general auction design due to Vickrey,

Clarke, and Groves [7, 14, 34], that would be strategyproof and efficient in our

domain.

In achieving strategyproofness, an important property is that an alloca-

tion algorithm be monotone, which requires that Ai(Bi, B−i), where B−i =

(B1, . . . , Bi−1, Bi+1, . . . , Bn), is weakly increasing in the bid of bidder i, fixing

the bids of others, so that Ai(Bi, B−i) ≥ Ai(B′i, B−i) for Bi ≥ B′i.
theorem 1 (Myerson [30]). An auction is strategyproof if and only if for all

bidders i, and fixed bids of other bidders B−i,

1 Ai(B) is a monotone function of Bi (increasing Bi does not decrease Ai(B)),

and

2 Pi(B) = BiAi(B)−
∫ Bi

z=0
Ai(z,B−i)dz.

Even beyond strategyproofness, monotonicity is still a worthwhile goal because

it guarantees that participants attempting to optimize their bid will only increase

the amount they receive and the amount they pay when they increase their bid.

In the case of an auction for a single good, the nature of monotonicity is simple:

a bidder must continue to win the good when bidding a higher price. However,

in our setting, winning a channel alone is not sufficient to make a bidder happy.

In particular, if the channel is heavily used by others in a bidder’s neighborhood
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it may have little value. Thus, a bidder cares not only about whether or not he is

allocated a channel, but also who else is allocated the same channel. The effects

of the allocations of other bidders on the value of winning a good are known

as externalities. This complicates the auction design because the allocation rule

must be monotone not only in whether a bidder gets a channel, but also the

amount of sharing that occurs on that channel. But once an allocation rule

has been developed that is monotone in this sense, the auction can be made

strategyproof through standard methods.

While determining the prices bidders pay requires computing an integral, in

many cases this integral has a simple form. For example, in the (deterministic)

single good case the allocation to a bidder, Ai, only takes on two values: 0 when

the bidder does not get the good and 1 when he does. Since the allocation must

be monotone, it is entirely determined by the critical value where it changes from

0 to 1. Thus, computing the integral reduces to the problem of determining the

minimum bid that the bidder could have made and still been allocated.

In addition to strategyproofness, the proposed auction designs for the alloca-

tion of short-term licenses and spectrum sharing can be evaluated in terms of

the twin goals of:

• Allocative efficiency: rather than maximize throughput or spectral efficiency,

allocate resources to maximize the total utility from the allocation. Thus, in

addition to traditional metrics we also report the total value from the alloca-

tions determined at the outcome of SATYA.

• Revenue: good revenue properties are important in order to provide an incen-

tive for spectrum owners to participate in the market.

Efficiency is often held to be of primary importance when designing a mar-

ketplace because it provides a competitive advantage over other markets, and

encourages participation by buyers. Maximizing revenue can be at odds with

efficiency because it can be useful to create scarcity in order to boost revenue.

One way to do this is to adopt a reserve price. We will examine the tradeoff

between efficiency and revenue that can be achieved by adjusting the reserve

price in SATYA.

0.3 The Model of Shared Spectrum and Externalities

0.3.1 User Model

In order to find opportunities to share among heterogeneous users (e.g., a user

with a wireless device, or a TV station), we need a language to describe the

requirements of each possible type of user.

Our model uses discrete intervals of time (called epochs), with auctions clear-

ing periodically and granting the right to users to contend for access to particular
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channels over multiple epochs. Thus our approach models participants who reg-

ularly want spectrum in a particular location over a period of time. Participants

who wish to enter or leave need to wait until the next time the auction is run.

The ultimate allocation of spectrum arises through random activation patterns

of users and interference effects, and depends on specifics of the medium-access

control (MAC) contention protocol. The effect of this MAC protocol is modeled

within SATYA in determining the allocation.

The interference between users and their associated devices is modeled through

a conflict graph, G = (V,E), such that each user i is associated with a vertex

(i ∈ V ) and an edge, e = (i, j) ∈ E exists whenever users i and j would interfere

with each other if they are both active in the same epoch and on the same

channel. Note that, for service providers such as TV stations, defining the conflict

graph may be complex as it requires making decisions about the acceptability of

interference over some portion of the served area.

We allow for both exclusive-use and “willing to share” users, where the for-

mer must receive access to a channel without contention from interfering devices

whenever they are active, while the latter can still obtain value through contend-

ing for a fraction of the channel with other interfering devices.

We say that a channel is free, from the perspective of user i in a particular

epoch, if no exclusive-use user j, who interferes with i and is assigned the right

to the same channel as i, is active in the epoch.

Formally, we denote the set of user types T . Each type ti ∈ T is a tuple

ti = (xi, ai, di, pi, Ci, vi), where:

• xi ∈ {0, 1} denotes whether the user requires exclusive-use of a channel in

order to make use of it (xi = 1) or willing to share with another user while

both are active on the channel (xi = 0).

• ai ∈ (0, 1] denotes the activation probability of the user: the probability that

the user will want to use the channel, and be active, in an epoch.

• di ∈ (0, 1] is the fractional demand of the channel that a user who is willing

to share access requires in order to achieve full value when active.

• pi ≥ 0 denotes the per-epoch penalty incurred by the user when active and

the assigned channel is not free. Both exclusive-use and non exclusive-use

users can have a penalty.

• Ci ⊆ C = {1, 2, . . .}, where C is the set of channels to allocate, each corre-

sponding to a particular spectrum frequency, denotes the channels that user

i is able to use (the user is indifferent across any such channel.)

• vi ≥ 0 denotes the per-epoch value received by the user in an epoch in which

it is active, the channel is free, and in the case of non exclusive-use types, the

user receives at least a share di of the available spectrum.

In this model, each user demands a single channel. We discuss an extension to

multiple channels in Section 0.4.6.

Some of the parameters that describe a user’s type are a direct implication
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of the user’s technology and application domain. For example, whether or not a

user requires exclusive-use when active and is unwilling or unable to share falls

into this category. Users that can use a MAC will tend to be able to share, other

users will tend not to be able to. As we explain below, users operating low-power

TV stations or with wireless microphone devices would likely be in this category.

