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Combinatorial optimization

• Well studied 

– classics: max. matchings, shortest paths, min. 
spanning trees, 

– modern applications: online advertising, viral 
marketing

• What if the inputs are stochastic, unknown, 
and has to be learned over time?

– link delays

– click-through probabilities 

– influence probabilities in social networks 
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Combinatorial online learning 

for combinatorial optimizations

• Need new framework for learning and optimization:

• Learn inputs while doing optimization --- combinatorial online 

learning

• Learning inputs first (and fast) for subsequent optimization ---

combinatorial pure exploration
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Motivating application: Display ad placement

• Bipartite graph of pages and users who are interested in 

certain pages

– Each edge has a click-through probability

• Find 𝑘 pages to put ads to maximize total number of users 

clicking through the ad

• When click-through probabilities are known, can be solved 

by approximation

• Question: how to learn click-through prob. while doing 

optimization?
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Multi-armed bandit: the canonical OL problem

• There are 𝑚 arms (machines)

• Arm 𝑖 has an unknown reward distribution 

with unknown mean 𝜇𝑖
– best arm 𝜇∗ = max 𝜇𝑖

• In each round, the player selects one arm to 

play and observes the reward
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Multi-armed bandit problem

– Regret after playing 𝑇 rounds:

• Regret =𝑇𝜇∗ − 𝔼[σ𝑡=1
𝑇 𝑅𝑡(𝑖𝑡

𝐴) ]

• Objective: minimize regret in 𝑇 rounds

• Balancing exploitation-exploration tradeoff

• Known results:

– UCB1 (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]

• Gap-dependent bound O(log 𝑇σ𝑖:Δ𝑖>0
1/Δ𝑖), Δ𝑖 = 𝜇∗ − 𝜇𝑖, match lower bound

• Gap-free bound O( 𝑚𝑇 log 𝑇), tight up to a factor of log 𝑇
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Naïve application of MAB

• Every set of k webpages is treated as an arm

• Reward of an arm is the total click-through 

counted by the number of people

• Issues

– combinatorial explosion

– ad-user click-through information is wasted
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Issues when applying MAB to combinatorial setting

• The action space is exponential

– Cannot even try each action once

• The offline optimization problem may already be hard

• The reward of a combinatorial action may not be linear on its 

components 

• The reward may depend not only on the means of its component 

rewards
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Combinatorial Online Learning

• General framework

– Treat offline optimization as an oracle

– Characterize general learning conditions

– Focus on online tradeoff between exploration and exploitation

• My existing work

– ICML’13/JMLR’16: general combinatorial multi-armed bandit (CMAB) framework, 
apply to non-linear rewards, approximation oracle, probabilistically triggered arms

– ICML’14: combinatorial partial monitoring

– NIPS’14: combinatorial pure exploration

– NIPS’15: online greedy learning

– ICML’16: contextual combinatorial cascading bandits

– NIPS’16: CMAB with general reward functions
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ICML’2013/JMLR’2016, joint work with

Yajun Wang, Microsoft

Yang Yuan, Cornell U.

Qinshi Wang, Tsinghua U.

Combinatorial Multi-Armed Bandit

and Its Extension to Probabilistically 

Triggered Arms
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Contribution of this work

• Stochastic combinatorial multi-armed bandit framework

– handling non-linear reward functions

– UCB based algorithm and tight regret analysis

– extend to probabilistically triggered arms

– new applications using CMAB framework

• Comparing with related work

– linear stochastic bandits [Gai et al. 2012]
• CMAB is more general, and has much tighter regret analysis

– online submodular optimizations (e.g. [Streeter& Golovin’08, Hazan&Kale’12])
• for adversarial case, different approach

• CMAB has no submodularity requirement
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CMAB Framework
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Combinatorial multi-armed bandit (CMAB) framework

• A super arm 𝑆 is a set of (base) arms, 𝑆 ⊆ [𝑚]

• In round 𝑡, a super arm 𝑆𝑡
𝐴 is played according algo 𝐴

• When a super arm 𝑆 is played, all based arms in 𝑆 are 

played

• Outcomes of all played base arms are observed ---

semi-bandit feedback

• Outcome of arm 𝑖 ∈ [𝑚] has an unknown distribution 

with unknown mean 𝜇𝑖
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Rewards in CMAB

