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Abstract. We present a model of truthful elicitation which generalizes
and extends mechanisms, scoring rules, and a number of related settings
that do not quite qualify as one or the other. Our main result is a char-
acterization theorem, yielding characterizations for all of these settings,
including a new characterization of scoring rules for non-convex sets of
distributions. We generalize this model to eliciting some property of the
agent’s private information, and provide the first general characteriza-
tion for this setting. We also show how this yields a new proof of a result
in mechanism design due to Saks and Yu.

1 Introduction

We examine a general model of information elicitation where a single agent is
endowed with some type t that is private information and is asked to reveal it.
After doing so, he receives a score A(t′, t) that depends on both his report t′ and
his true type t. We allow A to be quite general, with the main requirement being
that A(t′, ·) is an affine1 function of the true type t, and seek to understand when
it is optimal for the agent to truthfully report his type. Given this truthfulness
condition, it is immediately clear why convexity plays a central role—when an
agent’s type is t, the score for telling the truth is A(t, t) = supt′ A(t′, t), which is
a convex function of t as the pointwise supremum of affine functions.

One special case of our model is mechanism design with a single agent2,
where the designer wishes to select an outcome based on the agent’s type. In
this setting, A(t′, ·) can be thought of as the allocation and payment given a
report of t′, which combine to determine the utility of the agent as a function
of his type. In this context, A(t, t) is the consumer surplus function (or indirect
utility function), and Myerson’s well-known characterization [48] states that, in
single-parameter settings, a mechanism is truthful if and only if the consumer
surplus function is convex and its derivative (or subgradient at points of non-
differentiability) is the allocation rule. More generally, this remains true in higher

1 A mapping between two vector spaces is affine if it consists of a linear transformation
followed by a translation.

2 This is not a real restriction because notions of truthfulness are phrased in terms of
holding the behavior of other agents constant. See [4, 23] for additional discussion.
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dimensions (see [4]).3

Another special case is a scoring rule, also called a proper loss in the ma-
chine learning literature, where an agent is asked to predict the distribution of
a random variable and given a score based on the observed realization of that
variable. In this setting, types are distributions over outcomes, and A(t′, t) is the
agent’s subjective expected score for a report that the distribution is t′ when
he believes the distribution is t. As an expectation, this score is linear in the
agent’s type. Gneiting and Raftery [30] unified and generalized existing results
in the scoring rules literature by characterizing proper scoring rules in terms of
convex functions and their subgradients.

Further, the generality of our model allows it to include settings that do not
quite fit into the standard formulations of mechanisms or scoring rules. These
include counterfactual scoring rules for decision-making [20,21,52], proper losses
for machine learning with partial labels [24], mechanism design with partial
allocations [17], and responsive lotteries [26].

In many settings, it is difficult, or even impossible, to have agents report an
entire type t ∈ T . For example, when allocating a divisible good (e.g. water), a
mechanism that needs to know how much an agent would value each possible
allocation requires him to submit an infinite-dimensional type. Even type spaces
which are exponential in size, such as those that arise in combinatorial auctions,
can be problematic from an algorithmic perspective. Moreover, in many situa-
tions, the principal is uninterested in all but some small aspect of an agent’s
private type. For example, the information is often to be used to eventually
make a specific decision, and hence only the information directly pertaining to
the decision is actually needed—why ask for the agent’s entire probability distri-
bution of rainfall tomorrow if a principal wanting to choose between {umbrella,
no umbrella} would be content with its expected value, or even just whether she
should carry an umbrella or not?

It is therefore natural to consider an indirect elicitation model where agents
provide some sort of summary information about their type. Such a model has
been studied in the scoring rules literature, where one wishes to elicit some
statistic, or property, of a distribution, such as the mean or quantile [29,43,50,57].
We follow this line of research, and extend the affine score framework to accept
reports from a different (intuitively, much smaller) space than T .

1.1 Our Contribution

Our main theorem (Section 2) is a general characterization theorem that gen-
eralizes and extends known characterization theorems for proper scoring rules
(substantially) and truthful mechanisms (slightly, by removing a technical as-
sumption). For scoring rules, this provides the first characterization of proper

3 Note that here the restriction that A(t′, ·) be affine is without loss of generality,
because we view types as functions and function application is a linear operation.
(See Section 2.2 for more details.)
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scoring rules with non-convex sets of distributions, an idea that has proved use-
ful as a way of separating informed and uninformed experts [9,25], but for which
no characterization was known. We also survey applications to related settings
and show our theorem can be used to provide characterizations for them as
well, including new results about mechanism design with partial allocation and
responsive lotteries. Thus, our theorem eliminates the need to independently
derive characterizations for such settings.

This unified characterization of mechanisms and scoring rules also clarifies
their relationship: both are derived from convex functions in the exact same
manner, with mechanisms merely facing additional constraints on the choice of
convex function so that it yields a valid allocation rule. This aids in understand-
ing when results or techniques from one setting can be applied in the other.
Indeed, the proof of our characterization begins with Gneiting and Raftery’s
scoring rule construction [30] and adapts it with a variant of a technique from
Archer and Kleinberg [4] for handling mechanisms with non-convex type spaces
(see their Theorem 6.1). As an example of the new insights this can provide,
results from mechanism design show that a scoring rule is proper if and only if
it is locally proper (see Section ?? and Corollary 3). More broadly, we show how
results from mechanism design about implementability and revenue equivalence
generalize to our framework.

We then move on to two general results for eliciting a particular property of
the agent’s private information. The first is essentially a direct generalization of
Theorem 1, which keeps the same general structure but adds the constraint that
the convex function must be flat on sets of types which share an optimal report.
This is the first general result for arbitrary properties; in addition to serving
as our main tool to derive the remainder of our results, this theorem provides
several ways to show that a property is not elicitable (by showing that no such
convex function can exist). The second result is a transformation of this theorem
using duality, which shows that there is a strong sense in which properties are
subgradients of convex functions. We use this result to introduce notions of dual
properties and scores, which gives a new construction to convert between scoring
rules and randomized mechanisms (see Corollary 13).

We conclude by examining properties that take on a finite number of val-
ues, which Lambert and Shoham [44] showed correspond to power diagrams. We
extend their result to settings where the private information need not be a prob-
ability distribution, and give a tight characterization for a particular restricted
“simple” case. We also give an explicit construction for generating power dia-
grams from other measures of distances via a connection to Bregman Voronoi
diagrams [15]. Finally, we show how these results imply a new proof of an im-
plementability theorem from mechanism design due to Saks and Yu [56].

1.2 Relation to Prior Work

The similarities between mechanisms and scoring rules were noted by (among
others) Fiat et al. [27], who gave a construction to convert mechanisms into scor-
ing rules and vice versa, and Feige and Tennenholtz [26], who gave techniques to
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convert both to “responsive lotteries.” Further, techniques from convex analysis
have a long history in the analysis of both models (see [30,61]). However, we be-
lieve that our results use the “right” representation and techniques, which leads
to more elegant characterizations and arguments. For example, the construction
used by Fiat et al. has the somewhat awkward property that the scoring rule
corresponding to a mechanism has one more outcome than the mechanism did, a
complication absent from our results. Similarly, the constructions used by Feige
and Tennenholtz only handle special cases and they claim “there is no immediate
equivalence between lottery rules and scoring rules,” while we can give such an
equivalence. So while prior work has understood that there is a connection, the
nature of that connection has been far from clear.

A large literature in mechanism design has explored characterizations of when
allocation rules can be truthfully implemented; see e.g. [4,5,14,19,36–38,45,47,
56]. Similarly, work on revenue equivalence can be cast in our framework as
well [18, 34, 40, 48]. For scoring rules, our work connects to a literature that has
used non-convex sets of probability distributions to separate (usefully) informed
exports from uninformed experts [9, 25].

Indirect elicitation has a long history in the scoring rules literature, starting
with Savage [57]. While the bulk of the literature focuses on specific statistics,
such as means and quantiles [29, 30, 32, 50], Osband [51] and Lambert, Pen-
nock, and Shoham [43] first considered the problem of eliciting a more general
property Γ . Several authors have made significant contributions toward the gen-
eral problem for the case where Γ is real-valued [29, 31, 42, 43, 58] and vector-
valued [28, 43, 51], but our results are the first for arbitrary multivalued maps.
Mechanisms that elicit a ranking over outcomes rather than a utility for each
outcome (common in, e.g., matching contexts) are a form of property elicitation,
and our results are related to characterizations due to Carroll [19].

Notation. We define R = R∪{−∞,∞} to be the extended real numbers. Given a set

of measures M on X, a function f : X → R is M -quasi-integrable if
∫
X
f(x)dµ(x) ∈ R

for all µ ∈ M . Let ∆(X) be the set of all probability measures on X. We denote by

Aff(X → Y ) and Lin(X → Y ) the set of functions from X to Y which are affine and

linear, respectively. We write Conv(X) to denote the convex hull of a set of vectors X,

the set of all (finite) convex combinations of elements of X. Some useful facts from

convex analysis are collected in § ?? of the full version [?].

2 Affine Scores

We consider a very general model with an agent who has a given type t ∈ T and
reports some possibly distinct type t′ ∈ T , at which point the agent is rewarded
according to some score A(t′, t) which is affine in the true type t. This reward
we call an affine score. We wish to characterize all truthful affine scores, those
which incentivize the agent to report her true type t.
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Definition 1. Any function A : T ×T → R, where T ⊆ V for some vector space
V over R and A .

= {A(t, ·) | t ∈ T } ⊆ Aff(T → R), is a affine score with score
set A. We say A is truthful if for all t, t′ ∈ T ,

A(t′, t) ≤ A(t, t). (1)

If this inequality is strict for all t 6= t′, then A is strictly truthful.

Our characterization uses convex analysis, a central concept of which is the
subgradient of a function, which is a generalization of the gradient yielding a
linear approximation that is always below the function.

Definition 2. Given some function G : T → R, a function d ∈ Lin(V → R) is
a subgradient to G at t if for all t′ ∈ T ,

G(t′) ≥ G(t) + d(t′ − t). (2)

We denote by ∂G : T ⇒ Lin(V → R) the multivalued map such that ∂G(t) is the
set of subgradients to G at t. We say a parameterized family of linear functions
{dt ∈ Lin(V → R)}t∈T ′ for T ′ ⊆ T is a selection of subgradients if dt ∈ ∂G(t)
for all t ∈ T ′; we denote this succinctly by {dt}t∈T ′ ∈ ∂G.

For mechanism design, it is typical to assume that utilities are always real-
valued. However, the log scoring rule (one of the most popular scoring rules) has
the property that if an agent reports that an event has probability 0, and then
that event does occur, the agent receives a score of −∞. Essentially solely to
accommodate this, we allow affine scores and subgradients to take on values from
the extended reals. In the next paragraph we provide the relevant definitions,
but for most purposes it suffices to ignore these and simply assume that all affine
scores are real-valued.

It is standard (cf. [30]) to restrict consideration to the “regular” case, where
intuitively only things like the log score are permitted to be infinite. In particular,
an affine score A is regular if A(t, t) ∈ R for all t ∈ T , and A(t′, t) ∈ R∪{−∞} for
t′ 6= t. Similarly, a parameterized family of linear functions (e.g. subgradients)
{dt ∈ Lin(V → R)}t∈T is T -regular if dt(t) ∈ R for all t ∈ T , and dt′(t) ∈
R∪ {−∞} for t′ 6= t.4 Likewise, T -regular affine functions have T -regular linear
parts with finite constants (i.e. we exclude the constant functions ±∞). For the
remainder of the paper we assume all affine scores and parameterized families of
linear or affine functions are T -regular, where T will be clear from context.

We now state our characterization theorem. The proof takes Gneiting and
Raftery’s [30] proof for the case of scoring rules on convex domains and extends
it to the non-convex case using a variant of a technique Archer and Kleinberg [4]
introduced for mechanisms with non-convex type spaces. This technique is es-
sentially that used in prior work on extensions of convex functions [53,62].

4 To define linear functions to R, we adopt the convention 0 ·∞ = 0 · (−∞) = 0. Thus,
any ` ∈ Lin(V → R) can be written as `1 +∞ · `2 for some `1, `2 ∈ Lin(V → R).
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Theorem 1. Let an affine score A : T × T → R with score set A be given. A is
truthful if and only if there exists some convex G : Conv(T )→ R with G(T ) ⊆ R,
and some selection of subgradients {dt}t∈T ∈ ∂G, such that

A(t′, t) = G(t′) + dt′(t− t′). (3)

In the remainder of this section, we show how scoring rules, mechanisms, and
other related models fit comfortably within our framework.

2.1 Scoring rules for non-convex P

In this section, we show that the Gneiting and Raftery characterization is a
simple special case of Theorem 1, and moreover that we generalize their result
to the case where the set of distributions P may be non-convex. We also give
a result about local properness derived using tools from mechanism design in
the full version [?, § ??]. To begin, we formally introduce scoring rules and show
that they fit into our framework. The goal of a scoring rule is to incentivize an
expert who knows a probability distribution to reveal it to a principal who can
only observe a single sample from that distribution.

Definition 3. Given outcome space O and set of probability measures P ⊆
∆(O), a scoring rule is a function S : P × O → R. We say S is proper if
for all p, q ∈ P,

Eo∼p[S(q, o)] ≤ Eo∼p[S(p, o)]. (4)

If the inequality in (4) is strict for all q 6= p, then S is strictly proper.

To incorporate this into our framework, take the type space T = P. Thus,
we need only construct the correct score set A of affine functions available to the
scoring rule as payoff functions. Intuitively, these are the functions that describe
what payment the expert receives given each outcome, but we have a technical
requirement that the expert’s expected utility be well defined. Thus, following
Gneiting and Raftery, we take F to be the set of P-quasi-integrable5 functions
f : O → R, and the score set A = {p 7→

∫
O f(o) dp(o) | f ∈ F}.

We now apply Theorem 1 for our choice of T andA, which yields the following
generalization of Gneiting and Raftery [30].

Corollary 1. For an arbitrary set P ⊆ ∆(O) of probability measures, a regular6

scoring rule S : P×O → R is proper if and only if there exists a convex function
G : Conv(P)→ R with functions Gp ∈ F such that

S(p, o) = G(p) +Gp(o)−
∫
O
Gp(o) dp(o), (5)

where Gp : q 7→
∫
O Gp(o) dq(o) is a subgradient of G for all p ∈ P.