The set of channels Ci on which a user’s device can legally broadcast will tend

to be easy to define.

For parameters such as the activation probability (how often the user makes

use of the channel), and the fractional demand (how much of the channel is

used when active), we assume that these can be estimated by the device, and

then monitored by the network environment upon the outcome of an auction

with the user punished if this information is mischaracterized. For example, a

user could be banned from participating in future auctions. But certainly, the

fractional demand di and activation probability ai may be difficult to estimate

in some cases, and especially when first bidding, due to uncertainty arising from

the effects of interference, anticipated traffic, and propagation.

Examples
• A user who wishes to run a low-power (local) TV station on a channel would

be unable to share it with others when active (xi = 1), would be constantly

broadcasting (ai = 1), and would have a very large penalty pi since it is unac-

ceptable for the broadcast to be interrupted by someone turning on another

(exclusive-use) device.

• A user with a wireless microphone cannot share a channel when active (xi = 1),

but is used only occasionally (ai = 0.05) and has a smaller value of pi since it

may be acceptable if the user is occasionally unable to be used when there is

another exclusive user also trying to use the channel.1

• A bidder may want to run a wireless network. Such a user would have constant

traffic (ai = 1), consume a large portion of the channel (di = 0.9), and might

have a large penalty similar to a TV station for being completely disconnected.

However, such a user is willing to share the channel with other non-exclusive

types (xi = 0), and will pay proportionately less for a smaller fraction of the

bandwidth.

• A bidder representing a delay tolerant network [20], who occasionally (ai =

0.2) would like to send a small amount of information (di = 0.4) if the channel

is available. Such bidders might have a low or even no penalty as their use is

opportunistic.

The per-epoch penalty is the cost to a user that is incurred in an epoch when

the user is active (wants to use the network) but the channel is encumbered by

an exclusive-use device. This can represent the known cost of using an alternate

network or a contractual rebate.

1 Indeed, it might make sense from an efficiency perspective to have several such devices

share a channel if they interfere with each other sufficiently rarely.
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The per-epoch value of a user vi represents the dollar value that a user assigns

to being able to access the channel when active, that is, in an epoch when the

user wants to use the network. For an exclusive-use user, it is the per-epoch

value for gaining exclusive access during that epoch. For a user willing to share,

it is the per-epoch value for gaining a fraction di of the channel (as long as the

channel is unencumbered by an exclusive-use device), and the assumption is that

the value falls off linearly for a share below di. We will design a strategy-proof

auction in which it is optimal for users to report their true value of vi when

bidding in the auction.

0.3.2 Allocation Model

Let Ai ∈ Ci∪{⊥} denote the channel allocated to each user i, where ⊥ indicates

the user has not been assigned a channel. Let A = (A1, . . . , An) denote the joint

allocation to n users. To allocate a channel means that the user has the right to

contend for the channel when active, along with other users that interfere with

the user and are allocated the same channel.

Exclusive-use users take priority over non exclusive-use users, and only expe-

rience interference when multiple exclusive-use users are simultaneously active.

Non exclusive-use users share the channel when active simultaneously, and when

the channel is free of exclusive-use users.

Let Vi(A, t) denote the expected value to user i for allocation A given type

profile t = (t1, . . . , tn). The value also depends on the conflict graph G, since

this affects the interference between users. But we omit this term for notational

simplicity.

An efficient allocation of spectrum maximizes the expected total value across

the user population, that is

A∗ ∈ arg max
A

∑
i

Vi(A, t) (0.3)

All allocations are feasible in our setting, since the expected value captures the

negative externality due to interference. For this, we define the expected value

Vi(A, t) as,

=

{
0 if Ai = ⊥, otherwise

vi · aiPri(F |A, t)EA[Si|F,t]
di

− pi · ai(1− Pri(F |A, t)).
(0.4)

A user’s value depends first on the expected fraction of the user’s request that

can be satisfied. The user can only use the channel when it is not in use by another

exclusive-use user, so we let Pri(F |A, t) ∈ [0, 1] denote the probability that the

channel is free (F ), with no exclusive-use user interfering with the allocated

channel. Given that the channel is free, the user may still have to share with

other users. For this, EA[Si|F, t] ∈ [0, 1] denotes the maximum of the expected

fraction of a channel that is available to user i given an epoch in which the

channel is unobstructed by an exclusive-use user, the user is active, and given
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user i’s demand. For an exclusive-use user, this amount is always EA[Si|F, t] = 1,

because such a user receives complete access to the channel when active and the

channel is otherwise free.

Thus, the first term in (0.4) takes the expected fraction of channel capacity

(necessarily less than di) supplied in an epoch in which the user is active, and

in which the channel is free from exclusive-use users, and multiplies this by

the probability the channel is free and the user is active aiPri(F |A, t), and the

user’s value for receiving di fraction of the channel in an epoch. This assumes

that a user’s value is linear in the available bandwidth (up to max-demand

di.) The second term in (0.4) calculates the expected per-epoch penalty due to

the channel not being free when a user is active (the probability of which is

ai · (1− Pri(F |A, t))).
To complete this, we need to also define the probability that the channel

allocated to user i is free, given allocation A and type profile t. This is given by

the expression,

Pri(F |A, t) =
∏

j∈Ni s.t. Ai=Aj∧xj=1

(1− aj), (0.5)

where Ni is the set of neighbors of i in G. This is the joint probability that no

exclusive-use neighbor in the conflict graph, allocated the same channel as i, is

active in an epoch.

Finally, we require an expression for EA[Si|F, t] ≤ di, the expected fraction

of a channel available to a user in an epoch when it is active and the channel

is free. For this, we first consider the effect of a fixed number of active (non

exclusive-use) neighbors in such an epoch.

