
75

75MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

The basic development of growth transformation (GT)-based optimization for the hidden Markov
model (HMM) and of the unifi ed objective function has been presented in earlier chapters, where
several practical considerations and implementation issues are left to this chapter.

6.1 COMPUTING Dg (i, r, t) IN GROWTH-TRANSFORM
FORMULAS

In (5.20) computing Dg (i, r, t) involves summation over all possible superstring label sequences
s = s1, . . . , sR. The number of training tokens (sentence strings), R, is usually very large. Hence,
the summation over s needs to be decomposed and simplifi ed. To proceed, we use the notations of
s¢ = s1, . . . , sr - 1, s² = sr + 1, . . . , sR, X ¢ = X1, . . . , Xr - 1, and X ² = Xr + 1, . . . , XR. Then, from (5.20),
we have,

Dg(i, r, t) = å
s ′
å
sr
å
s ′′

p
(
s ′, sr, s ′′|X ′, Xr, X ′′;L′)(C(s ′, sr, s ′′)− O(L ′)

)
gi, r, sr(t)

= å
sr

p
(
sr
∣∣Xr,L ′)[å

s ′
å
s ′′

p
(
s ′, s ′′

∣∣X ′, X ′′ ; L′)(C(s ′, sr s ′′)− O(L′)
)]

︸ ︷︷ ︸
Y

gi, r, sr(t)

(6.1)

where factor Y is the average deviation of the accuracy count for the given string sr. The remaining
steps in simplifying the computation of Dg (i, r, t) will be separate for maximum mutual informa-
tion (MMI) and minimum classifi cation error/minimum phone error/minimum word error (MCE/
MPE/MWE) because the parameter-independent accuracy count function C(s) for them takes the
product and summation form, respectively (as shown in Table 3.1).

Practical Implementation of
Discriminative Learning

C H A P T E R 6

76 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

76MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

6.1.1 Product Form of C(s) (for MMI)
For MMI, we have C (s) = C (s1 , . . . , sR) = PR

r = 1C (sr) = PR
r = 1d(sr, Sr) in a product form. Using

C (s¢, sr, s ²) = C(sr) × C (s ¢, s²), we simplify factor Y in (6.1) to

Y = å
s ′
å
s ′′

p
(
s ′, s ′′

∣∣X ′,X ′′ ;L′)(C(s ′, sr, s ′′)− O(L′)
)

= C(sr) ·å
s ′
å
s ′′

p
(
s ′, s ′′

∣∣X ′,X ′′ ;L′)C(s ′, s ′′)− O(L′)

= O(L′)

⎛
⎜⎝C(sr) ·å

s ′
å
s ′′

p(s ′, s ′′
∣∣X ′, X ′′ ;L′)C(s ′, s ′′)

O(L′)
− 1

⎞
⎟⎠

(6.2)

The idea behind the above steps is to make use of the product form of the C(s) function for
canceling out common factors in both O(L¢) and C(s) functions. To proceed, we now factorize O(L¢)
as follows:

O(L′) =

å
s ′
å
sr
å
s ′′

[
p
(
s ′, sr, s ′′,X ′, Xr, X ′′ ∣∣L′)C(s ′, sr, s ′′)

]
å
s ′
å
sr
å
s ′′

p
(
s ′, sr, s ′′,X ′,Xr,X ′′ ∣∣L′)

=

[
å
sr

p(sr,Xr|L′)C(sr)

][
å
s ′
å
s ′′

p
(
s ′, s ′′,X ′,X ′′ ∣∣L′)C(s ′, s ′′)

]
[

p(Xr |L′)
][

p(X ′,X ′′ |L′)
]

= å
sr

[
p
(
sr
∣∣Xr,L′)C(sr)

] ·å
s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)C(s ′, s ′′)

= p
(
Sr
∣∣Xr,L′) ·å

s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)C(s ′, s ′′)

where the last step uses C (sr) = d(sr, Sr). Substituting this to (6.2) then gives the simplifi cation of

Y = O(L′)

⎛
⎜⎝ C(sr) ·å

s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)C(s ′, s ′′)

p(Sr |Xr,L′) ·å
s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′,L′)C(s ′, s ′′)

− 1

⎞
⎟⎠

= O(L′)
(

C(sr)
p(Sr |Xr,L′)

− 1
)

 (6.3)

Substituting (6.3) to (6.1) and using C(sr) = d(sr , Sr) again for MMI, we obtain