5 We say that f : O → R is P-quasi-integrable if
∫
O f(o)dp(o) ∈ R for all p ∈ P.

6 This is the same concept as with affine scores: scores cannot be∞ and only incorrect
reports can yield −∞.
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Importantly, Corollary 1 immediately generalizes [30] to the case where P is
not convex, which is new to the scoring rules literature. One direction of this
extension is obvious (if S is truthful on the convex hull of a set then it is truthful
on that set). The other is not, however, and is an important negative result,
ruling out the possibility of new scoring rules arising by restricting the set of
distributions (provided the restriction does not alter the convex hull).

In the absence of a characterization, several authors have worked in the non-
convex P case. For example, Babaioff et al. [9] examine when proper scoring
rules can have the additional property that uninformed experts do not wish to
make a report (have a negative expected utility), while informed experts do wish
to make one. They show that this is possible in some settings where the space
of reports is not convex. Our characterization shows that, despite not needing
to ensure properness on reports outside P, essentially the only possible scoring
rules are still those that are proper on all of ∆(O). We state the simplest version
of such a characterization, for perfectly informed experts, here.

Corollary 2. Let a non-convex set P ⊆ ∆(O) and p̄ ∈ ∆(O) − P be given. A
scoring rule S is proper and guarantees that experts with a belief in P receive a
score of at least δA while experts with a belief of p̄ receive a score of at most δR
if and only if S is of the form (5) with G(p) ≥ δA∀p ∈ P and G(p̄) ≤ δR.

With a similar goal to Babaioff et al., Fang et al. [25] find conditions on P for
which every continuous “value function” G : p 7→ S(p, p) on P can be attained
by some S with the motivation of eliciting the expert’s information when it is
known to come from some family of distributions (which in general will not be a
convex set). As such, they provide sufficient conditions on particular non-convex
sets, as opposed to our result which provides necessary and sufficient conditions
for all non-convex sets. Beyond these specific applications, our characterization
is useful for answering practical questions about scoring rules. For example,
suppose we assume that people have beliefs about probabilities in increments of
0.01. Does that change the set of possible scoring rules? No. What happens if
they have finer-grained beliefs but we restrict them to such reports? They will
end up picking a “nearby” report (see the discussion of convexity in Section 3.3).

In the full version [?, § ??], we show how local truthfulness conditions from
mechanism design, where one verifies that an affine score is truthful by checking
that it is truthful in a small neighborhood around every point, generalize to our
framework. In particular, Corollary ?? shows that local properness (i.e. proper-
ness for distributions in a neighborhood) is equivalent to global properness for
scoring rules on convex P, an observation that is also new to the scoring rules
literature. See [?, § ??] for the precise meaning of (weak) local properness.

Corollary 3. For a convex set P ⊆ ∆(O) of probability measures, a scoring
rule S : P ×O → R is proper if and only if it is (weakly) locally proper.

2.2 Mechanism design

We now show how to view a mechanism as an affine score. First, we formally
introduce mechanisms in the single agent case (see below for remarks about
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multiple agents). Then we show how known characterizations of truthful mech-
anisms follow easily from our main theorem. This allows us to relax a minor
technical assumption from the most general such theorem.

Definition 4. Given outcome space O and a type space T ⊆ (O → R), consist-
ing of functions mapping outcomes to reals, a (direct) mechanism is a pair (f, p)
where f : T → O is an allocation rule and p : T → R is a payment. The utility of
the agent with type t and report t′ to the mechanism is U(t′, t) = t(f(t′))− p(t′);
we say the mechanism (f, p) is truthful if U(t′, t) ≤ U(t, t) for all t, t′ ∈ T .

Here we suppose that the mechanism can choose an allocation from some set
O of outcomes, and there is a single agent whose type t ∈ T is itself the valuation
function. That is, the agent’s net utility upon allocation o and payment p is
t(o) − p. Thus, following Archer and Kleinberg [4], we view the type space T
as lying in the vector space V = RO. The advantage of this representation is
that while agent valuations in mechanism design can generally be complicated
functions, viewed this way they are all linear: for any v1, v2 ∈ V, we have (v1 +
αv2)(o) = v1(o) + αv2(o). Thus, we have an affine score A(t′, t)

.
= U(t′, t), with

score set A = {t 7→ t(o)+c | o ∈ O, c ∈ R}, so that every combination of outcome
and payment a mechanism could choose is an element of A.

As an illustration of our theorem, consider the following characterization,
due to Myerson [48], for a single parameter setting (i.e. when the agent’s type
can be described by a single real number). The result states that an allocation
rule is implementable, meaning there is some payment rule making it truthful,
if and only if it is monotone in the agent’s type.

Corollary 4 (Myerson [48]). Let T = R+, O ⊆ R, so that the agent’s valua-
tion is t · o. Then a mechanism f, p is truthful if and only if: (i) f is monotone

non-decreasing in t, and (ii) p(t) = tf(t)−
∫ t
0
f(t′)dt′ + p0.

More generally, applying our theorem gives the following characterization.
It is essentially equivalent to that of Archer and Kleinberg [4] (their Theorem
6.1), although our approach allows the relaxation of a technical assumption their
version requires when the set of types is non-convex.

Corollary 5. A mechanism f, p is truthful if and only if there exists a convex
function G : Conv(T ) → R and some selection of subgradients {dGt}t∈T , such
that for all t ∈ T , f(t) = dGt and G(t) = t(f(t))− p(t)

Of course, mechanism design asks many questions beyond whether a partic-
ular mechanism is truthful, and some of these can be reframed as questions in
convex analysis. The study of implementability focuses on the question of when
there exist payments that make a given allocation rule truthful, whereas rev-
enue equivalence asks when all mechanisms with a given allocation rule charge
the same prices (up to a constant). By focusing on the subgradient, we recover
and extend previous results for both, which we detail in the full version [?, § ??,
§ ??].
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2.3 Other Applications

There are a number of other application domains that are not quite mechanisms
or scoring rules, yet for which our main theorem yields characterization theorems.
In the full version [?], we survey four such domains where our theorem could
have directly provided the characterization ultimately used rather than requiring
effort to conceptualize and prove it. We summarize two of the four below; the
others are decision rules [20,21,52] and machine learning with partial labels [24]).

Mechanism design with partial allocation. Cai, Mahdian, Mehta, and Wag-
goner [17], consider a setting where the mechanism designer wants to elicit two
pieces of information: the agent’s (expected) value for an item in an auction
and the probability distribution of a random variable conditional on that agent
winning, with the goal of understanding how the organizer of a daily deal site
can take into account the value that will be created for users (as opposed to
just the advertiser) when a particular deal is chosen to be advertised (e.g. the
site operator may prefer deals that sell to many users over equally profitable
deals that sell only to a few because this keeps users interested for future days).
Our approach allows us to provide a characterization (given in [?, § ??]), of a
more general setting where a mechanism designer wishes to elicit two pieces of
information, but the second need not be restricted to probability distributions.
For example the mechanism designer could have two distinct sets of goods to
allocate and want to design a truthful mechanism that is consistent with a par-
tial allocation rule that determines how the primary goods should be allocated
given the agent’s preferences over both types of goods.

Responsive lotteries. Feige and Tennenholtz [26] study the problem of how an
agent can be incentivized to indirectly reveal his utility function over outcomes
by being given a choice of lotteries over those outcomes, an approach with appli-
cations to experimental psychology, market research, and multiagent mechanism
design. They give a geometric description of how such lotteries can be created
with a finite set of outcomes. Our approach allows us to give a complete char-
acterization, which highlights the relationship between natural desiderata and
underlying geometric properties of the set of possible lotteries: strict truthfulness
and continuity of the lottery rule jointly correspond to strict convexity of the
lottery set, and uniqueness of the utility given the optimal lottery corresponds
to smoothness of the boundary.

3 Property Elicitation

We wish to generalize the notion of truthful elicitation from eliciting private
information from some set T to accept reports from a space R which is different
from T . To even discuss truthfulness in this setting, we need a notion of a truthful
report r for a given type t. We encapsulate this notion by a general multivalued
map which specifies all (and only) the correct values for t.
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3.1 Affine Scores for Properties

Definition 5. Let T be a give type space, where T ⊆ V for some vector space
V over R, and R be some given report space. A property is a multivalued map
Γ : T ⇒ R which associates a nonempty set of correct report values to each
type. We let Γr

.
= {t ∈ T | r ∈ Γ (t)} denote the set of types t corresponding to

report value r.

One can think of Γr as the “level set” of Γ corresponding to value r. This concept
will be especially useful when we consider finite-valued properties in Section 5. A
natural bookkeeping constraint to impose on these level sets is non-redundancy,
meaning no property value r has a level set entirely contained in another.

We extend the notion of an affine score to this setting, where the report space
is R instead of T itself. Note that the score set A = {A(r, ·) | r ∈ R} is still a
subset of Aff(V → R).

Definition 6. An affine score A : R× T → R elicits a property Γ : T ⇒ R if
for all t,

Γ (t) = argsup
r∈R

A(r, t). (6)

If we merely have Γ (t) ⊆ argsupr∈R A(r, t), we say A weakly elicits Γ . Property
Γ : T ⇒ R is elicitable if some affine score A : R× T → R elicits Γ .

Note that it is certainly possible to write down A such the argsup in (7) is not
well defined. This corresponds to some types not having an optimal report, which
we view as violating a minimal requirement for a sensible affine score. Thus, in
order for A to be an affine score, we require (7) to be well defined for all t ∈ T .

We now state our property characterization theorem, proved in the full ver-
sion [?, § ??], which in essence says that eliciting a property Γ is equivalent to
eliciting subgradients of a convex function G. Intuitively, by truthfulness the
linear part of A(r, ·) must be a subgradient of G at all t ∈ Γr. We show that
this is equivalent to G being flat along Γr, meaning we can calculate G on Γr
by picking any tr ∈ Γr and following the subgradient. Since all choices of tr lead
to the same value, we could just as easily ask for this subgradient ϕ(r) to be
reported directly. As subgradients are functions (in this case from T to R), we
use the curried notation ϕ(r)(t) for the application of this function.

Theorem 2. Let non-redundant property Γ : T ⇒ R and Γ -regular7 affine
score A : R× T → R be given. Then A elicits Γ if and only if there exists some
convex G : Conv(T ) → R with G(T ) ⊆ R, some D ⊆ ∂G, and some bijection
ϕ : R → D with Γ (t) = ϕ−1(D ∩ ∂Gt), such that for all r ∈ R and t ∈ T ,

A(r, t) = G(tr) + ϕ(r)(t− tr), (7)

where {tr}r∈R ⊆ T satisfies r′ ∈ Γ (tr′) for all r′.

7 This is defined similarly to regularity; see [?, § ??].
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3.2 What Properties Are Not Elicitable?

In the remainder of this section, we examine three features that subgradient
mappings of convex functions possess and thus that the level sets of elicitable
properties must possess.

Convexity. A well-known property of subgradient mappings is that their level
sets are convex (for completeness, we provide a proof in the full version [?, § ??]).
In light of our characterizations, this fact about convex functions immediately
applies to elicitable properties:

Corollary 6. If Γ : T ⇒ R is elicitable, then Γr is convex for all r.

To see this, just note that ϕ(r) ∈ ∂Gt ∩ ∂Gt′ implies that ϕ(r) ∈ ∂Gt̂ for all
t̂ = αt + (1 − α)t′. Corollary 9 was previously known for special cases [43, 44],
where it was used to show variance, skewness, and kurtosis are not elicitable,
and was also known in mechanism design (i.e. the set of types for which a given
(allocation, payment) pair is optimal is convex).

Cardinality. Combining Theorem ?? with the fact that finite-dimensional con-
vex functions are differentiable almost everywhere (cf. [3, Thm 7.26]) yields the
following corollary, which shows that elicitable properties have unique values
almost everywhere.

Corollary 7. Let Γ : T ⇒ R be an elicitable property with T ⊆ V = Rn. If
T is of positive measure in Conv(T ), and Γ is non-redundant, then |Γ (t)| = 1
almost everywhere.

Using an appropriate notion of “almost everywhere”, in some cases this holds in
infinite-dimensional vector spaces as well (see e.g. [16, p. 195] and [3, p. 274]).

One can use this fact to show that Γ (p) = {(a, b) :
∫ b
a
p(x)dx = 0.9}, the set of

90% confidence intervals for a distribution p, is not an elicitable property. This
was previously only known for the case where p has finite support [43].

Topology. Combining Theorem ?? with a closure property of convex functions [55,
Thm 24.4] yields the following.

Corollary 8. Let Γ : T ⇒ R be an elicitable property with T ⊆ V = Rn convex
that can be elicited by a closed, convex G. Then Γr is closed for all r.

Requiring G to be closed is a technical issue regarding the boundary of of T ,
and is irrelevant for level sets in the relative interior. While [44] showed this for
finite report spaces R, this more general statement shows, for example, that if
T = R the property Γ (t) = floor(t) = max{z ∈ Z | z ≤ t} is not elicitable. More
generally, this often provides a tool for showing that we cannot get around issues
of cardinality by finding a tie-breaking rule to make the value unique.

Closure appears is a more delicate property to work with in infinite dimen-
sions, but intuitive violations of it can still be used to show that properties are
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not elicitable. As an illustration, we provide a direct proof that a property is not
elicitable. We already saw that confidence intervals are not elicitable due to their
cardinality, but a natural practical request would be for this “smallest” such in-
terval. Can we elicit this, or even just the length of this interval? The following
sketch shows we cannot. For probability distribution F represented by a CDF,
let Γ (F ) = inf{b−a | F (b)−F (a) = 1} be the property that is the length of the
smallest interval of probability 18. Consider the family of distributions defined
by their pdfs as fc(x) = 1 − c for 0 ≤ x ≤ 1 and fc(x) = c for 1 < x ≤ 2 with
corresponding CDFs Fc. Note that for 0 < c < 1, Γ (Fc) = {2} but Γ (F0) = {1}.
Suppose we could elicit this with a scoring rule S. Let X(F ) = S(2, F )−S(1, F ).
By elicitability X(Fc) > 0 for 0 < c < 1 but X(F0) < 0, which violates the
continuity of X.