For this, we assume a Carrier Sense Multiple Access (CSMA) style MAC, in

which bandwidth is shared as equally as possible among active (non-exclusive-

use) users, subject to the constraint that no user i receives more than its demand

di. Formally, if Na is a set containing i and the active neighbors of i with whom

i shares a channel in the allocation, and Nf = {j ∈ Na | dj < f}, then user i

receives a share of the available bandwidth on the channel equal to,

sharei(Na, t) = min

(
di, max

f∈[0,1]

1−
∑
j∈Nf

dj

|Na −Nf |

)
(0.6)

The user either gets the full demand di or, failing that, the fair share (which

the max in the equation determines). If all users have the same demand di, this

reduces to each either the full demand being satisfied if di ≤ 1/|Na| or receiving

a 1/|Na| share of the channel capacity otherwise. If some users demand less than

their fair share, the remainder is split evenly among the others.

In completing an expression for EA[Si|F, t], we adopt νi(A, c) to denote the set

of neighbors of i on conflict graph G that, in allocation A, are allocated channel

c. In particular, νi(A) denotes the set of neighbors allocated the same channel
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as i. The probability that a particular set, N ′ ⊆ νi(A) is active in any epoch is,

activei(N
′, t) =

∏
j∈N ′

aj

 ∏
`∈νi(A)−N ′

(1− a`)

 (0.7)

From this, a user’s expected share of the channel, given that the user is active

and the channel is free (where the expectation is computed with respect to

random activation patterns of interfering neighbors) is given by,

EA[Si|F, t] =


0 if Pri(F |A, t) = 0

1 if xi = 1∑
N ′⊆νi(A) activei(N

′, t)sharei(N
′, t) , o.w.

(0.8)

The two special cases cover exclusive-use users (who always receive their full

demand when active, conditioned on the channel being otherwise free), and users

for whom the channel is never free (for whom we arbitrarily define it to be 0,

because the value in this case turns out to be irrelevant).

In general, computing EA[Si|F, t] requires time exponential in the number of

neighbors νi(A) with which i shares a channel. In making this practical, sharing

can be limited to dmax � n neighbors, and the calculation can be completed in

time that scales as O(2dmax). Alternatively, it may turn out that dmax is already

small due to the nature of the conflict graph. Indeed, in our experiments for prac-

tical models of signal propagation, and even with hundreds of users participating

in the auction, we did not need to impose such a limitation.

0.4 Auction Algorithm

Turning to the design of SATYA, we assume that the only component of a user’s

type that can be misreported is vi, which represents the per-epoch value of the

user when active. Designing an auction that is strategy-proof in regard to per-

epoch value vi is the focus of this section.

As explained in Section 0.3.1, it seems reasonable to assume that many of

the parameters of a user’s type can be checked by the network at the outcome

of an auction and enforced through punishment (e.g., kicking out of the auction

environment in the future), or are fundamental to the operation of a user’s device

(e.g., whether or not it can share the channel or needs exclusive-use) and thus

not useful to manipulate. misreporting them (for example by remaining active

and sending junk data to increase ai), implementing such manipulations would

be costly to users and in many cases would simply result in higher payments.

Thus, for simplicity we ignore this possibility.

There are a number of interpretations of the penalty incurred by a user when

a channel is encumbered by an exclusive-use device under which it seems rea-

sonable to treat it as known. For example, the penalty could represent the cost
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A B

Channels 

free: 1, 2

Channels 

free: 1

Figure 0.1 A potential violation of monotonicity. Nodes A and B are in contention
range. At node A’s location channels 1 and 2 are free; at B only channel 1 is free.

to gain access to a fallback network when this network is unavailable or a con-

tractual payment the spectrum owner is obligated to make. The exact value may

also not be important, as long as it is large. In practical terms, the value of the

penalty controls the level of sharing that is permissible with exclusive users who

are occasionally active, and getting this to the correct order of magnitude may

be sufficient. In the extreme, SATYA works fine taking pi = 1 for all i, which

forbids such sharing.

Even if no users are permitted to share channels, finding an optimal alloca-

tion is NP-Hard [19]. Assigning bidders to channels such that no two neighbors

have the same channel is a graph coloring problem. Therefore we adopt a greedy

algorithm for allocation, modified to achieve monotonicity.

0.4.1 Externalities and Monotonicity

Let us first define monotonicity in our setting. For this, it is convenient to drop

the complete type profile t from notation and write Pri(F |A) and EA[Si|F ] in

place of Pri(F |A, t) and EA[Si|F, t] respectively. In addition, let b = (b1, . . . , bn)

denote the joint bid vector received from users, with bj ≥ 0 for all j.

Fixing the bids b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of other users, an allocation

algorithm A(b) (defining an allocation for every bid profile) is monotone if,

Pri(F |A(b′i, b−i))EA(b′i,b−i)[Si|F ]

≥Pri(F |A(b))EA(b)[Si|F ], (0.9)

for all bids b′i ≥ bi. This insists that the expected share of a channel available to

a user, conditioned on being active, weakly increases as the user’s bid increases.

Figure 0.1 shows how monotonicity can fail for simple greedy algorithms. The

greedy algorithm considers each user in (decreasing) order of bids and allocates

the user to the best available channel in terms of maximizing value (or no channel

if that is better). If there is a tie, the algorithm uses some tie-breaking rule, such

as the lowest channel number. If user A has a lower bid than user B, the algorithm

assigns user B to channel 1, then user A to channel 2, and both are fully satisfied.

If user A raises its bid above that of user B, user A will be assigned to channel

1. Then, assuming sharing is better than leaving B unassigned, the algorithm

assigns user B to channel 1, and user A receives less value due to interference.
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0.4.2 High level approach

The monotonicity violation from Figure 0.1 would be prevented if the algorithm

was not allowed to assign user B to channel 1 in the second case. We do this

for many cases by assigning each user to a “bucket” based on his bid, such that

the more a user bids the higher the bucket to which he is assigned. Users are

not allowed to share with a user from a higher bucket. Thus, if user B is in a

lower bucket than user A, user B will simply not be assigned a channel. If both

users are in the same bucket, we will consider them in some order independent

of their actual bids, and adopt in place of their bid value the minimal possible

value associated with the bucket. The effect is that the allocation decision is

invariant to a user’s bid while the bid is in the same bucket. Since users are

only allowed to share with other users within their buckets, the way buckets are

chosen is an important parameter of our algorithm. Larger buckets create more

possibilities for sharing. However, they also mean that the algorithm pays less

attention to user’s bids, so they may decrease the social welfare (the total value

of the allocation) and revenue.