• Reward of super arm 𝑆𝑡
𝐴 played in round 𝑡, 𝑅𝑡(𝑆𝑡

𝐴), is 
a function of the outcomes of all played arms

• Expected reward of playing arm 𝑆, 𝔼[𝑅𝑡 𝑆 ], only 

depends on 𝑆 and the vector of mean outcomes of 

arms, 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑚), denoted 𝑟𝝁 𝑆

– e.g. linear rewards, or independent Bernoulli random 

variables

– generalization to be discussed later

• Optimal reward: opt𝝁 = max
𝑆

𝑟𝝁(𝑆)
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Handling non-linear reward functions ---

two mild assumption on 𝑟𝝁 𝑆

• Monotonicity

– if 𝝁 ≤ 𝝁′ (pairwise), 𝑟𝝁 𝑆 ≤ 𝑟𝝁′ (𝑆), for all super arm 𝑆

• Bounded smoothness

– there exists a strictly increasing function 𝑓 ⋅ , such that for any two expectation 

vectors 𝝁 and 𝝁′, 

|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝑓 Δ , where Δ = max𝑖∈𝑆|𝜇𝑖 − 𝜇𝑖
′|

– Small change in 𝝁 lead to small changes in 𝑟𝝁 𝑆

• A general version of Lipschitz continuity condition

• Rewards may not be linear, a large class of functions satisfy these 

assumptions
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Offline computation oracle ---

allow approximations and failure probabilities

• 𝛼, 𝛽 -approximation oracle:

– Input: vector of mean outcomes of all arms 𝝁 =
(𝜇1, 𝜇2, … , 𝜇𝑛), 

– Output: a super arm 𝑆, such that with probability at 

least 𝛽 the expected reward of 𝑆 under 𝝁, 𝑟𝝁 𝑆 , is 

at least 𝛼 fraction of the optimal reward:

Pr 𝑟𝝁 𝑆 ≥ 𝛼 ⋅ opt𝝁 ≥ 𝛽
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𝛼, 𝛽 -Approximation regret

• Compare against the 𝛼𝛽 fraction of the optimal

Regret = 𝑇 ⋅ 𝛼𝛽 ⋅ opt𝝁 − 𝔼[σ𝑖=1
𝑇 𝑟𝝁(𝑆𝑡

𝐴)]

• Difficulty: 

– do not know arm outcome distribution

– Oracle treatment: ignore

• combinatorial structure

• reward function

• how oracle computes the solution
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Classical MAB as a special case

• Each super arm is a singleton

• Oracle is taking the max, 𝛼 = 𝛽 = 1

• Bounded smoothness function 𝑓 𝑥 = 𝑥
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Our solution: CUCB algorithm
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Offline computation 
oracle

superarm 𝑆

play 

superarm 𝑆

ഥ𝝁 = ( ҧ𝜇1, ҧ𝜇2, … , ҧ𝜇𝑛)

observe arm feed 
back and update 

sample mean 
estimate

adjust sample 
mean to upper 

confidence bound

ෝ𝝁 = ( Ƹ𝜇1, Ƹ𝜇2, … , Ƹ𝜇𝑛)

ҧ𝜇𝑖 = Ƹ𝜇𝑖 +
3 ln 𝑇

2𝑇𝑖

Ƹ𝜇𝑖 : sample mean 

outcome on arm 𝑖

𝑇𝑖 : # of times arm 𝑖 is played; 

key tradeoff between 

exploration and exploitation



Theorem 1: Gap-dependent bound

• The (𝛼, 𝛽)-approximation regret of the CUCB algorithm in 𝑛 rounds 
using an (𝛼, 𝛽)-approximation oracle is at most



𝑖∈ 𝑛 ,Δmin
𝑖 >0

6 ln 𝑇 ⋅ Δmin
𝑖

(𝑓−1(Δmin
𝑖 ))2

+න
Δmin
𝑖

Δmax
𝑖

6 ln 𝑇

(𝑓−1(𝑥))2
d𝑥 +

𝜋2

3
+ 1 ⋅ 𝑛 ⋅ Δmax

– Δmin
𝑖 (Δmax

𝑖 ) are defined as the minimum (maximum) gap between 𝛼 ⋅ opt𝝁
and reward of a bad super arm containing 𝑖. 
• Δmin = min

𝑖
Δmin
𝑖 , Δmax = max

𝑖
Δmax
𝑖

• Here, we define the set of bad super arms as

• When 𝑓 𝑥 = 𝛾 ⋅ 𝑥, regret bound: 𝑂 σ𝑖
𝛾2 ln 𝑇

Δmin
𝑖

• Match UCB regret for classic MAB
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Theorem 2: Gap-free bound

• Consider a CMAB problem with an (𝛼, 𝛽)-approximation oracle. 