4 Duality in property elicitation

In the full version [?, § ??], we inspect Theorem ?? further and apply convex
duality to reveal two notions of duality between affine scores: report duality,
which asks the agent to report his desired allocation instead of his type, and
type duality, which swaps the roles of the type and the allocation. Table 1 gives
a particular instantiation of our duality notions, with T = ∆(O) and T ∗ =
(O → R); that is, we construct our affine scores and their duals upon the classic
duality between integrable functions and probability measures. Note that G∗ is
the convex conjugate of G; see Definition 9.

Type

Primal Dual

R
ep

o
rt P

ri
m

a
l

A(p′, p)
Scoring rule

A∗(p′, q)
Menu auction

D
u
a
l

A(q′, p)
Prediction market

A∗(q′, q)
Randomized mechanism

sup A(·, p) = G(p) sup A∗(·, q) = G∗(q)

Table 1. The duality quadrangle for the duality between distributions and functionals.

As discussed in Section 4.2, the columns of Table 1 are well-understood al-
ready; the first gives prediction market duality, the well-known fact that market
scoring rules are dual to prediction markets, and the second gives the taxation
principle, which says that without loss of generality one could think of a mech-
anism as assigning prices to probability distributions over outcomes o.

The rows of this table, however, are new: in essence, scoring rules are dual
mechanisms. In the scoring rule or prediction market setting, an agent has a
private distribution (their belief) and the principal gives the agent a utility

8 Essentially the same construction can be applied for an α < 1 confidence interval.
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vector (the score or the bundle of securities), which assigns the agent a real-
valued payoff for each possible state of the world. Dually, in a mechanisms, the
agent possesses a private type encoding their utility for each state of the world,
and the principal assigns a distribution over these states. This observation allows
us to give a very simple and natural construction to convert between scoring rules
and mechanisms. Unlike previous constructions (e.g., [27]) we do not require any
normalization, or even that the set of outcomes be finite.

Corollary 9. Let S(p, o) = G(p) +Gp(o)−
∫
O Gp(o) dp(o) be a proper scoring

rule. Then f(t) = dG∗(t) and p(t) = G∗(t) − t(dG∗(t)) is a truthful random-
ized mechanism. Conversely, let (f, p) be a truthful randomized mechanism and
G(t) = t(f(t))−p(t). Then S(p, o) = G∗(p)+G∗p(o)−

∫
O G

∗
p(o) dp(o) is a proper

scoring rule.

The connections go much deeper than swapping types, however. To illustrate
this with a somewhat whimsical example, suppose a gambler in a casino examines
the rules of a dice-based game of chance and forms belief p about the probabilities
of possible outcomes, assuming the dice are fair. The gambler then participates
in a prediction market A to predict the outcome of the game, and purchases a
bundle q. Before the game is played however, the casino informs the gambler
that the dice used need not be fair, and offers the gambler the opportunity to
select from among different choices of dice using a truthful mechanism where
the gambler’s private information is q. If the mechanism used is A∗, then the
outcome of the mechanism will be using fair dice. The power of duality is that
this holds regardless of our choice of A.

5 Finite-valued properties

We now examine the special case where R is a finite set of reports, using the
additional structure to provide stronger characterizations. In the scoring rules
literature, Lambert and Shoham [44] view this as eliciting answers to multiple-
choice questions. There are also applications to mechanism design, discussed in
Section 5.1. Assume throughout that R is finite and that T is a convex subset
of a vector space V endowed with an inner product, so that we may write 〈t, t′〉
and in particular ‖t‖2 = 〈t, t〉. In this setting, we will use the concept of a power
diagram from computational geometry.

Definition 7. Given a set of points P = {pi}mi=1 ⊂ V, called sites, and weights
w ∈ Rm, a power diagram D(P,w) is a collection of cells cell(pi) ⊆ T defined
by

cellP,w(pi) =
{
t ∈ T

∣∣ i ∈ argminj
{
‖pj − t‖2 − wj

}}
. (8)

The following result is a straightforward generalization of Theorem 4.1 of
Lambert and Shoham [44], and is essentially a restatement of results due to
Aurenhammer [6,8]. See the full version [?, § ??] for a discussion about Bregman
Voronoi digrams and the role of ‖ · ‖2 in Theorem 8.
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Theorem 3. A property Γ : T ⇒ R for finite R is elicitable if and only if the
level sets {Γr}r∈R form a power diagram D(P,w).

We have now seen what kinds of finite-valued properties are elicitable, but
how can we elicit them? More precisely, as the proof above gives sufficient con-
ditions, what are all ways of eliciting a given power-diagram? In general, it is
difficult to provide a “closed form” answer, so we restrict to the simple case,
where essentially the cells of a power diagram are as constrained as possible.

Definition 8 ( [7]). A j-polyhedron is the intersection of dimension j of a
finite number of closed halfspaces of V, where 0 ≤ j ≤ dim(V) < ∞. A cell
complex C in V is a covering of V by finitely many j-polyhedra, called j-faces
of C, whose (relative) interiors are disjoint and whose non-empty intersections
are faces of C. C is called simple if each of its j-faces is in the closure of exactly
(d− j + 1) d-faces (cells).

Theorem 4. Let finite-valued, elicitable, simple property Γ : T ⇒ R be given.
Then there exist points {pr}R ⊆ V such that an affine score A : R × T → R
elicits Γ if and only if there exist α > 0, and p0 ∈ V such that

A(r, t) = 2 〈αpr + p0, t〉 − ‖αpr + p0‖2 + wr, (9)

where the choice w ∈ RR is determined by α and p0.

5.1 Finite Properties in Mechanism Design

Mechanisms with a finite set of allocations are common. Carroll [19] examines
them and observes they give rise to polyhedral typespaces. Theorem 8 strength-
ens this characterization to power diagrams, which rules out polyhedral examples
such as the one shown in Figure ??. Suppose we have are in a such a mechanism
design setting with a finite set of allocations X and we have picked an allocation
rule a. Under what circumstances is a implementable (i.e. having a payment rule
that makes the resulting mechanism truthful)? If the set of types is convex, Saks
and Yu [56] showed that the following condition is necessary and sufficient.

Definition 9. Allocation rule a satisfies weak monotonicity (WMON) if a(t) ·
(t′ − t) ≤ a(t′) · (t′ − t) for all t, t′ ∈ T .

From Theorem 1, we know that a being implementable means that there exists
a G such that a is a selection of its subgradients. But this is equivalent to saying
that the property Γ (t) = X ∩ dGt is directly elicitable! Leveraging results from
computational geometry, this gives us a new proof of this theorem by showing
that WMON characterizes power diagrams.

Theorem 5. A cell complex C is a power diagram with sites {p1, . . . , pn} iff for
all t ∈ Zi and t′ ∈ Zj we have pi · (t′ − t) ≤ pj · (t′ − t) (i.e. C satisfies WMON)

Corollary 10 (Saks and Yu). If X is finite, T is convex, and a satisfies
WMON, then a is implementable.
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A Convex Analysis Primer

In this appendix, we review some facts from convex analysis that are used in the
paper.

Fact 1 Let {ft ∈ Aff(V → R)}t∈T be a parameterized family of affine func-
tions. Then G(t) = supt′∈T ft′(t) is convex as the pointwise supremum of convex
functions.

This follows because convex functions are those with convex epigraphs. The
epigraph of this supremum is the intersection of the epigraphs of the individual
functions, which is a convex set as the intersection of convex sets.

Fact 2 d : R → R is a selection of subgradients of a convex function on R if
and only if it is monotone non-decreasing.

See [55, Theorem 24.3] for a proof of a slightly more general statement.

Fact 3 For convex G on convex T , {dGt ∈ Lin(V → R)}t∈T ∈ ∂G satisfies path
independence.

Since the restriction of G to a line is a one-dimensional convex function,
G(y) − G(x) =

∫
Lxy

dGt(y − x)dt [55, Corollary 24.2.1]. Summing along the
individual lines in a path from x to y gives that the value of the path integral is
G(y)−G(x) regardless of the path chosen.

Fact 4 For any convex function G, the set ∂G−1(d)
.
= {x ∈ dom(G) : d ∈ ∂Gx}

is convex.

Proof. Let x, x′ ∈ ∂G−1(d); then one easily shows (cf. Lemma 1) that G(x) −
G(x′) = d(x− x′). Now let x̂ = αx+ (1− α)x′; we have,

G(x̂) ≤ αG(x) + (1− α)G(x′) (10)

= α(G(x)−G(x′)) +G(x′)

= αd(x− x′) +G(x′)

= d(x̂− x′) +G(x′) (11)

≤ G(x̂), (12)

where we applied convexity of G in (??) and the subgradient inequality for d at
x′ in (??). Hence, by eq. (??) we have shown G(x̂) − G(x′) = d(x̂ − x′), so by
Lemma 1, d ∈ ∂Gx̂.
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Rochet [54]
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Myerson
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Müller et al.
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Archer, Kleinberg
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Implementable

Subgradient

Thm 1

WMON + PI

Thm ?? *
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Weak Local
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(a) (b)

Fig. 1. Proof structure of existing mechanism design literature (a), and the new proof
structure presented in this paper (b). Asterisks denote the requirement that T be
convex. We write CMON for cyclic monotonicity, WMON for weak monotonicity, and
PI for path independence.
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Fig. 2. An allocation rule which cannot be implemented, for any distinct choices of ai
(left), and a rule which could be implemented for appropriate choices of ai (right).

B Omitted Proofs and Figures

Proof (of Theorem 1). It is trivial from the subgradient inequality (2) that the
proposed form is in fact truthful, as

A(t′, t) = G(t′) + dt′(t− t′) ≤ G(t) = G(t) + dt(t− t) = A(t, t).

For the converse, we are given some truthful A : T × T → R. Note first that for
any t̂ ∈ Conv(T ) we may write t̂ as a finite convex combination t̂ =

∑m
i=1 αiti

where ti ∈ T . Now, as all the elements of the score set A are affine, we may
naturally extend A(t, ·) to all of Conv(T ) by defining

A(t, t̂) =

m∑
i=1

αiA(t, ti). (13)

One easily checks that this definition coincides with the given A on T .
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Now we let G(t̂) := supt∈T A(t, t̂), which is convex as the pointwise supremum
of convex (in our case affine) functions. Since A is truthful, we in particular have
G(t) = A(t, t) ∈ R for all t ∈ T by our regularity assumption. Let A`(t, ·) denote
the linear part of A(t, ·). Then, also by truthfulness, we have for all t′ ∈ T and
t̂ ∈ Conv(T ),

G(t̂) = sup
t∈T

m∑
i=1

αiA(t, ti) ≥
m∑
i=1

αiA(t′, ti) = A(t′, t′) +

m∑
i=1

αiA`(t
′, ti − t′)

= G(t′) + A`(t
′, t̂− t′).

Hence, A`(t
′, ·) satisfies (2) for G at t′, so A is of the form (3).

Proof (of Corollary 1). The given form is truthful by the subgradient inequal-
ity (2). Let A : T × T → R be a given truthful affine score. Since A(p, ·) ∈ A,
we have some fp ∈ F generating A(p, ·). We can therefore use Gp : q 7→∫
O fp(o) dq(o) as the subgradients in the proof of Theorem 1, thus giving us

the desired form.

Proof (of Corollary 4). By elementary results in convex analysis f is a subgra-
dient of a convex function on R if and only if it is monotone non-decreasing. By
Theorem 1, the mechanism is truthful if and only if f is the subgradient of the
particular function G(t) = U(t, t) = t(f(t))− p(t), which is equivalent to (i) and

the condition G(t) =
∫ t
0
f(t′)dt′ + C.

Proof (of Corollary 13). Apply Theorem 7 with Γ : p 7→ Gp and Γ ∗ : t 7→ f(t)
to get truthfulness of the corresponding affine scores and Corollaries 1 and 5 to
get the specified forms.

Proof (of Theorem 8). Let us examine the condition that t is an element of
cellP,w(pi) for some power diagram D(P,w):

t ∈ cellP,w(pi) ⇐⇒ i ∈ argmin
j

{
‖pj − t‖2 − wj

}
⇐⇒ i ∈ argmin

j

{
‖pj‖2 − 2 〈pj , t〉 − wj

}
. (14)

Note that eq. (??) is affine in t. Now given some D = D(P,w) with index set
R, we simply let A(r, t) = 2 〈pr, t〉 + wr − ‖pr‖2. By (??) we immediately have
r ∈ argsupr′ A(r′, t) ⇐⇒ t ∈ cellP,w(pr), as desired.

Conversely, let an affine score A eliciting Γ be given. Note that since we are
in an inner product space, we may write A(r, t) = 〈xr, t〉 + cr for xr ∈ V and
cr ∈ R. Letting pr = xr/2 and wr = ‖pr‖2 + cr, we see by (??) again that
Γr = cell(pr) of the diagram D({pr}, w). Hence, Γ is a power diagram.

Proof (of Theorem 9). A result of Aurenhammer for simple cell complexes, given
in Lemma 1 of [6] and the proof of Lemma 4 of [8], states the following: given sites
P and P ′ and weights w, there exist weights w′ such that D(P ′, w′) = D(P,w)
if and only if P ′ is a homothet (translated and positively scaled copy) of P . We
simply apply this fact to the proof of Theorem 8.
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Proof (of Theorem 11). We will make use of the following characterization of
power diagrams from the computational geometry literature.

Theorem 6 ( [7]). A cell complex C is a power diagram if and only if there
exists a point-set {p1, . . . , pn} satisfying.

1. Orthogonality. For Zi 6= Zj, the line L that contains pi and pj (and is
directed from pi to pj) is orthogonal to each face common to Zi and Zj.

2. Orientation: Any directed line that can be obtained by translating L and that
intersects Zi and Zj first meets Zi.

If C is a power diagram, then by definition

2pi · t− wi ≥ 2pj · t− wj
2pj · t′ − wj ≥ 2pi · t′ − wi.

Adding these shows C satisfies WMON.

Now suppose C satisfies WMON. We show orthogonality and orientation. For
orthogonality, let t, t′ ∈ Zi∩Zj . Then pi·(t′−t) = pj ·(t′−t), or (pi−pj)·(t′−t) = 0.
Thus, the face is orthogonal to L.