Bucketing prevents many violations of monotonicity, but it is not sufficient to

prevent all of them. In particular, the example from Figure 0.1 can still occur if

user A is in a lower bucket than user B and then raises his bid so they are in the

same bucket (if he raises it to be in a higher bucket there is no problem). To deal

with this case we adapt a technique known as “ironing”[31] to this domain. This

is a post-processing step in which allocations that might violate monotonicity

are undone. Given an input (a set of bids) to an allocation algorithm, the basic

idea is to check the sensitivity of the allocation with respect to unilateral changes

in the bid value by each bidder. In Parkes and Duong [31] this is applied to a

problem of stochastic optimization, and a failure in regard to checking higher

bids is addressed by unallocating the bidder at the current input. In the context

of the SATYA auction, sensitivity is checked in regard to lower bids, and failure

is addressed by unallocating other bidders that are sharing a channel with the

user (improving the allocation for the bidder at the current input).

For each user allocated in the current bucket, we ask the counterfactual ques-

tion “If this user were instead in the next lower bucket, is it possible he would

be allocated?” If so, we guarantee that the user is satisfied in the current bucket

by canceling (or “ironing”) the allocations of other users with whom he shares.

In Figure 0.1, if user A were in a lower bucket he would be allocated a channel.

Therefore, in the ironing step, the algorithm would change user B’s allocation

and not allocate a channel in the current bucket. It will be important, though,

that a channel allocation that is canceled in this way will be considered unavail-

able for future allocation. This prevents the need for nested arguments involving

the effect of ironing on future allocations, future ironing of future allocations,

and so on.

In this high level description, we have assumed that any two users who interfere

with each other cannot share a channel without harming each other. In reality,
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this is not the case; users capable of using a MAC and sending at sufficiently low

rates will have a negligible effect on each other. Many of the more intricate details

of our algorithm come from adapting the general approach to take advantage of

this fact and allow more efficient use of wireless spectrum.

0.4.3 The SATYA Algorithm

SATYA begins by assigning each user i to a bucket based on the user’s bid value

bi. There are many ways this can be done as long as it is monotone in the user’s

bid. For example, user i with an activity-normalized bid aibi could be assigned

to value bucket with bounds [2`, 2`+1). To be general, we assume that bucketing

of values is done according to some function β(k), such that bucket k contains

all users with (normalized) bids aibi in the range [β(k), β(k + 1)).

Once users are assigned to buckets they are assigned channels greedily, in

descending order of buckets. The order of assignment across users within the

same bucket is determined randomly. Let Ki denote the bucket associated with

user i. A channel c is considered to be available to allocate user i at some step

in the algorithm, and given the intermediate allocation A, if,

• the channel c is in Ci;

• assigning i would not cause an externality to a neighbor from a higher bucket:

for all j ∈ Ni, with Kj < Ki, ∑
`∈{νj(A,c)∪{i}}

d` ≤ 1 (0.10)

• and, the combined demands of i and the neighbors of i from higher buckets

assigned to c are less than 1:

di +
∑

j∈νi(A,c),Kj>Ki

dj ≤ 1 (0.11)

We refer to the second condition as requiring that the demands of each neigh-

bor of user i from a higher bucket be satisfied. The third condition requires that

the demand of user i is satisfied. This does not preclude allocations where some

user has E[Si|F, t] < di. It simply requires that, in such cases, the user is sharing

with others in the user’s own bucket.

Suppose i is the next user to be considered for allocation. SATYA will identify

the channel for which assigning i to the channel has the maximum marginal effect

on the total value of all currently allocated users along with user i itself. To do

so, for every channel c that is available to the user, and including ⊥ (and thus

not allocating any spectrum to the user), SATYA estimates the expected value to

some user j after assigning i to c as

ej(A, b) = β(Kj)Prj(F |A, b)
EA[Sj |F, b]

dj
− aj · pj(1− Prj(F |A, b)) (0.12)

This estimate differs from the user’s actual bid by assuming that each user
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in a given bucket shares the same value. This is important for achieving mono-

tonicity, because we need to ensure the decision for a user depends on the bucket

associated with a user’s bid value and not in more detail on a user’s value.

Given this, user i is assigned to the channel that maximizes the sum of the

expected bid values of each user already allocated and including its own value,

and without leaving any user with a negative expected value. The optimal greedy

decision might allocate ⊥ to user i, and thus no spectrum. In the event of a tie,

the user is assigned to the lowest numbered among the tied channels (including

preferring ⊥, all else equal).

After all users in a bucket are assigned channels, there is an ironing step in

which monotonicity of the allocation is verified, and the allocation perturbed if

this fails. Recall that monotonicity violations occur when the greedy allocation

makes a “bad” decision for the user and would make a better one had the user

been considered later. Bucketing prevents users from being able to move them-

selves later while staying in the same bucket, but they could still lower their bid

enough to drop into the next bucket. To rule out this possibility, the ironing pro-

cedure re-runs the allocation procedure for each user with the user placed instead

in the next lower bucket. If this counterfactual shows that the final allocation

would be better for the user, then there is a potential monotonicity violation,

and the provisional allocation is modified by changing the assignments of the

neighbors with whom the user shared a channel to ⊥. Checking only the next

bucket is sufficient because if the user can be assigned in any lower bucket he

can be assigned in the next bucket.

The complete algorithm is specified in pseudocode as Algorithm 1. In the

specification, we use distinct names to be able to refer to allocations created

along the way. The variable A(k, i, j) denotes the state of the allocation in bucket

k after considering the jth user in the order given by random permutation π on

users. Some of these allocations will be used for the counterfactual questions

asked by ironing, so i is the user currently being omitted (i = 0 if there is no

such user).

lemma 2. Algorithm 1 is monotone.