If the bounded smoothness function 𝑓 𝑥 = 𝛾 ⋅ 𝑥𝜔 for some 𝛾 >
0 and 𝜔 ∈ (0,1], the regret of CUCB is at most: 

2𝛾

2 − 𝜔
⋅ 6𝑛 ln 𝑇

𝜔
2 ⋅ 𝑇1−

𝜔
2 +

𝜋2

3
+ 1 ⋅ 𝑛 ⋅ Δmax

• When 𝜔 = 1, the gap-free bound is 𝑂(𝛾 𝑛𝑇 ln 𝑇)
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Applications of CMAB
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Application to ad placement

• Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)
• Each edge is a base arm

• Each set of edges linking 𝑘 webpages is a super 
arm

• Bounded smoothness function
𝑓 Δ = 𝐸 ⋅ Δ

• (1 − Τ1 𝑒 , 1)-approximation regret



𝑖∈𝐸,Δmin
𝑖 >0

12 𝐸 2 ln 𝑇

Δmin
𝑖

+
𝜋2

3
+ 1 ⋅ |𝐸| ⋅ Δmax

• improvement based on clustered arms is available
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Application to linear bandit problems

• Linear bandits: matching, shortest path, spanning tree (in 

networking literature)

• Maximize weighted sum of rewards on all arms

• Our result significantly improves the previous regret bound on 

linear rewards [Gai et al. 2012]

– Also provide gap-free bound
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Application to social influence maximization

• Each edge is a base arm

• Require a new model extension to allow probabilistically 

triggered arms

– Because a played base arm may trigger more base arms to be played --

- the cascade effect

• Use the same CUCB algorithm

• Included in the journal version, JMLR’2016
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Extensions and Variants

CNCC'2016 Online Algorithm Forum, Oct. 21, 2016 26



1. What if the feedback is 

limited?
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Motivating example: Crowdsourcing

• Matching workers with tasks in a bipartite graph

– Multiple timeslots: In each timeslot, assign one worker to 

one task, and the performance is probabilistic

– Goal: cumulative reward from all timeslots and all worker-

task pair performance

• Feedback may be limited: 

• workers may not report their performance

• Some edges may not be observed in a round. 

• Feedback may or may not equal to reward

Workers Tasks

1

2

3

1

2

3

44
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joint work with

Tian Lin, Tsinghua U.

Bruno Abrahao, Robert Kleinberg, Cornell U.

John C.S Lui, CUHK

See ICML’14: Combinatorial Partial 

Monitoring Game with Linear Feedback 

and Its Applications
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2. How to test base arms 

efficiently to find the best super 

arm?
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Motivating example: Crowdsourcing

• Matching workers with tasks in a 

bipartite graph

– Initial test period: adaptively test worker-

task pair performance 

– Goal: at the end of test period, find the 

best worker-task matching

Workers Tasks

1

2

3

1

2

3

44
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joint work with

Shouyuan Chen, Irwin King, Michael R. Lyu, CUHK

Tian Lin, Tsinghua U.

See NIPS’14: Combinatorial Pure 

Exploration in Multi-Armed Bandits
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3. How to turn offline greedy 

algorithm to online greedy?
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Motivation

• Greedy algorithm is extensively used in optimizations as 

approximation algorithms or heuristics

• Is there a systematic way of turn offline greedy algorithm into an 

online greedy learning algorithm?

• Can be viewed as open up the offline oracle to help learning
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joint work with

Tian Lin, Jian Li, Tsinghua U.

See NIPS’15: Stochastic Online Greedy 

Learning with Semi-bandit Feedbacks
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4. What if estimating means of 

arms is not enough?
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Motivating example: graph routing

• Expected Utility Maximization (EUM) Model

– Each edge 𝑖 has a random delay 𝑋𝑖
– Each routing  path is a subset of edges, 𝑆

– utility of a routing path 𝑆: 𝑢 σ𝑖∈𝑆𝑋𝑖
• 𝑢(⋅) is nonlinear, modeling risk-averse or risk-prone 

behavior

– Goal: maximize 𝔼[𝑢 σ𝑖∈𝑆𝑋𝑖 ]

• Issue for online learning (when distributions of 

𝑋𝑖 ’s are unknown

– only estimating the mean of 𝑋𝑖 is not enough
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joint work with

Wei Hu, Princeton U.

Fu Li, U. of Texas at Austin

Jian Li, Yu Liu, Tsinghua U

Pinyan Lu, Shanghua U. of Finance and Economics

See NIPS’16: Combinatorial Multi-Armed 

Bandit with General Reward Functions
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Overall summary

• Central theme

– deal with stochastic and unknown inputs for combinatorial optimization 

problems

– modular approach: separate offline optimization with online learning

• learning part does not need domain knowledge on optimization

• More wait to be done

– Many other variants of combinatorial optimizations problems --- as 

long as it has unknown inputs need to be learned

– E.g., nonlinear rewards, approximations, adversarial unknown inputs, etc.
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Thank you!
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