For orientation, let t ∈ Zi and t′ ∈ Zj be on such a translated L. That is, we
can write t′ = t+ c(pj−pi) for some c ∈ R. By WMON, (pj−pi) · (t′− t) ≥ 0, or
c(pj − pi) · (pj − pi) ≥ 0. Thus c ≥ 0. Therefore such a translated L first meets
Zi.

Proof (of Corollary 14). In order to apply Theorems 8 and 11, it remains to
show that an allocation rule a satisfying WMON further implies that it defines
a cell complex. This follows by a straightforward geometric argument that has
been used in a number of previous proofs (see, e.g., Lemma 4.2 of [4]).

C Characterizing Truthful Mechanisms

While our theorem provides a characterization of truthful mechanisms in terms
of convex consumer surplus functions, this is not always the most natural repre-
sentation for a mechanism. In this section, we examine two other approaches to
characterizing truthful mechanisms that have been explored in the literature and
show that they have insightful interpretations in convex analysis, which allows us
to greatly simplify their proofs. Furthermore, our phrasing of these results is as
conditions for a parameterized family of linear functions to be a selection of sub-
gradients of a convex function. We believe this phrasing converts known results
in mechanism design into new results in convex analysis. It also shows how any
such result in convex analysis would give a characterization of implementable
mechanisms. Note that certain results in this section require an assumption that
the relevant parameterized families are in fact real-valued, which is natural given
our focus on mechanism design.
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C.1 Subgradient characterizations

From an algorithmic perspective, it may be more natural to focus on the design of
the allocation rule f . There is a large literature that focuses on when there exists
a choice of payments p to make f into a truthful mechanism (e.g. [5,56]). Viewed
through our theorem, this becomes a very natural convex analysis question: when
is a function f a subgradient of a convex function9? Unsurprisingly, the central
result in the literature is closely connected to convex analysis.

Definition 10. A family {dt ∈ Lin(V → R)}t∈T satisfies cyclic monotonicity
(CMON) if for all finite sets {t0, . . . , tk} ⊆ T ,

k∑
i=0

dti(ti+1 − ti) ≤ 0, (15)

where indices are taken modulo k + 1. The weaker condition that (??) hold for
all pairs {t0, t1} is known as weak monotonicity (WMON).

A well known characterization from convex analysis is that a function f
defined on a convex set is a subgradient of a convex function on that set iff it
satisfies CMON [55]. Rochet’s [54] proof that such payments exist on a possibly
non-convex T iff f satisfies CMON is effectively a proof of the a generalization
of this theorem. Rochet notes that his proof is adapted from the one given in
Rockafellar’s text [55] of the weaker theorem where T is restricted to be convex.
We adapt Rochet’s proof to highlight how its core is a construction of G. As we
use this basic construction several times, we first analyze it independly.

Given any family {dt}t∈T of linear functions in Lin(V → R), define Pd :
T × V → R as follows:10

Pd(t, t
′)
.
= sup

k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t

′

k∑
i=0

dti(ti+1 − ti). (16)

One way to interpret Pd(t, t
′) is as the length of the shortest path from t to

t′ in a graph with edge weights determined by −d, and in that form has seen
extensive use in mechanism design [61]. We interpret it somewhat differently, as
the best lower bound on G(t′) − G(t) for an arbitrary convex function G with
subgradients d (and infinity if there is no such convex function). In particular,
computing the best lower bound at every point yields a convex function.

Lemma 1. Let {dt ∈ Lin(V → R)}t∈T be given. If d satisfies CMON, then for
all t, t′ ∈ T and all t′′ ∈ V, the following hold:

9 More precisely, we want for all t the allocation f(t) to be a subgradient at t. Equiv-
alently, we can view f as a parameterized family of functions, which is how we state
our results

10 Note that the second argument of Pd is from V rather than T ⊂ V because we wish
to apply this when, e.g., t ∈ Conv(T ).
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1. Pd(t, t
′) + Pd(t

′, t′′) ≤ Pd(t, t′′)
2. dt(t

′′ − t) ≤ Pd(t, t′′)
3. Pd(t, t) = 0

4. Pd(t, t
′) + Pd(t

′, t) ≤ 0

5. Pd(t, ·) is convex and real-valued on Conv(T ), with d ∈ ∂Pd(t, ·) on T

Otherwise, Pd ≡ ∞ on all inputs.

Proof. If CMON is not satisfied, then there is a cycle C = t0, . . . , tk, t0 with
positive sum. Then for any t and t′ the path tCjt′ that consists of starting at
t, going to t0, going around the cycle j times, then going to t′ has a sum that
goes to infinity as j goes to infinity. For the remainder, assume that CMON is
satisfied.

1. Pd(t, t
′) + Pd(t

′, t′′) ≤ Pd(t, t′′)

Pd(t, t
′) + Pd(t

′, t′′)

= sup
k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t

′

k∑
i=0

dti(ti+1 − ti) + sup
k∈N, {t1,...,tk}⊆T
t0=t

′, tk+1=t
′′

k∑
i=0

dti(ti+1 − ti)

= sup
j,k∈N, {t1,...,tk}⊆T
t0=t, tj=t

′, tk+1=t
′′

k∑
i=0

dti(ti+1 − ti)

≤ sup
k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t

′′

k∑
i=0

dti(ti+1 − ti)

= Pd(t, t
′′)

2. dt(t
′′ − t) ≤ Pd(t, t′′)

Taking k = 0 shows that dt(t
′′ − t) is an element of set over which the

supremum is taken.

3. Pd(t, t) = 0

By CMON, Pd(t, t) ≤ 0. By claim (2), dt(t− t) = 0 ≤ Pd(t, t′′).
4. Pd(t, t

′) + Pd(t
′, t) ≤ 0

By claims (1) and (3), Pd(t, t
′) + Pd(t

′, t) ≤ P (t, t) = 0.

5. Pd(t, ·) is convex and real-valued on Conv(T ), with d ∈ ∂Pd(t, ·) on T
By CMON, for t′ ∈ T Pd(t, t

′) ≤ −dt(t0 − t′). Thus, Pd(t, t
′) is finite on

T . Pd(t, ·) is a pointwise supremum of convex functions, so is convex. By
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convexity, it is also finite on Conv(T ). For any t′ ∈ T and t′′ ∈ Conv(T ),

Pd(t, t
′) + dt′(t

′′ − t′) = dt′(t
′′ − t′) + sup

k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t

′

k∑
i=0

dti(ti+1 − ti)

= sup
k∈N, {t1,...,tk}⊆T
t0=t, tk=t

′ tk+1=t
′′

k∑
i=0

dti(ti+1 − ti)

≤ sup
k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t

′′

k∑
i=0

dti(ti+1 − ti)

= P (t, t′′),

so dt satisfies (2).

Having extracted the construction at the core of Rochet’s proof, the rephras-
ing of his result as a statement about convex functions now follows easily.

Theorem 7 (Adapted from Rochet [54]). A family {dt ∈ Lin(V → R)}t∈T
satisfies CMON if and only if there exists a convex G : Conv(T )→ R such that
{dt}t∈T ∈ ∂G.

Proof. Given such a G, by (2) we have dti(ti+1−ti) ≤ G(ti+1)−G(ti). Summing
gives (??). Given such a family {dt}t∈T , fix some t0 ∈ T and let t0 ∈ T and set
G : t 7→ Pd(t0, t). The result follows from Lemma ??(5).

A number of papers have sought simpler and more natural conditions than
CMON that are necessary and sufficient in special cases, e.g. [4, 5, 56]. These
results are typically proven by showing they are equivalent to CMON. However,
it is much more natural to directly construct the relevant G. As an example, we
show one such result has a simple proof using our framework. This particular
proof also has the advantage of providing a characterization of the payments
that is more intuitive than the supremum in Rochet’s construction.

As in Myerson’s [48] construction for the single-parameter case, we construct
a G by integrating over dt. In particular, for any two types x and y our con-
struction makes use of the line integral∫

Lxy

dt(y − x)dt =

∫ 1

0

d(1−t)x+ty(y − x)dt.

As Berger et al. [12] and Ashlagi et al. [5] observed, if {dt}t∈T satisfies WMON
and T is convex, this (Riemann) integral is well defined because it is the inte-
gral of a monotone function. If these line integrals vanish around all triangles
(equivalently

∫
Lxy

dt(y−x)dt+
∫
Lyz

dt(z− y)dt =
∫
Lxz

dt(z−x)dt)) we say {dt}
satisfies path independence.
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Theorem 8 (adapted from [47]). For convex T , a family {dt ∈ Lin(V →
R)}t∈T is a selection of subgradients of a convex function if and only if {dt}t∈T
satisfies WMON and path independence.

Proof. Given a convex function G and selection of subgradients {dt}, {dt} sat-
isfies CMON and thus WMON. Path independence also follows from convexity
(Rockafellar [55] p. 232). Now given a {dt} that satisfies WMON and path inde-
pendence, fix a type t0 ∈ T and define G(t′) =

∫
Lt0t′

dt(t
′ − t0)dt (well defined

by WMON as the integral of a monotone function). Given x, y, z ∈ T such that
z = λx+ (1− λ)y, by path independence and the linearity of dz we have

λG(x) + (1− λ)G(y)

= G(z) + λ

∫
Lzx

dt(x− z)dt+ (1− λ)

∫
Lzy

dt(y − z)dt

≥ G(z) + λdz(x− z) + (1− λ)dz(y − z) = G(z),

so G is convex. Similarly, for x, y ∈ T , dt satisfies (2) because

dx(y − x) ≤
∫
Lxy

dt(y − x)dt = G(y)−G(x).ut

C.2 Local Characterizations

In many settings, it is easier to reason about the behavior of a mechanism given
small changes to its input rather than arbitrary changes, so several authors have
sought to characterize truthful mechanisms using local conditions [4,12,19]. We
show in this section how many of these results are in essence a consequence of a
more fundamental statement, that convexity is an inherently local property. For
example, in the twice differentiable case it can be verified by determining whether
the Hessian is positive semidefinite at each point. We start with a local convexity
result, and use it to show that an affine score is truthful if and only if it satisfies
a very weak local truthfulness property introduced by Carroll [19]. Afterwards
we turn to a characterization by Archer and Kleinberg [4] that proved a simi-
lar theorem for a different notion of local truthfulness. Our results (specifically
Theorem ??) show that these two notions of local truthfulness are equivalent
because Archer and Kleinberg’s definition corresponds to the property of being
a local subgradient, while Carroll’s corresponds to the property of being a weak,
local subgradient, which we now define.

Definition 11. Let T be convex. A family {dt ∈ Lin(V → R)}t∈T is a weak
local subgradient (WLSG) of a convex function G : T → R if for all t ∈ T there
exists an open neighborhood Ut of t such that for all t′ ∈ Ut,

G(t) ≥ G(t′) + dt′(t− t′) and G(t′) ≥ G(t) + dt(t
′ − t). (17)

Furthermore, if for every s ∈ T , eq. (??) holds for all t, t′ ∈ Us, we say {dt}t∈T
is a local subgradient (LSG) of G.
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We now show that being a WLSG is a necessary and sufficient condition
for a family of functions to be a selection of subgradients. The proof is heavily
inspired by Carroll [19].

Theorem 9. Let T be convex. A family {dt ∈ Lin(V → R}t∈T is a selection of
subgradients of a convex function G : T → R if and only if it is a WLSG of G.

Proof ((adapted from [19])). As usual, the forward direction is trivial. For the
other, let t, t′ ∈ T be given; we show that the subgradient inequality for dt′ holds
at t. By compactness of Conv({t, t′}), we have a finite set ti = αit

′ + (1 − αi)t,
where 0 = α0 ≤ · · · ≤ αk+1 = 1, such that WLSG holds between each ti and
ti+1. (The cover {Us | s ∈ Conv({t, t′}) has a finite subcover. Take t2i from the
subcover and t2i+1 ∈ Ut2i ∩ Ut2i+2

.) By the WLSG condition (??), we have for
each i,

0 ≥ G(ti+1)−G(ti) + dti+1(ti − ti+1) (18)

0 ≥ G(ti)−G(ti+1) + dti(ti+1 − ti). (19)

Now using the identity ti+1− ti = (αi+1−αi)(t′− t) and adding αi/(αi+1−αi)
times (??) to αi+1/(αi+1 − αi) times (??), we have

0 ≥ G(ti)−G(ti+1) + αidti(t
′ − t)− αi+1dti+1

(t′ − t). (20)

Summing (??) over 0 ≤ i ≤ k gives

0 ≥ G(t0)−G(tk+1) + α0dt0(t′ − t)− αk+1dtk+1
(t′ − t),

which when recalling our definitions for αi and ti yields the result.

The WLSG condition translates to an analogous notion in terms of truthful-
ness, weak local truthfulness.

Definition 12. An affine score is weakly locally truthful if for all t ∈ T there
exists some open neighborhood Ut of t, such that truthfulness holds between t and
every t′ ∈ Ut, and vice versa. That is,

∀t ∈ T , ∀t′ ∈ Ut, A(t′, t) ≤ A(t, t) and A(t, t′) ≤ A(t′, t′). (21)

Corollary 11 (Generalization of Carroll [19]). An affine score A : T ×T →
R for convex T is truthful if and only if it is weakly locally truthful.

Proof. Defining G(t) := A(t, t), by weak local truthfulness we may write

G(t) = A(t, t) ≥ A(t′, t) = G(t′) + A`(t
′, t− t′)

G(t′) = A(t′, t′) ≥ A(t, t′) = G(t) + A`(t, t
′ − t),

where t′ is local to t and A`(t, ·) is the linear part of A(t, ·). This says that dt =
A`(t, ·) satisfies WLSG for convex function G; the rest follows from Theorem ??
and Theorem 1.
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Finally, in the spirit of Section ??, Archer and Kleinberg [4] characterized
local conditions under which an allocation rule can be made truthful. A key
condition from their paper is vortex-freeness, which is a condition they show
to be equivalent to local path independence (analagous to our terminology of
weak local subgradients it can be thought of as weak local path independence).
The other condition, local WMON, means that WMON holds in some neigh-
borhood around each type. Their result then follows from the observation that
local WMON and local path independence imply local subgradient. While this
particular proof is not significantly simpler than the original, we believe it is
somewhat more natural and clarifies the connection between the underlying rea-
sons a notion of local truthfulness suffices both here and in Carroll’s setting.

Corollary 12. Let T be convex. A family {dt ∈ Lin(V → R)}t∈T is a selection
of subgradients of a convex function if and only if it satisfies local WMON and
is vortex-free.