The proof of Lemma 2 is presented in the appendix.

0.4.4 Pricing Algorithm

Given a monotone allocation algorithm, then the payment to collect from each

user is defined as is standard from Myerson [30]. As we saw with the single

good setting in Section 0.2, we can exploit the structure of our allocation rule to

compute the required integral. Because of the way ironing works, there is exactly

one bucket in which a user can receive an allocation in which the user shares a

channel with other users. In any lower bucket, the user does not get allocated

a channel; in any higher bucket the user is guaranteed by ironing to have the

user’s demand fully satisfied in the allocation. Thus there are only three possible
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Algorithm 1 SATYA Allocation Algorithm

π ← a random permutation of 1 . . . n

M ← maxiKi

m← miniKi

Allocationi ← ⊥∀i
Ai(M + 1, 0, n)← ⊥∀i
// Do Provisional Allocation

for k = M to m by −1 do

A(k, 0, 0)← A(k+1, 0, n) // Initialize allocation to result of previous bucket

for j = 1 to n do

A(k, 0, j)← A(k, 0, j − 1)

if Kπ(j) = k then

c← AssignChannel(A(k, 0, j), π(j)) // π(j) in bucket so assign him

Aπ(j)(k, 0, j)← c

Allocationπ(j) ← c

// Counterfactuals to use for ironing

for i = 1 to n do

A(Ki, i, 0)← A(Ki+1, 0, n) // Prepare to reallocate i’s bucket without him

for j = 1 to n do

A(Ki, i, j)← A(Ki, i, j − 1)

if Kπ(j) = Ki ∧ π(j) 6= i then

Aπ(j)(Ki, i, j)← AssignChannel(A(Ki, i, j), π(j))

// Do ironing

for i = 1 to n do

free← ∃ avail. c for π(i) given A(Kπ(i), π(i), n) // Does i trigger ironing?

if Allocationπ(i) 6= ⊥ ∧ free then

nbrs← νπ(i)(Allocation) // Cancel neighbors until i is happy

while dπ(i) +
∑
j∈nbrs dj > 1 do

j ← last j ∈ nbrs according to π

Allocationj ← ⊥
nbrs← nbrs− {j}

return Allocation

AssignChannel(A, i):

channels← {c available for i given A}
for all c ∈ channels ∪ {⊥} do
Ai ← c

valuec =
∑n
j=1 ej(A, b) // Calculate estimated social welfare

if ∃j s.t. ej(A, b) < 0 then

valuec = 0 // Do not give anyone negative utility

return arg maxc valuec (break ties in favor of ⊥, then lowest channel number)
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allocations the user might obtain as the bid value of the user changes and the

relevant critical values are determined by finding the lowest bucket in which

the user would be allocated and computing how much he values that allocation.

Algorithm 2 shows how the associated bucket can be determined, and what price

should be charged in each case.

Algorithm 2 Pricing Algorithm

M ← maxiKi

m← miniKi

for i = 1 to n do

if Allocationi = ⊥ then

Pi = 0

else

run Algorithm 1 without user i to get A′(k, 0, n)∀k
k = M

while k > m− 1 ∧ ∃c ∈ Ci
s.t. c is available in A′(k, 0, n) do

k = k − 1

// k is now the unique bucket in which i might share

run Algorithm 1 with i in bucket k to get Allocation′.

f ← Pri(F |Allocation′)
s← EAllocation′ [Si|F ]

if Ki > k then

Pi ← β(k + 1)− (β(k + 1)− β(k))fs

else

Pi ← β(k)fs− pi(1− f)

theorem 3. SATYA is strategyproof with respect to bid value.

This result follows because SATYA allocates channels using Algorithm 1 and

charges payments according to Algorithm 2, which are the correct “Myerson”

payments. While the result follows from Myerson, a slight modification is needed

because in our model a user’s utility depends on the penalty pi in a way that

makes them not quite fit the definition of a single-parameter domain. For this

reason, we provide a direct proof of strategyproofness in the appendix.

0.4.5 Running time

Recall that n is the number of users, and let χ = |C| denote the number of chan-

nels. (in general χ < n or the algorithm can assign each user his own channel).

The running time of SATYA is determined largely by the implementation of the

AssignChannel procedure. As discussed in Section 0.3.2, this require computa-

tion that scales exponentially in the number of neighbors with which i shares

each channel considered. Thus, by in domains where this is limited to at most
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r neighbors then the call to AssignChannel requires time O(χn2r). Indeed, we

did not need to impose any limit on the number of neighbors in generating our

simulation results, because users’ utilities were such that it did not make sense

for users to share with a large number of other users.

theorem 4. SATYA’s running time is at most O(χn42r), where n is the number

of users, χ is the number of channels, and r is the maximum number of sharing

neighbors considered.

As the proof shows, the running time is dominated by the time needed for

O(n3) calls to AssignChannel.

Proof SATYA needs to calculate A(k, 0, n) for each non-empty bucket k and

A(Ki, i, n) for each user i. There are at most n non-empty buckets and n users

for a total of 2n allocations to be computed. Each allocation requires assigning

a channel to each user at most once, so there are O(n2) calls to AssignChannel.

Ironing takes time O(χn) per user for a total of O(χn2), so the running time of

the allocation is dominated by the calls to AssignChannel (which needs at least

time χ to consider each channel).

The pricing algorithm runs for each user and runs the allocation algorithm

twice: once to determine in which bucket the user might share and once to

determine what the user’s share would be in that bucket. Thus SATYA requires

2n+1 runs of the allocation algorithm for a total of O(n3) calls to AssignChannel.

0.4.6 Extensions

An earlier auction proposal, VERITAS [35], suggests a number of ways to handle

assignments of a user to multiple channels. In particular, users can either require

a specific number of channels or be willing to accept a smaller number than they

request. Users may also wish to insist that an allocation of multiple channels be

contiguous. SATYA can be extended to allow all of these. We omit discussion of the

algorithmic changes required, but we present simulation results in Section 0.5.4.