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 77

77MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

Dg(i, r, t) = O(L′)å
sr

p
(
sr
∣∣Xr,L′)(C(sr)

p(Sr |Xr,L′)
− 1
)
gi, r, sr(t)

= O(L′) å
sr, sr �=Sr

p
(
sr
∣∣Xr,L′)(C(sr)

p(Sr |Xr,L′)
− 1
)
gi, r, sr(t)

+ O(L′)p
(
Sr
∣∣Xr,L′)(C(Sr)

p(Sr |Xr,L′)
− 1
)
gi, r,Sr(t)

= − O(L′) å
sr, sr �=Sr

p
(
sr
∣∣Xr,L′)gi, r, sr(t) + O(L′)

(
1− p(Sr

∣∣Xr,L′)
)
gi,r,Sr(t)

= O(L′)

[
gi, r,Sr(t)−å

sr

p
(
sr
∣∣Xr,L′)gi, r, sr(t)

]
(6.4)

In the reestimation formulas (5.35) and (5.36), if we divide both the nominator and denomi-
nator by O(L¢), Dg (i,r, t) in (6.4) can take a simplifi ed form of

 Dg̃(i, r, t) =

[
gi, r,Sr(t)−å

sr

p
(
sr
∣∣Xr,L′)gi, r, sr(t)

]
= gnum

i, r (t)− gden
i, r (t) (6.5)

The corresponding constant Di in the reestimation formulas (5.35) and (5.36) then becomes

 D̃i = Di/O(L′) (6.6)

Substituting this into (5.35) and (5.36), we have the GT formulas for MMI

mi =

R

å
r=1

Tr

å
t=1

[
gnum

i, r (t)− gden
i, r (t)

]
xt + D̃im ′

i

R

å
r=1

Tr

å
t=1

[
gnum

i, r (t)− gden
i, r (t)

]
+ D̃i (6.7)

Si =

R

å
r=1

Tr

å
t =1

[
gnum

i, r (t)− gden
i, r (t)

]
(xt − mi)(xt − mi)T + D̃iS′i + D̃i(mi − m ′

i)(mi − m ′
i)

T

R

å
r=1

Tr

å
t=1

[
gnum

i, r (t)− gden
i, r (t)

]
+ D̃i

(6.8)

This gives the classical GT/EBW-based MMI reestimation formulas described in [34, 52].
Equation (6.4) or (6.5) gives an N-best-string-based solution to computing Dg (i,r, t).

This is illustrated by the string-level summation over sr (i.e., the label sequence for token r,
including both correct and incorrect strings). For N-best string-level discriminative training, the
summation over sr in (6.4) or (6.5) amounts to going through all N-best string hypotheses and is

xiaohe
Comment on Text
numerator

78 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

78MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

computationally inexpensive when N is relatively small (e.g., N in the order of thousands as typical
for most N-best experiments).

When a lattice instead of an explicit N-best list is provided for competing hypotheses in dis-
criminative training, in theory, (6.4) or (6.5) can be applied just as for the N-best string based solution
already discussed. This is because a lattice is nothing more than a compact representation of N-best
strings. However, because N in this equivalent “N-best list” would be huge (in the order of billions or
higher [57]), more effi cient techniques for dealing with the summation over sr in computing (6.4) or
(6.5) will be needed. Readers are referred to Section 6.2 for details of such computation.

6.1.2. Summation Form of C(s) (MCE and MPE/MWE)
Different from MMI, for MCE and MPE/MWE, we have C(s) = C(s1 , . . . , sR) = SR

r = 1C (sr), or C(s¢,
sr, s²) = C(sr) + C(s¢, s²). That is, the C function is in a summation instead of a product form. This
changes the simplifi cation steps for factor Y of (6.1) as follows:

Y =å
s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)(C(s ′, sr, s ′′)− O(L′)

)
= å

s ′
å
s ′′

pL′
(
s ′, s ′′|X ′, X ′′)C(sr) +å

s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)C(s ′, s ′′)

−å
s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)O(L′) = C(sr) +å

s ′
å
s ′′

p
(
s ′, s ′′|X ′,X ′′;L′)C(s ′, s ′′)− O(L′)

(6.9)

The idea behind the above steps is to make use of the summation form of the C(s) function
for subtracting out the common terms in the O(L¢) function. To achieve this, we decompose O(L¢),
based on its original nonrational form (3.20) or (3.22), (3.23) as follows:

 O(L′) =
R

å
i=1

å
si

p
(
Xi, si

∣∣L′)C(si)

å
si

p
(
Xi, si

∣∣L′)

=
å
sr

p
(
Xr, sr

∣∣L′)C(sr)

å
sr

p
(
Xr, sr

∣∣L′) +
R

å
i=1, i�=r

å
si

p
(
Xi, si

∣∣L′)C(si)

å
si

p
(
Xi, si

∣∣L′)

=
å
sr

p
(
Xr, sr

∣∣L′)C(sr)

åsr
p
(
Xr, sr

∣∣L′) +
å

s ′, s ′′
p
(
s ′, s ′′,X ′,X ′′ ∣∣L′)C(s ′, s ′′)

å
s ′ , s ′′

p
(
s ′, s ′′,X ′,X ′′ ∣∣L′)

=
åsr

p
(
Xr, sr

∣∣L′)C(sr)

å
sr

p
(

Xr, sr
∣∣L′) +å

s ′, s ′′
p
(
s ′, s ′′|X ′,X ′′ ∣∣L′)C(s ′, s ′′)

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 79

79MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

The second term above cancels out the same term in (6.9), leading to the simplifi cation of

Y = C(sr)−
å
sr

p
(
sr, Xr

∣∣L′)C(sr)

å
sr

p
(
sr,Xr

∣∣L′) (6.10)

Now, substituting (6.10) back to (6.1), we obtain

Dg(i, r, t) =å
sr

p
(
sr
∣∣Xr,L′)

⎛
⎜⎝C(sr)−

å
sr

p
(
Xr, sr

∣∣L′)C(sr)

å
sr

p
(
Xr, sr

∣∣L′)
⎞
⎟⎠gi, r, sr(t) (6.11)

For MCE that has C(sr) = d(sr,Sr), the above equation can be further simplifi ed to

Dg(i, r, t) = p

(
Sr
∣∣Xr,L′)[gi, r,Sr(t)−å

sr

p
(
sr
∣∣Xr,L′) gi, r, sr(t)

]
 (6.12)

Again, if a lattice instead of an N-best list is provided for discriminative learning, a huge
number of terms in the summation over sr in (6.11) would be encountered. To keep the computation
manageable, one needs to approximate the computation in (6.11), which we describe below.

6.2 COMPUTING Dg (i, r, t) USING LATTICES
A lattice, as illustrated in Figure 6.1, is a compact representation of a large list of strings. It is an
acyclic directed graph consisting of a number of nodes (nine in Figure 6.1 as a highly simplifi ed
example) and a set of directed arcs each connecting two nodes. In Figure 6.1, each node corresponds
to a time stamp and each arc corresponds to a substring unit (e.g., a word of a phone in a sentence).
A string in the lattice contains multiple arcs. A typical arc is shown as q in Figure 6.1. Two time
stamps, bq and eq, are associated with each arc, providing an estimate of the segment boundaries for
the substring. For a time slice t within the arc segment q, we have bq £ t £ eq .

We will show below that (6.5) and (6.11) can both be computed effi ciently by a forward–
backward algorithm. First, given the lattice in Figure 6.1 and sr as an arbitrary path in that lattice,
we will show the occupancy given the entire string sr can be computed as the occupancy given the
local arc q, where arc q belongs to sr. that is,

gi, r,q(t) = gi, r, sr(t) when bq ≤ t ≤ eq (6.13)

To see this, let sr be composed of three substrings: s ¢r, q, s², and correspondingly the observa-
tion sequence Xr is composed of three subsequences: X ²r, Xq, X ². Then the right-hand side of (6.13)
can be analyzed as

80 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

80MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

 gi, r, sr(t :bq ≤ t ≤ eq) = p
(

qr, t :bq ≤ t ≤ eq
= i
∣∣Xr, sr,L′

)
= p

(
qr, t :bq ≤ t ≤ eq

= i
∣∣X ′

r,Xq,X ′′
r , s ′r,q, s ′′r ,L′

)
= p

(
qr, t :bq ≤ t ≤ eq

= i
∣∣Xq,q,L′

)
= gi, r,q(t:bq ≤ t ≤ eq)

which is the left-hand side of (6.13). The third step holds because the HMM of sr is formed by con-
catenating phone-specifi c HMMs, so that the states in different arcs belong to different HMMs,
and are independent of each other, that is, given arc q, its fi rst HMM state qr,b is independent of its
preceding state qr,bq - 1.