Proof. We prove the reverse direction; suppose {dt}t∈T satisfies local WMON
and is vortex-free. From Lemma 3.5 of [4] we have that vortex-freeness is equiva-
lent to path independence, so by Theorem ?? for all t there exists some open Ut
such that {dt′}t′∈Ut

is the subgradient of some convex function G(t) : Ut → R.
We need only show the existence of some G such that {dt}t∈T is the subgradient
of G on each Ut; the rest follows from Theorem ??.

Fix some t0 ∈ T and define G(t) =
∫
Lt0 t

dt′dt
′, which is well defined by

compactness of Conv({t0, t}) and the fact that a locally increasing real-valued
function is increasing. But for each t′ and t ∈ Ut′ we can also write G(t′)(t) =∫
Lt′ t

dt′′dt
′′ by [55, p. 232], and now by path independence we see that G and

G(t′) differ by a constant. Hence {dt}t∈T must be a subgradient of G on Ut′ as
well, for all t′ ∈ T .

D Revenue Equivalence

Perhaps the most celebrated result in auction theory is the revenue equivalence
theorem, which states that, in a single item auction, the revenue from an agent
(equivalently that agent’s consumer surplus) is determined up to a constant by
the equilibrium probability that each possible type of that agent will receive
the item [48]. A large body of work has looked for more general conditions
under which this property holds (see, e.g., [40]) or what can be said when it
does not [18]. One general approach is due to Heydenreich et al. [34], who use
a graphical representation related to CMON. Given our main theorem, this is
unsurprising. In convex analysis terms, asking whether an implementable allo-
cation rule satisfies revenue equivalence is asking whether all convex functions
that have a selection of their subgradients that corresponds to that allocation
rule are the same up to a constant. As we saw in the proof of Lemma ??, CMON
permits the natural construction of a convex function from its subgradient via
(??). Intuitively, if we know the payments we want for some subset of types, we
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can check if those are consistent with a desired payment for some other type by
checking whether this construction still works, both in terms of the constraints
of the existing types on the new one and the new one on the existing ones. The
following theorem applies this insight to get a result that is stronger than revenue
equivalence as it characterizes the possible payments for every mechanism.

Theorem 10. Let G be a convex function on Conv(T ), d = {dt}t∈T a selection
of its subgradients on T , S ⊆ T non-empty, t∗ ∈ T \ S, and c be given. Then
there exists a convex G′ on Conv(T ) agreeing with G on S, with {dt}t∈T ∈ ∂G′
and G′(t∗) = c, if and only if

sup
t0∈S

G(t0) + Pd(t0, t
∗) ≤ c ≤ inf

t0∈S
G(t0)− Pd(t∗, t0) (22)

Proof. Given such a G′, the LHS of (??) becomes supt0∈S G
′(t0) + Pd(t0, t

∗) ≤
G′(t∗). Applying the definition of Pd (??) and then repeatedly applying the sub-
gradient inequality (2) yields the desired inequality. Similarly, the RHS of (??)
can be rewritten as G′(t∗) +Pd(t

∗, t0) ≤ G′(t0) for all t0 ∈ S, and the definition
and subgradient inequality applied.

Now suppose (??) holds. LetG′(t)
.
= max

{
c+ Pd(t

∗, t), supt0∈S G(t0) + Pd(t0, t)
}

.
By Theorem ??, d satisfies CMON, so by Lemma ?? G′ is convex, finite-valued
on Conv(T ), and has {dt} ∈ ∂G′. Hence, we need only show that G′ agrees with
G on S and has G′(t∗) = c.

First, fixing any t ∈ S, we will establish the following:

G(t) = sup
t0∈S

G(t0) + Pd(t0, t). (23)

As Pd(t, t) = 0 from Lemma ??(3), we haveG(t) = G(t)+Pd(t, t) ≤ supt0∈S G(t0)+
Pd(t0, t). Furthermore, G(t0)+Pd(t0, t) ≤ G(t) for all t0 ∈ T by repeated applica-
tion of the subgradient inequality (2). Hence, we have supt0∈S G(t0)+Pd(t0, t) ≤
G(t) as well.

By eq. (??), we can write G′(t) = max{c + Pd(t
∗, t), G(t)} when t ∈ S. But

by the RHS of eq. (??), we see c + Pd(t
∗, t) ≤ G(t), so G′(t) = G(t). Similarly,

applying the LHS of eq. (??) and Pd(t
∗, t∗) = 0 to the definition of G′(t∗), we

have G′(t∗) = c.

Viewed through Theorem ??, revenue equivalence holds when the upper and
lower bounds from (??) match after the value of G is fixed as a single point. This
allows us to derive a necessary and sufficient condition for revenue equivalence
that is equivalent to that given by Heydenreich et al. [34] and actually applies
to all affine scores. For example, this gives a revenue equivalence theorem for
mechanisms with partial allocation.

Corollary 13 (Revenue Equivalence). Let a truthful affine score A : T ×
T → R be given, and d = {dt}t∈T be the corresponding selection of subgra-
dients from (3). Then every truthful affine score A′ : T × T → R with the
same corresponding selection of subgradients differs from A by a constant (i.e.
A(t′, t) = A′(t′, t) + c) if and only if Pd(t

′, t) + Pd(t, t
′) = 0 for all t, t′ ∈ T .
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Proof. We will show that the convex function G from eq. (3) is unique up to a
constant if and only if Pd(t

′, t) + Pd(t, t
′) = 0 for all t, t′ ∈ T .

For the forward direction, let t0 ∈ T be arbitrary. Then for all t ∈ T , tak-
ing (??) with S = {t0} and G(t)

.
= c + Pd(t0, t) gives the condition G(t0) +

Pd(t0, t) ≤ G′(t) ≤ G(t0) − Pd(t, t0) for the value of G′(t). But as Pd(t, t0) =
−Pd(t0, t) we have G′(t) = Pd(t0, t) +G(t0) = G(t) for all t.

For the reverse direction, assume Pd(t
1, t2) 6= −Pd(t2, t1) for some t1, t2 ∈ T ,

and let G1(t)
.
= Pd(t

1, t) and G2(t)
.
= Pd(t

1, t2) +Pd(t
2, t). We easily check from

Lemma ??(3) that G1(t2) = G2(t2) = Pd(t
1, t2), but we have G1(t1) = 0 while

G2(t1) = Pd(t
1, t2) + Pd(t

2, t1) 6= 0.

We note that these two results are similar to results of Kos and Messner [39].
The main novelties in our version are showing that every value in the interval
yields a convex function (as opposed to merely the extremal ones), the ability
to characterize possible values after the values at multiple points are fixed (as
opposed to a single point), and the framing in terms of convex analysis.

The conditions given by Theorem ?? and Corollary ??, while general, are
not particularly intuitive. However, there are a number of special cases where
they do have natural interpretations for mechanism design. The first is when the
set of types is finite. In this setting (explored in an auction theory context in,
e.g., [?]) it is well known that revenue equivalence does not hold. The finite set
of constraints (??) can be used in general as a linear program to, e.g., maximize
revenue (see Section 6.5.2 of [61] for an example). In particular cases, they may
become simple enough to have a nice characterization. For example, in the single-
parameter setting only a linear number of paths need be considered. This setting
is illustrated in Figure ??.

(a) (b)

Fig. 3. Consider a one-dimensional setting with type space T = {0, 1, 2} and d0 =
0, d1 = 1, d2 = 2. In (a), we fix G(0) = 0, yielding a range of possible values dictated
by the sugradients: 0 ≤ G(1) ≤ 1 and 1 ≤ G(2) ≤ 3. We can pick any point in the
resulting set and fix G there. However, we cannot pick any increasing function: in (b),
we fix G(1) = 0.5, restricting G(2) to the interval [1.5, 2.5].

More broadly, as we saw in the proof of Theorem ??, the (supremum over
the) sum can often be interpreted as an integral. In particular, the fact that G
is convex guarantees that (under mild conditions) integrals of a selection of its
subgradient are path independent and the integral from t to t′ gives G(t′)−G(t).
If T is connected by smooth paths (e.g. if it is convex), this means that T satisfies
revenue equivalence for all implementable mechanisms (previously shown under
a somewhat different notion of the set of types [34]). As it is particularly simple
to prove, we state the version for convex T .



30 General Truthfulness Characterizations Via Convex Analysis

Corollary 14. Let T be convex, a truthful affine score A : T ×T → R be given,
and {dGt}t∈T be the corresponding selection of subgradients from (3). Then any
truthful affine score A′ : T × T → R with the same corresponding selection of
subgradients differs from A by a constant (i.e. A(t′, t) = A′(t′, t) + c).

Proof. By Theorem 1, we know that A and A′ only differ only in their choice of
convex function G. However, each choice has the same selection of subgradients,
and two convex functions with the same selection of subgradents differ by a con-
stant [55]. For intuition, see the construction of G by integrating its subgradients
in the proof of Theorem ??.

E Additional Applications

In this section, we demonstrate the power of our characterization theorem with
several additional applications.

E.1 Decision Rules

Theorem 1 also generalizes Gneiting and Raftery’s [30] characterization to set-
tings beyond eliciting a single distribution. For example, a line of work has
considered a setting where a decision maker needs to select from a finite set D
of decisions and so desires to elicit the distribution over outcomes conditional on
selecting each alternative [20, 21, 52]. Since only one decision will be made and
so only one conditional distribution can be sampled, simply applying a standard
proper scoring rule generally does not result in truthful behavior. Applying The-
orem 1 to this setting characterizes what expected scores must be, from which
many of the results in these papers follow.

As an illustration, consider the model of proper scoring rules for decision
rules [21]. There is a decision maker who will select an action from a set A =
{1, . . . , n}. Once an action is selected, some outcome from the setO = {o1, . . . om}
will be realized, where the probability of each outcome depends on the action
chosen. The decision maker seeks to elicit from an expert the probability Pi,o
of outcome o occurring given that action i is chosen. The decision maker uses a
fixed decision rule D : P → ∆(A), where Di(P ) is the probability of choosing
action i given the expert reported the matrix P . The decision maker rewards
the expert using a (regular) scoring rule that depends on the action chosen
S : A×O×P → R∪{−∞}. For brevity, we write Si,o(P ). Given a belief P and
report Q, we can write the expert’s expected score as

V (Q,P ) =
∑
i,o

Di(Q)Pi,oSi,o(Q)

The definition of (strict) properness for a particular decision rule then follows
naturally.
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Definition 13. A regular scoring rule S is proper for a decision rule D if

V (P, P ) ≥ V (Q,P )

for all P and all Q 6= P . It is strictly proper for the decision rule if the inequality
is strict.

As this V is an affine score, we can immediately apply our theorem to derive
Chen and Kash’s [21] characterization and even extend it to the case where the
set of probability matrices is not convex In the theorem statement we make use
of the Frobenius inner product P :Q

.
=
∑
i,o Pi,oQi,o

Theorem 11. Given a set of probability matrices P ⊆ ∆(O)n A regular scoring
rule is (strictly) proper for a decision rule D if and only if

Si,o(Q) =

{
G(Q)−GQ :Q+

GQ,i,o

Di(Q) Di(Q) > 0

Πi,o(Q) Di(Q) = 0

where G : Conv(P) → R ∪ {−∞} is a (strictly) convex function, GQ is a sub-
gradient of G at the point Q with GQ,i,o = 0 when Di(Q) = 0, and Πi,o : P →
R ∪ {−∞} is an arbitrary function that can take a value of −∞ only when
Qi,o = 0.

Proof. By Theorem 1, S is (strictly) proper for D if and only if there exists a
(strictly) convex G such that V (Q,P ) = G(Q) + dGQ(P −Q). That is,∑

i,o

Di(Q)Pi,oSi,o(Q) = G(Q)−GQ :Q+
∑
i,o

GQ,i,oPi,o,

or for all i such that Di(Q) 6= 0,

Si,o(Q) = G(Q)−GQ :Q+
GQ,i,o
Di(Q)

When Di(Q) = 0, S is unconstrained (other than the minimal requirements
regarding −∞ for regularity). However, note that our affine score is restricted
in that, because Di(Q) is fixed, some choices in A are not possible to select as
subgradients. In particular, it must be that GQ,i,o = 0 when Di(Q) = 0

E.2 Proper losses for partial labels

Several variants of proper losses have appeared in the machine learning literature,
one of which is the problem of estimating the probability distribution of labels
for an item when the training data may contain several noisy labels, possibly not
even including the correct label. (This is frequently the case, for example, when
using crowdsourced labels for items.) More formally, one wishes to estimate
p ∈ ∆n where the true label y ∈ [n] is drawn from p. However, instead of
observing a sample y ∼ p and designing a proper loss `(p̂, y), one instead only



32 General Truthfulness Characterizations Via Convex Analysis

observes some noisy set of labels S ⊆ [n]. Hence, the task is to design a loss
`(p̂, S) which when minimized over one’s data yields accurate estimates of the
true p.

Recently this problem was studied in [24] under the assumption that S ∼ q
where q = Mp for some known M ∈ R2n×n, meaning if the observed label is
drawn from p, the noisy set of labels is drawn from Mp (using some indexing
of the sets, say lexographical). Cid-Sueiro (in his Theorem 4.3) provides a char-
acterization of all proper losses for an even more general version of this setting
where M is known only to be a member of a class rather than exactly and we
want the loss to be proper regardless of which member it is. Note that the (nega-
tive) payoff ES∼Mp[`(p̂, S)] = `(p̂, ·)>Mp is linear in the underlying distribution
p, so our Theorem 1 applies and allows us to recover his characterization result.
We refrain from introducing the model necessary to explicitly state this result as
it would require an excessive number of definitions. Note that this is essentially a
latent observation setting, and the fact that what we observe is a set of labels is
in no way necessary — any observed outcome whose distribution has a linear (or
affine) relationship with the latent outcome would suffice to apply our theorem.

E.3 Mechanism design with partial allocation

Several mechanism design settings considered in the literature have some form of
exogenous randomization, in that “Nature” chooses some outcome ω according to
some (often unknown) distribution, which may in turn depend on the allocation
chosen by the mechanism. Examples include sponsored search auctions [?], multi-
armed bandit mechanisms [?], and recent work on daily deals [17]. The work of
Cai et al. [17] introduces a very general model for such settings, which we now
describe.