Essentially, these changes require appropriately adapting the notion of when a

group of channels is “available” to a user.

SATYA has a number of parameters. One obvious choice is the function β, which

is used to assign users to buckets. Any function that is monotone in a user’s bid

can be used. This includes functions that take into account other facts about

the user, for example the user’s type or the number of neighbors the user has in

the conflict graph. Another area of flexibility in defining SATYA is in the role of

the permutation π. Rather than a random perturbation, any method that does

not depend on user bids can be used. Some natural possibilities include ordering

users by their degree in the conflict graph (so that users who interfere less are

allocated first), ordering by a combination of activation probability and demand

(so that users who use less spectrum are allocated first), or considering exclusive-



19

User Type Act. Prob. Value Penalty Demand
Exclusive-Continuous 1 [0, 1000] 10000 1

Exclusive-Periodic [0.05, 0.15] [0, 1000] 5000 1
Sharing-High 1 [0, 1000] 10000 [0.3, 1]
Sharing-Low [0, 1] [0, 1000] 5000 [0.3, 1]

Table 0.1 Mix of user types used in the evaluation

use users last since they impose much larger externalities on those with whom

they share. We leave further exploration of this direction for future work.

0.4.7 SATYA’s use of a MAC

As mentioned in Section 0.3.2, we use a simple model to calculate what hap-

pens when users share a channel. Our simple model can be replaced by a more

sophisticated model from prior work that has explored the capacity of CSMA

based wireless networks (e.g., [27, 38, 37, 28]) as long as, in expectation, having

more neighbors decreases a user’s share of the channel. This model can also be

extended in other interesting ways. For example, we could add for each user i a

parameter `i, such that if he receives less than an `i fraction of the channel it is

useless. This simply requires defining the share to be 0 if it would be less than

`i. Alternatively, we could adopt TDMA rather than CSMA.

For implementation, SATYA does not require drastic changes to existing MACs.

The primary requirement is for a user to stop transmitting when it is another

user’s turn (in the case of exclusive-use users). This is not unique to SATYA and is,

for example, required of devices that use white spaces. However, a small change

is required to a user’s network stack to seek to transmit only when the user

wins the auction (and therefore is allowed to contend for a channel). This can

be implemented anywhere in the software stack.

0.5 Evaluation

In this section we compare the performance of SATYA to VERITAS. Since VERI-

TAS does not permit sharing, we modify it slightly and implement VERITAS-S,

which permits sharing as long as there are no externalities imposed (i.e. sharing

is permitted only when the combined demands of users that wish to share do

not exceed the capacity of the channel). We also implement GREEDY, a version

of SATYA without bucketing and ironing that provides higher overall efficiency.

GREEDY is neither strategyproof nor monotone. Thus, bids need not match

their true values. However, to set as high a bar as possible, we assume they do

so. Since it gets to act on the same information but has fewer constraints than

SATYA, GREEDY serves as an upper bound for our experiments.

Parameters: As shown in Table 0.1, all our experiments use four classes of

user types bidding for spectrum. Note that, in the table, we we have normalized
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the values so the table reflects the range of aivi rather than the range of vi.

Each class represents different applications. For example, a TV station serving

a local community is a user who wants exclusive access for a long period of

time. A wireless microphone is an example of a user who wants exclusive access

but for short periods of time. A low-cost rural ISP is an example of a Sharing-

High user who expects to actively use the spectrum but can potentially tolerate

sharing, and a regular home user is an example of a Sharing-Low user whose

spectrum access pattern varies. Note, each class of users may have different

transmit powers and coverage areas than the others. Since our goal is to evaluate

the efficacy of SATYA in exploiting opportunities for sharing, we assign 5% of the

total users as exclusive-continuous, 15% exclusive-shared, 30% Sharing-High, and

the remaining 50% Sharing-Low.

Methodology: Each auction algorithm takes as input a conflict graph for the

users. To generate this conflict graph in a realistic manner, we implement and

use the popular Longley-Rice [2] propagation model in conjunction with high res-

olution terrain information from NASA [1]. This sophisticated model estimates

signal propagation between any two points on the earth’s surface factoring in

terrain information, curvature of the earth, and climactic conditions. We use

this model to predict the signal attenuation between users, and consequently the

conflict graph.

We use the FCC’s publicly available CDBS [9] database to model the transmit

power, location, and coverage area of Exclusive-Continuous users. Note, that

this information as well as the signal propagation predictions are sensitive to

geographic areas.

We model the presence of all other types of users using population density

information. Users are scattered across a 25 mile x 25 mile urban area in a

random fashion by factoring in population density information. Since each class

of user has a different coverage area, we determine that a pair of nodes conflicts if

the propagation model predicts signal reception higher than a specified threshold.

We repeat each run of the experiment 10 times and present averaged numbers

across runs. Unless otherwise specified, the number of channels is 5. In tuning

SATYA, we experimented with a variety of methods for determining to which

bucket to assign a user. On the basis of this analysis we adopt buckets of size

500 (β(k) = 500k).

In our experiments, we use the following metrics:

• Allocated Users: The total number of users allocated at least one channel by

the auction algorithm.

• Efficiency: The sum of the valuations for the allocation by allocated users

including the effect of any interference and preemption.

• Satisfaction: The sum of the fraction of a user’s total demand that is satisfied

over all users.

• Spectrum Utilization: The sum of satisfaction weighted by activation proba-

bility and demand. From a networking perspective, spectrum utilization is a
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Figure 0.2 Number of users allocated spectrum, as a function of the number of users
participating in the auction.

measure of how much the spectrum is being used (similar to the total network

capacity).

• Revenue: The sum of payments received from users.

0.5.1 Varying the Number of Users

Figure 0.2 and Figure 0.3 show the performance of various algorithms as a func-

tion of the number of users participating in the auction. As we vary the number

of users, we keep the mix of user types to be the same as Table 0.1.

As seen in Figure 0.2, as the number of users increases, SATYA produces up to

72% more allocated users when compared to VERITAS and VERITAS-S. This

gain comes from being permitted to allocate users despite the presence exter-

nalities. With fewer users, all three algorithms demonstrate similar performance

because almost all users can either be allocated a channel of their own or are

impossible to satisfy.