The essence of (6.13) is to decouple the dependency on the local arc q from the entire string
sr. This enables drastic simplifi cation of the computation in (6.5) and (6.11), which we discuss below
for three separate cases.

6.2.1 Computing Dg (i, r, t) for MMI Involving Lattices
The principal computation burden in (6.5) is the huge number (N) of summation terms for sr for
the equivalent N-best list of a lattice in the following quantity in (6.5):

FIGURE 6.1: A graphical illustration of a lattice, where q represents an arc in the lattice and t repre-
sents a time slice. The time span of arc q is bq £ t £ eq and that for the entire lattice is 1 £ t £ T. In this
simple example, the total number of arcs (q) is 21, which is substantially lower than the total number
of paths (sr) of (4.20). The essence of the decomposition of occupation probability introduced in the
text (Eq. (6.25)) is to enable fast computation by reducing the number of terms in summation over sr
to that over q.

Q1Q1

xiaohe
Comment on Text
which is 420.

xiaohe
Comment on Text
(6.13)

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 81

81MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

¡ =å

sr
p
(
sr
∣∣Xr,L′)gi, r, sr(t) (6.14)

Using (6.13), we can signifi cantly reduce the computation by the following simplifi cation:

¡ = å
sr

p
(
sr
∣∣Xr,L′) gi, r,q(t) = å

q : t∈[bq, eq]
gi, r,q(t) · å

sr :q∈sr
p
(
sr
∣∣Xr,L′)

= å
q : t∈[bq, eq]

gi, r,q(t) · p
(
q
∣∣Xr,L′) = å

q : t∈[bq, eq]
gi, r, q(t)·p

(
q,Xr |L′)

p(Xr |L′)

 (6.15)

Note that the number of summation terms for q in (6.15) after the approximation is substan-
tially smaller than that for sr before the approximation. The key quantities in (6.15) can be effi ciently
computed as follows (proof omitted):

 p(q,Xr
∣∣L′) = a(q)b(q) (6.16)

 p
(
Xr
∣∣L′) = å

q :q∈{ending arcs}
p
(
q, Xr

∣∣L′) = å
q :q∈{ending arcs}

a(q) (6.17)

where the “forward” and “backward” probabilities are defi ned by

 a(q) � p
(
q, X ′

r(q) , Xr(q)
∣∣L′) (6.18)

b(q) � p

(
X ′′

r (q)
∣∣q,L′) (6.19)

In (6.18), X ¢r(q) denotes the rth training token’s partial observation sequence preceding arc q,
that is, during 1 £ t < bq. Xr(q) is the observation sequence bounded by arc q with bq £ t £ eq. X ²r(q)
in (6.19) denotes the partial observation sequence succeeding arc q, or during eq < t £ Tr. a(q) is the
probability that lattice is at arc q during time bq £ t £ eq, and having generated partial observation
X ¢r(q) plus Xr(q), that is, xr,1 ,…, xr,eq. b(q) is the probability of generating partial observation X ²r(q)
given that the lattice is at arc q at time t = eq.

For each arc q in the lattice, a(q) and b(q) can be computed by the following effi cient forward
and backward recursions, respectively (proofs omitted):

a(q) = å
{p : p precedes q}

P
(
q
∣∣p,L′)p

(
Xr(q)

∣∣p,L′)a(p)

(6.20)

and

b(q) = å
{v : v succeeds q}

P
(
v
∣∣q,L′)p

(
Xr(v)

∣∣v,L′)b(v)

(6.21)

xiaohe
Comment on Text
lower-case p

xiaohe
Comment on Text
lower-case p

xiaohe
Comment on Text
q

82 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

82MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

where in (6.20), { p: p precedes q} is the collection of all arcs p that directly connects to q in the lattice.
Similarly, {v: v succeeds q} in (6.21) is the collection of all arcs v that directly connect to q in the
lattice. a(q) is initialized at the starting arc q0 by a(q0) = p (q0)p (Xr(q0)|q0, L¢), and b(q) initialized at
the ending arc qE by b(qE) = 1.