Let O be a set of allocations, and for each allocation o and each agent i,
let Ωi,o be some set of outcomes (e.g. which agent wins an auction for the
opportunity to advertise a special offer from its business). Agents each have a
valuation function vi : O → R and a set of beliefs pi,o ∈ ∆(Ωi,o) for each
allocation o ∈ O (an expected value for getting to advertise and a probability
distribution over the number of customers who accept the deal). The mechanism
aggregates all of this information into a single allocation o, and additionally
choses some payoff function si : Ωi,o → R, so that the final utility of agent i is
vi(o) +Epi,o [si] (the winning agent both gets to advertise and accepts a scoring
rule contract regarding its prediction of the number of customers). A mechanism
is truthful if for all values of v and p for the other agents, agent i maximizes
her total utility by reporting vi and pi

.
= (pi,o)o∈O truthfully. For additional

examples, the standard sponsored search setting has Ωi,o = {click,no click} for
o such that i is allocated a slot, and the probabilities pi,o are assumed to be
public knowledge. Moreover, the decision rules framework discussed above is a
single-agent special case with v ≡ 0 and Ωo = Ωo′ = Ω for all o ∈ O (of course,
unlike the notation above, o ∈ O is the allocation/decision, and Ω is the set of
outcomes).
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We first observe that this model can easily be cast as an affine score, as
follows. For simplicity, we fix some agent i and focus on the single-agent case; as
discussed several times above, this is essentially without loss of generality. The
type space is simply the combined private information of the agent,

T =

{
(v, p) : v ∈ O → R, p ∈

∏
o∈O

∆(Ωi,o)

}
. (24)

The utility of the agent upon allocation and payoff o, s is simply v(o) +Epo [s] =
Evalo [v] + s1>o p, which is linear in the type t = (v, p) and therefore affine. (Here

we represent p as a matrix in RO×Ωi,o

and s ∈ RΩi,o

, and define 1o to be the
standard vector with 1 at entry o and 0 elsewhere.) Thus, letting t = (v, p), we
can represent this as an affine score:

A(t′, t) = v(o(t′)) + Epo(t′) [s(t
′)]. (25)

Motivated by incorporating the utilities of the end consumers in a daily deal
setting, Cai et al. [17] ask when one can implement an allocation rule of the form
f(v, p) = argmaxo∈O v(o) + go(po); in other words, when does there exist some

choice of score s(v, p) ∈ RΩi,f(v,p)

making f truthful. They conclude that this can
be done if and only if go is convex for each o ∈ O. It is interesting, and perhaps
illuminating, to view this question in terms of our affine score framework.

Stepping back for a moment, consider a type space T ⊆ V = VX × VY
which partitions into two (subsets of) subspaces. (Note that VY no longer need
be restricted to probability distributions.) We wish to know when a function
f : T → Lin(VX → R) is implementable, in the sense that there exists some
truthful affine score A : T × T → R with score set A ⊆ Aff(V → R), and some
h : T → Aff(VY → R) such that A(t′, t) = f(t′)(tX) + h(t′)(tY ), where of course
t = (tX , tY ). That is, when can we complete the partial “allocation” f into a
truthful affine score?

For convenience, for each a ∈ A we write X(a) ∈ Lin(VX → R) to be the
linear part of a on VX , and Y (a) to be the affine part of a on VY . Then we have
that f is implementable if and only if

f(t) ∈ argsup
x∈X(A)

x(tX) + sup
a∈A(T )
X(a)=x

{
Y (a)(tY )

} (26)

To see this, one direction follows from the fact that an affine score is truthful if
and only if

A(t) ∈ argsup {a(t) : a ∈ A(T )} , (27)

by taking the supremum first over X(A) and then over the rest. For the other
direction, note that taking A(t′, t) = f(t′)(tX)+y(t′)(tY ) where y is in the argsup
of the supremum of eq. (??) gives a truthful affine score.
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Returning to the special case of daily deals, let us denote by ao,s ∈ A the
function (v, p) 7→ v(o′)+Epo′ [s]. We now see that f(v, p) is implementable if and
only if it satisfies

f(v, p) ∈ argsup
o∈O

{
v(o) + sup

s:ao,s∈A(T )

{Epo [s]}

}
. (28)

Thus, letting go(po) = sup {Epo [s] : ao,s ∈ A}, we see that go is convex as the
supremum of affine functions. Moreover, given any collection of convex functions
{go}o∈O, where go : ∆(Ωi,o)→ R, we can define So .

= {ω 7→ g(p) + dg(1ω− p) :
p ∈ dom(g)} and A .

= {ao,s : o ∈ O, s ∈ So}, thus recovering each go in the
above expression. It then only remains to show that no other nonconvex function
can serve in the argsup; for this one may appeal to the argument of Cai et al. [17]
which observes that the indifference points between different allocations is fixed,
thus determining the function in the argsup up to a constant.

E.4 Responsive Lotteries

Utility functions consistent with particular preferences are only unique up to an
affine transformation. (Since there are no payments, multiplying the value of each
outcome by a constant or adding a constant to the value for each outcome has
no effect on the optimal lottery for an agent). Therefore, we state our theorem
for utilities that have been projected onto the unit sphere.

Theorem 12. Let T = {t ∈ Rn : ‖t‖2 = 1} be the unit sphere in Rn, and let a
truthful affine score A : T × T → R with score set A ⊆ Lin(Rn → R) ∼= Rn be
given. Then S(t)

.
= A(t, ·) is surjective and continuous (as a function to Rn) and

A is strictly truthful if and only if A is the boundary of a compact and strictly
convex set K ⊂ Rn.11 S is additionally injective if and only if K is additionally
smooth.

Before proving Theorem ??, we state the relevant corollary and then provide
useful definitions.

Corollary 15. A lottery rule f satisfies incentive compatibility and rational
uniqueness if and only if f(x) = argmaxp∈K 〈x, p〉 for K ⊂ ∆n compact and
strictly convex relative to ∆n. Moreover, f additionally satisfies rational invert-
ibility (and thus is truthful dominant) if and only if K is additionally smooth.

Proof. Project the utilities and probability simplex onto the set V = {x ∈
Rn :

∑
i xi = 0}, which only changes the expected utilities by a constant. Then

express these vectors in a basis for V ∼= Rn−1, and normalize the utilities (only
scaling them) to get the unit sphere in V , and apply Theorem ??.

11 We define a convex set C to be strictly convex if no point x on the boundary of C
can be expressed as a convex combination of other points in C (i.e. x is extreme). C
is smooth if each point on the boundary of C has a unique unit normal vector. See
Appendix ?? for formal definitions.
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We denote by ∂K the boundary of the set K ⊆ Rn.

Definition 14. Given a compact convex set K ⊂ Rn, we define the exposed
face FK(t) in direction t 6= 0 and the normal cone NK(k) at point k ∈ ∂K by

FK(t) = argmax
k∈K

〈t, k〉 , NK(k) = {t ∈ Rn : k ∈ FK(t)}. (29)

Definition 15. We say K is strictly convex if FK(t) is a singleton for all t 6= 0.
Dually, we say K is smooth if NK(k) is a ray (i.e. {αt : α ≥ 0} for some t 6= 0)
for all k ∈ ∂K.

Proof (of Theorem ??.). We begin with the first part of the theorem. Let K be
compact and strictly convex, and A = ∂K. Then as A is truthful, we must have
S(t) ∈ argsupa∈A 〈t, a〉. As A = ∂K, we may also write S(t) ∈ argmaxk∈K 〈t, k〉.
Now by strict convexity of K, we have for every a ∈ A = ∂K, there exists
some t ∈ T such that {a} = argmaxk∈K 〈t, k〉, giving us both surjectivity and
strict truthfulness (as S(t) = a). Continuity follows immediately from Berge’s
Maximum Theorem [?].

For the converse, let S be strictly truthful, surjective, and continuous. By
standard arguments, since T is a compact subset of Rn, we have A = S(T )
is compact as a continuous image of a compact set. Thus, K

.
= Conv(A) is a

compact convex set. Letting FK(t)
.
= argmaxk∈K 〈t, k〉 be the exposed face of K

in direction t, we will now show FK(t) = {S(t)}. First, observe that the extreme
points of K, ext(K), are a subset of A (otherwise we have k ∈ ext(K) \ A,
so K \ {k} is a convex set containing A, contradicting the definition of K =
Conv(A)). Now we may apply [59, Proposition A.2.4.6] to express the argmax in
terms of the extreme points of K, giving us

FK(t)
.
= argmax

k∈K
〈t, k〉 = Conv

(
argmax
k∈ext(K)

〈t, k〉

)
⊆ Conv

(
argmax
a∈A

〈t, a〉
)

= {S(t)}.

As K is compact, FK(t) is nonempty, and thus FK(t) = {S(t)}, and additionally
we conclude S(t) ∈ ext(K). Hence A = S(T ) ⊆ ext(K), and as we concluded the
reverse conclusion above, we have A = ext(K). We now apply [59, Proposition
C.3.1.5] to obtain ∂K =

⋃
t∈T FK(t), which in turn gives ∂K = A by surjectivity.

Finally, as ext(K) = A = ∂K, we have strict convexity of K.
For the final statement of the theorem, we note that by [59, Proposition

C.3.1.4], we have k ∈ FK(t) ⇐⇒ t ∈ NK(k). By the above, we already have
FK(t) = {S(t)} for all t ∈ T , which implies NK(k) ∩ T = {t : S(t) = k}. Hence,
NK(a) is a ray for all a ∈ A if and only if S is injective.

F Property Characterization

Here we go through the proof of Theorem ?? (restated as Theorem 4) in detail.
To begin, note that the simplest way to come up with an elicitable property
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is to induce one from an affine score. For any A : R × T → R with score set
A ⊂ Aff(V → R), the property

ΓA : t→ argsup
r∈R

A(r, t) (30)

is trivially elicited by A if this argsup is well defined.
Observe also that any affine score A eliciting Γ gives rise to a truthful affine

score in the original sense — in fact, this is a version of the revelation principle
from mechanism design. For each t let rt ∈ Γ (t) be a report choice for t; then
the affine score AT (t′, t)

.
= A(rt′ , t) is truthful. Moreover, by our choices of {rt},

we have

G(t)
.
= sup
t′∈T

AT (t′, t) = sup
r∈R

A(r, t). (31)

Of course, in general, AT will not be strictly truthful, since by definition, any
reports t′, t′′ with rt′ = rt′′ will have AT (t′, ·) ≡ AT (t′′, ·). Thus we may think
of a property as refining the notion of strictness for a truthful affine score.
The connection we draw in Theorem 4 is that, in light of (9), a property Γ
therefore specifies the portions of the domain of T where G must be “flat”. To
get at the connection between properties and “flatness”, we start with a technical
lemma which shows that having the same subgradient at two different points is
equivalent to G being flat in between.

Lemma 2. Let G : Conv(T ) → R be convex with G(T ) ⊆ R, and let d ∈ ∂Gt
for some t ∈ T . Then for all t′ ∈ T ,

d ∈ ∂Gt′ ⇐⇒ G(t)−G(t′) = d(t− t′).

Proof. First, the forward direction. Applying the subgradient inequality (2) at
t′ for dGt = d and at t for dGt′ = d, we have

G(t′) ≥ G(t) + d(t′ − t)
G(t) ≥ G(t′) + d(t− t′),

from which the result follows (as G(t) and G(t′) are finite).
For the converse, assume G(t) = G(t′) +d(t− t′) and let t′′ ∈ T be arbitrary.

Note that d(t) ∈ R as d ∈ ∂Gt, so d(t′) ∈ R as well. Then using the subgradient
inequality (2),

G(t′) + d(t′′ − t′) = G(t′) + d(t′′ − t) + d(t− t′) = G(t) + d(t′′ − t) ≤ G(t′′).ut

We are now ready to state our first characterization, which in essence says
that eliciting a property Γ is equivalent to eliciting subgradients of a convex
function G. Intuitively, by truthfulness the linear part of A(r, ·) must be a sub-
gradient of G at all t ∈ Γr. The lemma shows that this equivalent to flatness,
which means we can calculate G on Γr set by picking any type tr ∈ Γr and fol-
lowing the subgradient. Since all choices of tr lead to the same value, we could
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just as easily ask for this subgradient ϕ(r) to be reported directly. As subgradi-
ents are functions (in this case from T to R), we use the curried notation ϕ(r)(t)
for the application of this function.

Note that as we allow A(r, t) to take on values in the extended reals to
capture scoring rules such as the log score, we again need a notion of regularity
— an affine score A is Γ -regular if A(r, t) <∞ always and A(r, t) ∈ R whenever
r ∈ Γ (t). We define Γ -regular linear and affine families similarly.12

Theorem 13. Let non-redundant property Γ : T ⇒ R and Γ -regular affine
score A : R× T → R be given. Then A elicits Γ if and only if there exists some
convex G : Conv(T ) → R with G(T ) ⊆ R, some D ⊆ ∂G, and some bijection
ϕ : R → D with Γ (t) = ϕ−1(D ∩ ∂Gt), such that for all r ∈ R and t ∈ T ,

A(r, t) = G(tr) + ϕ(r)(t− tr), (32)

where {tr}r∈R ⊆ T satisfies r′ ∈ Γ (tr′) for all r′.

Proof. For the converse, let A be given of the form (10). We show that it elicits Γ ,
i.e. Γ (t) = argsupr∈R A(r, t). The third line of the derivation applies Lemma 1.

r ∈ Γ (t) ⇐⇒ r ∈ ϕ−1(D ∩ ∂Gt)
⇐⇒ ϕ(r) ∈ D ∩ ∂Gt
⇐⇒ A(r, t) = G(t)

⇐⇒ r ∈ argsup
r′∈R

A(r′, t)

For the forward direction, assume that affine score A elicits Γ . For each r, we
may extend A(r, ·) to all t̂ ∈ Conv(T ) by linearity as in the proof of Theorem 1,
whence we may define G(t̂)

.
= supr∈R A(r, t̂), which is finite for t̂ ∈ T as A is

Γ -regular. We wish to show that the choice ϕ : r 7→ A`(r, ·) suffices, where A`
denotes the linear part of A, with D the range of ϕ and {tr} arbitrary satisfying
the theorem. Given this construction, we need to check each of the following.