Overall, VERITAS-S and VERITAS do not make the best use of users that can

share. This is demonstrated in Figure 0.3, which is the distribution of different

classes of users assigned channels by each algorithm. As the number of users

increases, VERITAS-S and VERITAS significantly reduce the fraction of users

capable of sharing who are assigned channels (relative to SATYA). However, all

algorithms demonstrate a similar performance in the fraction of exclusive bidders

who are assigned channels. Hence, SATYA is capable of taking advantage of sharing

by allocating channels to more of such users. As expected GREEDY outperforms

all strategyproof auctions and is able to assign more sharing users. Although we

omit a detailed presentation, the difference in performance between SATYA and

GREEDY is primarily due to bucketing. Ironing does occur but has only a minor

effect.
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Figure 0.3 Distribution of user types across winning users, as the number of bidding
users are varied. S-L are Sharing-Low users. S-H are Sharing-High users. E-P are
Exclusive-Periodic users and E-C are Exclusive-Continuous users.

In addition to the number of users allocated spectrum, the results for other

metrics are shown in Figure 0.4, which plots the results in terms of percentage

improvement over the baseline of VERITAS. As seen in Figure 0.4(a), the relative

efficiency attained by SATYA increases with an increase in the number of users.

This is a direct consequence of assigning channels to more users capable of sharing

the spectrum. This shows that, despite externalities from sharing, the additional

users allocated consider it valuable. At 600 bidders, SATYA realizes a gain of

25% over VERITAS-S and 40% over VERITAS in terms of efficiency. Similarly,

as seen in Figure 0.4(b), we find a 50% increase in the spectrum utilization of

the network using SATYA. As efficiency, spectrum utilization, and satisfaction all

take into account externalities, Figures 0.4(a), 0.4(b), and 0.4(c) show significant

correlation. As with the users allocated metric, at fewer nodes the algorithms

are indistinguishable as there are few opportunities to share.

Hence, the main takeaway is that, SATYA increases the number of allocated

users as well as efficiency.

0.5.2 Varying the Number of Channels

We also measure the effect of varying the number of channels auctioned on the

overall outcome of the auction. The results shown in Figure 0.5 demonstrate

the following trend: as the number of auctioned channels increases the gap in

performance among the algorithms reduces. This is similar to having fewer bid-
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Figure 0.4 Effect of varying the number of users in the auction (compared to
VERITAS-S, VERITAS, and GREEDY).

ders participate in the auction; with more channels, there is a reduced need for

sharing and all algorithms perform similarly. As Figure 0.5(a) shows, SATYA is

still able to assign more bidders than other algorithms until about 20 auctioned

channels. Similarly, in Figure 0.5(b), we see that SATYA outperforms VERITAS

by 20-60% in terms of efficiency up until about 10 channels.2

2 We omit graphs for spectrum utilization and satisfaction for this and later experiments

because they demonstrate a similar trend.
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Figure 0.5 Effect of varying the number of channels auctioned (compared to
VERITAS-S, VERITAS, and GREEDY).

We also vary the number of users and the number of channels simultaneously

and the results for SATYA are shown in Figure 0.5(c). We see that as the number

of users increases, SATYA takes advantage of the increased opportunity for sharing

and allocate more users.

Hence, the main takeaway is SATYA provides substantial benefits when the num-

ber of channels makes spectrum scarce.
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0.5.3 Measuring Revenue

We consider efficiency the most important measure of performance: a market

that finds success in the long run will allocate resources to those that find the

most value. However, revenue is also important in providing sufficient incentive

for spectrum owners to bring inventory to the auction.

First, we measure the total revenue obtained as a function of the number of

users bidding for spectrum without reserve prices. We do not include GREEDY

in this analysis because it is not strategyproof and it is not clear what users

will bid and thus what the actual revenue would be. As seen in Figure 0.6,

the revenue obtained by SATYA and is much lower than VERITAS for smaller

numbers of users. We omit VERITAS-S from the figure for readability, but its

performance also suffers. This is a consequence of sharing making it easier to

accommodate users.

To improve revenue, we institute reserve prices.3 While Myerson’s approach

in principle allows us to compute the optimal reserve price given knowledge

of a distribution on values [30], we instead determine a suitable reserve price

through simulation. The results from a simulation that varies the reserve prices

is shown in Figure 0.7 for 300 bidding users. Figure 0.7(a) shows that with a

reserve price of 0 (i.e. no reserve price) VERITAS performs better than SATYA

and VERITAS-S in terms of revenue. As the reserve price begins to increase, the

revenue derived from all three auctions increases. However, at around a price

around 700 (depending on the algorithm), there is an inflection point in the

revenue. As seen in Figure 0.7(b), this is because significantly fewer users are

allocated by the auction and efficiency decreases (Figure 0.7(c)).

Based on these results, we adopt a reserve price of 400 and repeat the experi-

ment to measure revenue by varying the number of bidders. We used a fixed re-

serve price for consistency; in practice it could depend on the number of users and

3 VERITAS explored a similar opportunity to increase revenue by limiting the number of

channels available.
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Figure 0.7 Effect of reserve prices with 300 users on revenue, users allocated spectrum,
and efficiency.

be individualized for each user. As Figure 0.6 shows, this increases revenue for

the auctioneer significantly for all algorithms. The increase is most pronounced

with 50 users (not shown because the improvement is so large) where revenue

goes from essentially zero to approximately ten thousand. SATYA, which without

a reserve price lost revenue by being too efficient in allocating users, benefits

slightly more than VERITAS. With a large number of users, the reserve price is
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essentially irrelevant because of the amount of competition; with 550 users the

gain is below 12%.

0.5.4 SATYA’s Performance with Multiple Channels
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Figure 0.8 Experiments with multiple channels

SATYA is also capable of allowing users to bid for multiple channels in the

auction. To illustrate this, we ran an experiment where we varied the number of

channels that each user bids for as well as the number of users in the auction.

Not all users bid for the same number of channels. The number of bid for is

what a user with di = 1 would request; lower di results in a proportionally lower

request. We used two modes of channel allocation schemes in SATYA, strict: when

a user either gets the number of channels it requests for or nothing, and partial:

a user can get fewer than requested channels. The total number of channels

auctioned (not to be confused with the number of channels bid) was fixed to 26.

The results are shown in Figure 0.8. As seen in Figure 0.8(a), partial allocations

result in slightly more allocated users than strict, which is what we would expect

since strict allocations are constraints that are harder to satisfy. Figure 0.8(b)
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shows that increasing the the number of channels demanded by users reduces

the number of winners as would be expected.

0.6 Conclusions

The SATYA auction is designed to allocate short-term spectrum licenses and al-

lows for both bidders who are willing to share as well as bidders who require

exclusive-use when active. SATYA does this while still allowing for quality-of-

service guarantees. From a technical perspective, introducing sharing introduces

allocative externalities and the auction algorithm is designed to handle these in

a way that preserves strategy-proofness. Using realistic simulations, we showed

that the ability of SATYA to share spectrum results in superior allocations by a

variety of metrics. Our simulations also showed that the costs of achieving strat-

egyproofness in this setting are minimal relative to the efficiency of a greedy but

non strategyproof algorithm, and we believe that strategy-proofness is a price

worth paying for the resulting improvements in simplicity and stability.
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Appendix

Proof of Lemma 2

First, we observe that an agent’s bid is only used to determine his bucket and is

afterward ignored by the algorithm (estimates of utility use the agent’s bucket

rather than his bid). Thus is it sufficient to consider deviations that cause i

to change buckets. If Ai = ⊥, then Pri(F |A) = EA[Si|F ] = 0, so the claim

is trivially true. Otherwise, i moves up to some bucket k2 > k1. Recall that

νi(A, c) = {j ∈ Ni | Aj = c} denotes the set of i’s neighbors assigned to channel

c according to A. An important observation about the algorithm is that once it

makes an assignment that some Ai(k, 0, j) = c, it never changes this for any later

k and j. This is the reason the ironing step only changes Allocation and not A.

Thus, the set νi(A(k, 0, j), c) grows monotonically as the algorithms iterates over

k and j.

Since i was assigned to c in the assignment A, c must have been available to

him when he was assigned. By the third part of the definition of availability and

the monotonic growth of ν, i would have his demand satisfied with neighbors

νi(A(k, 0, j), c) for all k ≥ k1 + 1 and all j. In particular, this means his demand

is satisfied with neighbors ν0(A(k2, π
−1(i)− 1), i, c).

When computing Allocation′ with the new bids b′, the algorithm computes a

new set of incremental allocations A′. Since the algorithm does not look ahead,

A′(k2, 0, π
−1(i)− 1) = A(k2, 0, π

−1(i)− 1). This means that, in

AssignChannel(A′(k2, 0, π
−1(i)), i)), i could be assigned to c and have his de-

mand satisfied. Therefore he will be assigned to some such channel c′ (not nec-

essarily c as there might be a lower numbered channel available). Furthermore,

on c he does not impose any externality on his neighbors (all their demands are
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satisfied by the second part of the definition of availability). Therefore, since the

algorithm greedily maximizes the total value, this true on c′ as well.

Again since the algorithm does not look ahead, i increasing his bid does not

change anything before bucket k2, so A′(k2 + 1, 0, n) = A(k2 + 1, 0, n). Since the

algorithm does not consider allocating i a channel in bucket k2 when computing A

(because he is in the lower bucket k1) or when asking the counterfactual about

what would have happened had i not been in bucket k2 in A′, A′(k2, i, n) =

A(k2, 0, n). Thus νi(A
′(k2, i, n), c) = νi(A(k2, 0, n), c) and in the ironing step

running on b′i,all of i’s neighbors with which it might have shared a channel with

be reassigned to ⊥ until its demand is satisfied. Since i′s neighbors were satisfied

when i was assigned to c′ and neighbors are ironed in the opposite order from

that in which they were added, i will not be ironed by any of its neighbors. Thus

Pri(F |A) = EA′ [Si|F ] = 1 and the allocation is monotone.

Proof of Theorem 3

As observed there are only 3 possible allocations and sets of prices. An agent

either gets nothing and pays nothing for a utility of 0, ends up in bucket k in

which he might share and gets viaifs−piai(1−f) and pays β(k)fs−piai(1−f)

for a utility of (viai − β(k))fs, or ends up in a higher bucket and gets viai (he

has a channel to himself) and pays β(k + 1) − (β(k + 1) − β(k))fs for a utility

of viai − β(k + 1) + (β(k + 1)− β(k))fs.

First suppose that viai < β(k). If he ends up sharing his utility is (viai −
β(k))fs < 0. If he ends up with a channel to himself his utility is

viai − β(k + 1) + (β(k + 1)− β(k))fs < (0.13)

(β(k + 1)− β(k))(fs− 1) < 0. (0.14)

Thus his optimal strategy is to bid his true value and get ⊥.

Now suppose that β(k) ≤ viai ≤ β(k + 1). If he bids truthfully, his utility is

(viai − β(k))fs ≥ 0, so he cannot gain by lowering his bid. If he raises his bid

above β(k + 1) he will end up with a utility of

viai − β(k + 1) + (β(k + 1)− β(k))fs = (0.15)

(viai − β(k + 1))(1− fs) + (viai − β(k))fs ≤ (0.16)

(viai − β(k))fs. (0.17)

Thus his optimal strategy is to bid his true value and share.

Finally, suppose that viai > β(k+ 1). If he bids truthfully, his utility is viai−
β(k+ 1) + (β(k+ 1)− β(k))fs > 0, so he does better than if he is not allocated.

If he lowers his bid to be in bucket k, his utility is

(viai − β(k))fs ≤ viai − β(k + 1) + (β(k + 1)− β(k))fs (0.18)

Thus his optimal strategy is to bid his true value.