1. G is convex with subgradients ϕ(Γ (t)) ⊆ ∂Gt Let t and r ∈ Γ (t) be given. We
show that ϕ(r) satisfies the property of a subgradient at t, and thus G is convex
with appropriate subgradients.

G(t) + ϕ(r)(t′ − t) = sup
r′∈R

A(r′, t) + A`(r, t
′ − t)

= A(r, t) + A`(r, t
′ − t) = A(r, t′) (33)

≤ sup
r′∈R

A(r′, t′) = G(t′)

2. A satisfies eq. (10) This follows from (??) with t = tr, as r ∈ Γ (tr).

12 The family {`r ∈ Lin(V → R)}r∈R is Γ -regular if `r(t) ∈ R for all t ∈ Γr, and
`r(t′) ∈ R ∪ {−∞} for t′ 6= Γr. Likewise for Γ -regular affine functions.
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3. ϕ is a bijection By definition, D is the range of ϕ, so we only need to check that
it is injective. Suppose for contradiction that ϕ(r) = ϕ(r′). Then, by definition,
A`(r, ·) = A`(r

′, ·). Since A elicits Γ , we have A(r, ·) = A(r′, ·). But then r ∈
Γ (t) ⇐⇒ r′ ∈ Γ (t), contradicting Γ being non-redundant.

4. Γ (t) = ϕ−1(D ∩ ∂Gt) We already know that ϕ(Γ (t)) ⊆ ∂Gt, so since D is
the range of ϕ we have ϕ(Γ (t)) ⊆ D∩ ∂Gt. For the other direction, d ∈ D∩ ∂Gt
is ϕ(r) for some r. Then by Lemma 1, A(r, t) = G(tr) + ϕ(r)(t− tr) = G(t), so
r ∈ Γ (t).

As a corollary, we also obtain a better understanding of weak elicitation,
which we will need in the following sections.

Corollary 16. Let non-redundant property Γ : T ⇒ R and Γ -regular affine
score A : R × T → R be given. Then A weakly elicits Γ if and only if A satis-
fies (10) with the weaker condition that Γ (t) ⊆ ϕ−1(D ∩ ∂Gt).

Proof. Given any affine score A, and defining ΓA as in (8), we see that A weakly
elicits Γ if and only if Γ (t) ⊆ ΓA(t) for all t. Now let A weakly elicit Γ . As
A trivially elicits ΓA, we apply Theorem 4 and now have in particular r ∈
Γ (t) =⇒ r ∈ ΓA(t) =⇒ ϕ(r) ∈ ∂Gt. For the converse, simply define ΓA(t) =
{r ∈ R | ϕ(r) ∈ ∂Gt}. By Theorem 4, A elicits ΓA, and by assumption we have
Γ (t) ⊆ ΓA(t) for all t.

Using Corollary 7, we see that an affine score A is truthful if and only if
it weakly elicits Γ : t 7→ {t}. Hence, Theorem 4 and Corollary 7 are actually
generalizations of Theorem 1. Of course, we also obtain the following corollary
characterizing non-redundant properties.

Corollary 17. Non-redundant Γ : T ⇒ R is elicitable if and only if exists
there some convex G : Conv(T ) → R with G(T ) ⊆ R, some D ⊆ ∂G, and some
invertible ϕ : R → D such that Γ (t) = ϕ−1(D ∩ ∂Gt).

An important question which would give stronger characterizations is the
following:

Question 1. Given non-redundant elicitable Γ , what are all pairs G,D such that
there exists some bijection ϕ satisfying Theorem 4? Equivalently (up to redun-
dancy), given a convex function G with subgradient level sets LSG(d) = {t : d ∈
∂Gt}, what are all the convex functions G′ with LSG′ ≡ LSG?

In Section 5 we will see that the answer to this question has a lot of structure
in the case whereR is finite. In the general case, certainly performing a homothet
of the subgradients of G (i.e. scaling G and adding a linear term), will preserve
the elicitation structure. However, surely more can be done—the property

Γ (t) =


{t− 1} if t < 0

{0} if t = 0

{t+ 1} if t > 0

. (34)
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can be elicited with both G(t) = |t| + t2/2 and G(t) = t2/2, which is not a
homothet transformation.

While we do not have a complete answer to Question 1 our characterization
sheds new light on the structure of elicitable properties in two directions. First,
in the scoring rules literature, it is common to assume strong conditions on Γ
and R, such as Γ being a function rather than a multivalued map, and Γ being
linear [1] or real-valued [43] to achieve characterizations. In contrast, Theorem 4
allows for an extremely general Γ and R and shows us how to construct affiine
scores for such properties. Second, we can identify features that all elicitable
properties share, which provides a means to prove that specific properties are
not elicitable.

G Duality in elicitiation

We saw from Theorem 4 that in a strong sense an elicitable property Γ is like a
subgradient mapping of a convex function. We now turn to removing the word
“like” from the sentence above — we look at properties which are subgradient
mappings. This exploration has two main benefits. First, it gives us a concrete
tool to reason about properties, by working directly with a convex function
rather than through some map ϕ. Second, it gives a new framework to discuss
duality in elicitation, as has been observed between scoring rules and prediction
markets [1, 22].

G.1 Direct elicitation

Now that we have formalized the relationship between the report space and
subgradients of convex functions, we can see what the “canonical” properties
look like: those which are (subsets of) subgradient mappings of a convex func-
tion. For these properties, we can talk about direct elicitation, which roughly
speaking means removing the intermediary ϕ between R and ∂G. In fact, for
such “canonical” properties, we can even talk about a convex function itself
eliciting Γ .

Definition 16. A property Γ : T ⇒ D, where T ⊆ V and D ⊆ V∗ .
= Lin(V →

R), is directly elicitable if there exists G : Conv(T )→ R convex with G(T ) ⊆ R
such that Γ (t) ⊆ ∂Gt. In this case we say G directly elicits, or just elicits, Γ .

In other words, G elicits Γ : T ⇒ D if the ϕ in Theorem 4 and Corollary 8 is
the identity. Of course, it remains to be shown that there exists an affine score
eliciting such a property, but the proof is trivial.

Proposition 1. Directly elicitable properties are elicitable.

Proof. Let Γ : T ⇒ R and G : Conv(T ) → R convex with G(T ) ⊆ R be given
such that Γ (t) ⊆ ∂Gt. Then taking D = R and ϕ = idD, we have by Theorem 8
that Γ is elicitable.



40 General Truthfulness Characterizations Via Convex Analysis

Note that this direct elicitability in no way necessary for elicitability, since the
report space is not required to have any intrinsic meaning. For example, one can
take Γ (t)

.
= −∂Gt for some G, which in general will not be directly elicitable,

but still elicitable with ϕ(r) = −r and G.
The notion of direct elicitation is often useful for generating intuitive exam-

ples, since the report space itself has meaning. In fact, given any convex function
G, the property Γ (t) = ∂Gt is directly elicitable by G. This is in fact how equa-
tion (11) was generated, though at t = 0 we selected {0} instead of the full
subgradient set ∂G0 = [−1, 1] to make Γ non-redundant.

We can also clarify what we mean when we say direct elicitation is canonical:
every elicitable property gives rise to a directly elicitable property.

Proposition 2. Let Γ be an elicitable property, elicited by A(r, t) = G(tr) +
ϕ(r)(t− tr). Then Γϕ(t) = ϕ(Γ (t)) is directly elicitable.

Proof. Simply keep G and take idD as the new ϕ.

In other words, properties are literally just subsets of subderivative mappings,
up to some bijection (or link function) taking them to some other report space
R′ (see the discussion following Theorem 5).

As a final remark, we note a few observations about direct elicitation. One
first notices that the G eliciting some Γ is not unique, as G′

.
= G+c will also elicit

Γ for any constant c. But these are the only convex functions directly eliciting Γ .
Moreover, recovering such a G from Γ is easy: simply integrate (a selection of)
Γ to obtain G. Testing whether Γ is directly elicitable is less straight-forward,
but there are a variety of monotonicity conditions addressing this issue as well
(cf Appendix ??).

G.2 Report duality

We are now ready to hold up a mirror to properties and their scores, by intro-
ducing notions of duality. As we will see, there are actually two mirrors, yielding
four combinations of dualities (see Table 1). In this subsection we will explore
the first, flipping the report from the type to the dual type. For now, we will take
our dual vector space to be all linear functions from V to R (not R as above).13

We begin with the fundamental object of convex duality, the convex conjugate.

Definition 17. Let V∗ .
= Lin(V → R). The convex conjugate of G : V → R,

denoted G∗ : V∗ → R, is given by

G∗(d) = sup
v∈V

d(v)−G(v). (35)

The power of the conjugate is apparent after the following lemma, which
says roughly that the convex conjugate “encodes” the subgradients of G. This
is a classic result in convex analysis (cf. [59, Thm E.1.4.1]) which we prove for
completeness.

13 When the dual space can take on infinite values, the conjugate is not always well-
defined, as values of the form ∞−∞ are encountered.
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Lemma 3. Let G : V → R be convex. Then for all v ∈ V, d ∈ V∗,

G∗(d) = d(v)−G(v) ⇐⇒ d ∈ ∂Gv.

Proof. We can simply break down the conditions step by step:

G∗(d) = d(v)−G(v) ⇐⇒ v ∈ argsupv′∈V d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V, d(v)−G(v) ≥ d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V, G(v′) ≥ G(v) + d(v′ − v),

where in the last step we merely negated and added d(v′) ∈ R to both sides.

Lemma 2 lets us further simplify Theorem 4, as follows. Note however that
we are making an additional assumption, that G > −∞.

Theorem 14. Let non-redundant property Γ : T ⇒ R and Γ -regular affine
score A : R× T → R be given with score set A ⊆ Aff(T → R). Then A elicits Γ
if and only if there exists some convex G : Conv(T )→ R, and bijective ϕ : R → D
with D ⊆ ∂G satisfying ϕ(Γ (t)) ⊆ ∂Gt, such that for all r ∈ R and t ∈ T ,

A(r, t) = ϕ(r)(t)−G∗(ϕ(r)). (36)

Theorem 5 has natural interpretations for both mechanisms and scoring rules.
For mechanisms, it captures a version of the taxation principle, that a mechanism
can be viewed as a menu of possible allocations and payment associated with
each allocation. For scoring rules, it captures the relationship between a scoring
rule and a prediction market. We discuss these ideas briefly following Table 1,
and in more detail in Appendix ??.

An immediate consequence of Theorem 5 pertains to optimization qualities
of loss functions in machine learning. Given a loss function L(r, ω), a crucial
subroutine in many machine learning applications involves minimizing L(r, p)

.
=

Eω∼pL(r, ω) with respect to r, where p is either known or approximated from
data (a practice known as empirical risk minimization). To enable the swift
computation of this minimum, a typical practice is to choose a link function ψ :
R → R′ such that the optimization minr′ L(ψ−1(r′), p) is convex. But for which
properties Γ and which loss functions L can we choose ψ such that L(ψ−1(r′), p)
is convex in r′? Provided we are in a paired space (see Definition 10 below),
Theorem 5 reveals that the answer is always: take ψ = ϕ in Theorem 5. Then
L(r′, p)

.
= −A(ϕ−1(r′), p) = G∗(r′)−〈r′, p〉, which is convex in r′. There are two

important caveats of this result, however: (1) this is a constrained optimization,
as the minimization is actually over r′ ∈ ϕ(R), and (2) we have mapped a
potentially low-dimensional representation r to a necessarily high-dimensional
object ϕ(r). As it turns out, (1) is alleviated by noticing that we may equally
optimize over r′ ∈ ∂G, which is a convex set. Addressing (2), however, requires
finding a lower-dimensional representation of R′ to be practical.
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G.3 Type duality and the duality quadrangle

Beyond dual report spaces, we now define dual properties and their scores, where
we swap the roles of types and reports. This is the second “mirror,” and with
both in hand now we have a full four combinations of dual report and type,
which we call the duality quadrangle; see Table 1.

To start, we need a dual vector space with more structure than simply
Lin(V → R). For this we use the notion of a dual pair, which is a standard
setting for convex analysis in infinite-dimensional spaces.

Definition 18 ( [3, §5.14]). A pair of topological vector spaces (V,V∗) is a
dual pair if it is equipped with a bilinear form 〈·, ·〉 : V ×V∗ → R which separates
points, in the sense that ∀v∗ 〈v, ·〉 ≡ 0 implies v = 0 and ∀v 〈·, v∗〉 ≡ 0 implies
v∗ = 0.

Note that the above assumption that (V,V∗) is a dual pair implies in par-
ticular that for all v∗ ∈ V∗, the map v∗ 7→ 〈v, v∗〉 is linear. This isn’t crucial
when interpreting R ⊆ V∗ as the type space, since affine scores must be affine in
the type. For the remainder of this section we assume that we have a dual pair
(V,V∗).

A natural question is to determine the conditions under which we have G∗∗
.
=

(G∗)∗ = G. That is, when is the conjugacy operator an involution? This has
been thoroughly studied in convex analysis. We state the classic theorem due to
Fenchel and Moreau [35,41].

Definition 19. A function f : X → R is lower semi-continuous (l.s.c.) if for
every x0 in dom(f) it holds that lim inf

x→x0

f(x) ≥ f(x0).

Theorem 15 (Fenchel–Moreau). Let X be a Hausdorff locally convex space.
For any function G : X → R, it follows that G = G∗∗ if and only if one of the
following is true: (1) G is a proper, l.s.c., and convex function, (2) G ≡ +∞,
or (3) G ≡ −∞.

The following corollary will prove very helpful in our discussion of type du-
ality below. The proof follows from applying Theorem 6 (note that as R is
Hausdorff, V together with the product topology inherited from the dual pair
is also Hausdorff and locally convex; see [3, §7] for details), and then Lemma 2
twice, once for G and once for G∗.

Corollary 18. If G is convex, proper, and l.s.c., then v∗ ∈ ∂Gv ⇐⇒ v ∈ ∂G∗v∗ .

We now introduce the concept of a dual property Γ ∗, which essentially swaps
the type and the report. That is, an agent has a “true report” r and Γ ∗(r)
encodes all the “correct types” t. We then go on to show the relationship between
the direct elicitability of dual properties.

Definition 20. Let Γ : T ⇒ R where R ⊆ V∗. Then the dual of Γ , written
Γ ∗ : R⇒ T , is defined by Γ ∗

.
= Γ−1. In other words, Γ ∗ satisfies r ∈ Γ (t) ⇐⇒

t ∈ Γ ∗(r).
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Theorem 16. For dual pair (V,V∗), let Γ : T ⇒ D be given with T ⊆ V and
D ⊆ V∗. Let convex proper and l.s.c. G be given. Then G elicits Γ if and only if
G∗ elicits Γ ∗.

Proof. We apply Corollary 12 to obtain d ∈ ∂Gt ⇐⇒ t ∈ ∂G∗d. If G directly
elicits Γ , then we have

t ∈ Γ ∗(d) ⇐⇒ d ∈ Γ (t) ⇐⇒ d ∈ ∂Gt ⇐⇒ t ∈ ∂G∗d,

soG∗ directly elicits Γ ∗. Clearly the above may be applied in the reverse direction
as well, yielding the result.

Note that when G and G∗ elicit Γ and Γ ∗, respectively, we have by the
above discussion that A(d, t) = 〈t, d〉 − G∗(d) elicits Γ and A∗(t, d) = 〈t, d〉 −
G(t) elicits Γ ∗. Moreover, the “consumer surplus” functions of A and A∗ are
G and G∗, respectively. This curious relationship, combined with the notion
of report duality, can be visualized as shown in Table ??. Note that traveling
around the table does not necessarily mean arriving at the same choice of G, nor
does it imply that G∗∗ = G. However, when G∗∗ = G does hold, the diagram
“commutes” in a certain sense.

Type

Primal Dual

R
ep

o
rt

P
ri

m
a
l A(t′, t)

=
G(t′) + 〈t− t′, dGt′〉

A∗(t′, d)
=

〈t′, d〉 −G(t′)

D
u
a
l A(d′, t)

=
〈t, d′〉 −G∗(d′)

A∗(d′, d)
=

G∗(d) + 〈dG∗d′ , d− d′〉

sup A(·, t) = G(t) sup A∗(·, d) = G∗(d)

Table 2. The duality quadrangle.

As an example, in Table1 we used the dual pair given by distributions and
functionals to explore duality between scoring rules, prediction markets, and
mechanisms. The prediction market model we need is a condensed version of
the standard cost-function framework [2]. Briefly, a centralized market maker
chooses a convex cost function C, and traders who wish to buy a bundle of
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securities q ∈ RO (where the trader will receive $qo upon outcome o) pays
C(q0 + q)− C(q0), where q0 is the vector of total purchases made so far in the
market. Abstracting away q0, we set G∗(q) = C(q0 + q)− C(q0), yielding affine
score A(q′, p) = 〈p, q′〉 −G∗(q′).

To illustrate the power of this duality, observe that for any p, q, a prediction
market A with cost function G∗ and menu auction A∗ with price function G
satisfy A(q, p) − A∗(p, q) = G(p) − G∗(q). This means that difference between
the expected payoff under p for purchasing q from the prediction market, and
the the expected utility according to q for selecting menu item p, is equal to the
difference between the corresponding consumer surpluses.

G.4 Further identities and remarks

Dual-report mechanisms and the taxation principle. The notion of a dual-report
mechanism is already well-known as a consequence of the taxation principle —
instead of asking the agent for her type, one could simply ask the agent directly
for the desired allocation, posting a menu prices (or “taxes”) for each. This
is without loss of generality because a mechanism’s prices cannot depend on
the agent’s type except through the chosen allocation. In our notation, each
allocation d is listed with its price G∗(d). It is worth noting however that this is
not always identical to the original mechanism. Specifically, while the equilibrium
payoffs for the posted-price mechanism A(d, t) are the same as those of the direct
revelation mechanism A(t′, t), the off-equilibrium payoffs need not be equivalent,
as the posted-price mechanism may allow reports d ∈ ∂Gt which are not dGt′

for any t′. In other words, because the primal-report (i.e., direct) mechanism
must choose a single subgradient dGt for every point, if {dGt}T ( ∂G = D, the
dual-report mechanism can be strictly more expressive.

Dual-report scoring rules and prediction markets. The notion of report duality
exactly captures the relationship between scoring rules and prediction markets.
Here the scoring rules have the primal report space, and prediction markets the
dual, where the optimal share bundle is essentially a subgradient of the scoring
rule at the trader’s belief. There we will further discuss conditions for which the
duality can be run in reverse without loss of generality, but as mentioned above
about mechanisms, in general the “menu” format (dual report) of an affine score
can be strictly more expressive than the type format (primal report).

Identities Table ?? shows that the theory of elicitation inherits a lot of struc-
ture from convex duality. Ignoring boundary and regularity concerns for the
moment, we obtain some nice identities:

A(d, t) + A∗(t, d) ≥ 〈t, d〉 (37)

A(d, t)− A∗(t, d) = G(t)−G∗(d). (38)

The first follows from the classic Fenchel-Young inequality [55], the proof of
which for G proper follows directly from the definition of the conjugate (Defini-
tion 9).
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Lemma 4 (Fenchel-Young inequality). ∀ v ∈ V, v∗ ∈ V∗, G(v) +G∗(v∗) ≥
〈v, v∗〉.

The elicitation game Define a two-player game M(d, t), with row strategies
d ∈ D and column strategies t ∈ T , as

M(d, t) =
(

A(d, t), A∗(t, d)
)

=
(
〈t, d〉 −G∗(d), 〈t, d〉 −G(t)

)
. (39)

One could think of the column player as choosing the agent’s type, and the row
player as choosing the principal’s “allocation.” Interestingly, this interpretation
implies that the row is the agent and the column is the principal (they each
choose each other’s “type”). Immediately one realizes that the Nash equilibria
of this elicitation game M are exactly the set of dual-optimal points (d, t) such
that d ∈ ∂Gt and t ∈ ∂G∗d. Moreover, the equilibrium payoffs for the Nash (d, t)
are

(
G(t), G∗(d)

)
.

It is interesting to note the mixed strategies of this game: if d ∼ PD and
t ∼ PT independently, the payoffs are

M(PD, PT ) =
( 〈
t̄, d̄
〉
− EPD [G∗(d)],

〈
t̄, d̄
〉
− EPT [G(t)]

)
, (40)

and if (d, t) ∼ P is supported only on dual points,

EP [M(d, t)] =
(
EP |T [G(t)], EP |D [G∗(d)]

)
, (41)

both of which bear resemblance to quantities in Bayesian or randomized mech-
anism settings.

Score divergences The score divergence A(t, t) − A(t′, t) is a natural notion
of “regret” which arises frequently in the scoring rules literature (cf. [30]). Our
score divergence, as we define below, is reminiscent of a Bregman divergence.

DG,dG(t, t′)
.
= A(t, t)− A(t′, t) = G(t)−G(t′)− 〈t− t′, dGt′〉 . (42)

Note that the first argument to D is the true type, as opposed to our A notation.
Also note the subscripts to D, which specify both the convex function G and a
selection of subgradients. A Bregman divergence requires G to be continuously
differentiable, but our definition (??) is a natural extension, and has been studied
before (cf. [?]).

Score divergences have many nice properties, like convexity in the first argu-
ment, and (directional) differentiability at t′ = t Score divergences also enable
reasoning about the magnitude of off-equilibrium payoffs, which can be impor-
tant in practice, when externalities are often present. For example, Fiat et al. [27]
introduce the notion of “strong truthfulness”, where the payoff decays as ‖t−t′‖2,
to design mechanisms that are robust even when agents care about the utility
of other agents.
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Turning to our various notions of duality, the following are four divergences
corresponding to the duality quadrangle, starting in the (primal,primal) setting
and moving counter-clockwise.

DG,dG(t, t′) = G(t)−G(t′)− 〈t− t′, dGt′〉 (43)

DG(t, d′) = G(t) +G∗(d′)− 〈t, d′〉 (44)

DG∗,dG∗(d, d
′) = G∗(d)−G∗(d′)− 〈dG∗d′ , d− d′〉 (45)

DG∗(d, t
′) = G∗(d) +G(t′)− 〈t′, d〉 . (46)

Amazingly, we see that DG(t, d) = DG∗(d, t) for all t, d (not just dual points). In
other words, the loss of reporting d in the primal but having type t is the same
as reporting t in the dual but having “type” d. In the context of the elicitation
game above, this means that at any pure strategy pair, both players have the
same regret, so they both stand to gain the same amount in a best response
(though a simultaneous best response will not lead to an equilibrium point in
general).

H Bregman Voronoi digrams and the role of ‖ · ‖2

The squared norm seems fundamental to our derivation; let us dig further to see
if this is indeed the case. Observe that the form (15) is simply

A(r, t) = 2 〈tr, t〉 − ‖tr‖2 + wr,

where tr = αpr+p0. Consider the case where wr = 0 for all r, which corresponds
to Γ being a Voronoi diagram. In this case, could think of A as being a special
case of the “Brier score” AB(t′, t) = 2 〈t,′ t〉−‖t′‖2, so that A(r, t) = AB(tr, t). In
other words, we can think of our finite-report case as just restricting the allowed
reports in a general direct-revelation affine score. Note that the score divergence
for AB is just DG(t′, t) = ‖t′ − t‖2, where G(t) = ‖t‖2 is just the square norm.
This raises the following interesting question: what do we get when we replace
G = ‖ · ‖2 with another convex function on T , and restrict the reports from T
to just a few points {tr}R? That is, take AG(t′, t) = G(t′) − dGt′(t − t′) and
set A(r, t) = AG(tr, t). Surely, for any such G, whatever Γ is elicited by such a
modified affine score would have to be a diagram by Theorem 8. But then why
does the squared norm seem so fundamental?

As it happens, we are touching on precisely the notion of a Bregman Voronoi
diagram, introduced by Boissonnat et al. [15, § 4]. There, instead of defining
celli = {t : i ∈ argminj ‖tj − t‖}, the squared norm is replaced by any Bregman
divergence DG, so that celli = {t : i ∈ argminj DG(t, tj)}.14 Our conclusion that
such diagrams coincide with power diagrams corresponds to their Theorem 8.

Framed in terms of our report duality from §4.2, we can see this yet another
way. We can rewrite the Bregman Voronoi cell as

celli =

{
t : i ∈ argmax

j
G(tj)− dGtj (t− tj)

}
. (47)

14 In [15], three types of diagrams are introduced; here we refer to the first type.
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By Lemma 2, this can in turn be written

celli =

{
t : i ∈ argmax

j

〈
t̃j , t

〉
−G∗(t̃j)

}
, (48)

where t̃j = dGtj . Hence, for any convex function G, the sites {pj} and weights
w of a power diagram corresponding to the DG Bregman Voronoi diagram with
sites {tj} are given by pj = 1

2dGtj and wj = 1
4‖dGtj‖

2 −G∗(dGtj ).

I Discussion

We have presented a model of truthful elicitation which generalizes and extends
both mechanisms and scoring rules. On the mechanism design side, we have seen
how our framework provides simpler, more general, or more constructive proofs
of a number of known results about implementability and revenue equivalence,
some of which lead to new results about scoring rules. On the scoring rules side,
we have provided the first characterization for scoring rules for non-convex sets of
probability distributions. We have also extended our model to eliciting a property
of the agent’s private information. This has been studied for specific cases in the
scoring rules literature, but we have provided the first general characterization.
We also show how results about power diagrams in the scoring rules literature
lead to a new proof of the Saks-Yu result in mechanism design.

Our analysis makes use of the fact that A(t′, t) is affine in t to ensure that
G(t) = supt′ A(t′, t) is a convex function. However, this property continues to
hold if A(t′, t) is instead a convex function of t. Thus, a natural direction for
future work is to investigate characterizations of convex scores. While mecha-
nisms can always be represented as affine functions by taking the types to be
functions from allocations to R, it may be more natural to treat the type as a
parameter of a (convex) utility function. While many such utility functions are
affine (e.g. dot-product valuations), others such as Cobb-Douglas functions are
not. Berger, Müller, and Naeemi [12, 13] have investigated such functions and
given characterizations that suggest a more general result is possible. Another
potential application is scoring rules for alternate representations of uncertainty,
several of which result in a decision maker optimizing a convex function [33].

In one sense getting such a characterization is straightforward. In the affine
case we want A(t′, t) to be an affine function such that A(t′, t) ≤ G(t) and
A(t′, t′) = G(t′). Since we have fixed its value at a point, the only freedom we
have is in the linear part of the function, and being such a linear function is
exactly the definition of a subgradient. So while our characterization of affine
scores is in some sense vacuous, it is also powerful in that it allows us to make use
of the tools of convex analysis. A similarly vacuous characterization is possible
for the convex case: A(t′, t) is a convex function such that A(t′, t) ≤ G(t) and
A(t′, t′) = G(t′). The challenge is to find a way to state it that is useful and
naturally handles constraints such as those imposed by the form of a utility
function.
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Many questions in the literature on properties remain open. Most notable is
the characterization of elicitable nonlinear and multidimensional properties —
the single dimensional case is covered in [43] and the linear vector-valued case
in [1]. We hope that the results and intuition from Section 3 will yield a useful
characterization in this case. Another interesting direction is for non-functional
properties: aside from the finiteR case, all work in the literature to our knowledge
assumes that Γ is a function (having a single correct report for each type). The
generality of Theorem 4 may prove useful in exploring non-functional settings
as well. A result requiring few regularity conditions on Γ would be useful in
domains such as statistics where natural properties like the median cannot in
general be expressed as functions.

Theorem 8 shows that scoring rules for finite properties are essentially equiva-
lent the weights and points that induce a power diagram. As power diagrams are
known to be connected to the spines of amoebas in algebraic geometry, aspects
of toric geometry used by string theorists, and tropical hypersurfaces in tropi-
cal geometry [60], there may be useful characterization results in those fields as
well. The last is particularly suggestive given the recent use of tropical geometry
techniques in mechanism design [10].

While our examples have focused on mechanism design and scoring rules,
another interesting direction to pursue is other settings where our results may
be applicable. One natural domain is the literature on M-estimators in machine
learning, statistics and economics. Essentially, this literature takes a loss function
(i.e. a scoring rule) and asks what it elicits. For example, the mean is an M-
estimator induced by the squared error loss function. Some work in this literature
(e.g. [49]) requires that the loss function satisfy certain conditions, and our
results may be useful in characterizing and supplying such loss functions.