The recursive computation of a(q) and b(q) is illustrated in Figure 6.2. There is a direct
analogy between this forward and backward probability computation over the sublattice illustrated
here and that for the standard HMM over time [10, 43]. In Figure 6.2, the arc q under consider-
ation is analogous to the HMM state occupied at current time frame t in describing the HMM’s
forward–backward algorithm, the set of arcs {p: p precedes q} is analogous to all states in HMM at
frame t - 1, the set {v: v succeeds q} is analogous to all states in HMM at frame t + 1. Xr¢(q) plays the
role of the sequence of observation vectors from 1 to t - 1, and Xr²(q) plays the role of the sequence
of observation vectors from t + 1 to the end. P(q|p,L¢) is analogous to the HMM’s transition prob-
ability (and its value is available from the lattice as the phone or word’s “bigram language model”
score). p(Xr(q)|q,L¢) is analogous to the HMM’s emission probability (and its value is available from
the lattice as the “acoustic model” score for arc q). Given these analogies, the forward and backward
probability computation for (6.20) and (6.21) as illustrated in Figure 6.2 becomes identical to that
for the standard HMM (as illustrated in Figures 6.5 and 6.6 of Ref. [43]).

FIGURE 6.2: Illustrations of the sublattice that contains arc q and of the computation of the forward
and backward a(q) and b(q) based on the sublattice. Each solid line represents an arc in the lattice, and
each dashed line represents the direct connection between two arcs (i.e., bq - 1 = ep).

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 83

83MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

6.2.2 Computing Dg (i, r, t) for MPE/MWE Involving Lattices
We now describe how the computation burden in (6.11) due to the huge number of summation
terms over string sr can be drastically reduced for the MPE/MWE case. It should be pointed out
that (6.11) is a unifi ed form for both MCE and MPE/MWE. However, due to the different proper-
ties of C(sr) (i.e., MCE has each term as the Kronecker delta function, but not so for MPE/MWE),
the lattice-based computation of (6.11) for MCE and MPE/MWE becomes different.

Consider a particular string token sr that consists of a sequence of subtokens or substrings.
For MCE, C(sr) = d(sr, Sr), and hence if any of the subtokens is incorrect, the entire token is in-
correct also. On the other hand, for MPE, C(sr) = A(sr, Sr), which is the raw phone (substring)
accuracy count in the sentence string sr. Therefore, we have a sum of raw phone (sub-
string) accuracy counts of all subtokens; that is, for sr = sr,1, …, sr,Nr, we have C(sr) = SN

i = 1C(sr, i),
where C(sr, i) is the raw accuracy count of the subtoken sr,i. Readers are referred to [40] for the com-
putation of C(sr, i) for subtoken sr,i in the lattice.

In this section, we discuss the lattice-based computation of (6.5) for MPE/MWE. (The
lattice-based MCE will be discussed in the next section.)

To proceed, we defi ne

C̄r �
å
sr

p
(
Xr, sr

∣∣L′)C(sr)

å
sr

p
(
Xr, sr

∣∣L′) (6.22)

which is the average accuracy count of utterance r, given the observation sequence (Xr) and the lat-
tice that represents all possible strings sr.

Then, we make use of (6.13) to simplify (6.11) as follows:

Dg(i, r, t) = å
sr

p
(
sr |Xr ,L′)(C(sr)−C̄r

)
gi, r, sr(t)

= å
q : t∈[bq, eq]

å
sr :q∈sr

p
(
sr
∣∣Xr,L′)(C(sr)−C̄r

)
gi, r,q(t)

= å
q : t∈[bq, eq]

gi, r,q(t)·
[
å

sr :q∈sr
p
(
sr
∣∣Xr,L′)C(sr)−C̄r · å

sr :q∈sr
p
(
sr
∣∣Xr,L′)]

= å
q : t∈[bq, eq]

gi, r,q(t)·

⎡
⎢⎣p
(
q
∣∣Xr,L′) · åsr :q∈sr

p
(

sr
∣∣Xr,L′)C(sr)

p
(
q |Xr,L′) −C̄r · p

(
q
∣∣Xr,L′)

⎤
⎥⎦

= å
q : t∈[bq, eq]

gi, r,q(t) · p
(
q
∣∣Xr,L′) · [C̄r(q)−C̄r

]
(6.23)

84 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

84MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

where p(q |Xr, L¢) = Ssr :q Îsr p(sr |Xr, L¢) =
p(q |Xr, L¢)

p(Xr, L¢)

 is computed in the same way as for (6.16)
and (6.17). In (6.23), we defi ne

 C̄r(q) =
å

sr :q∈sr
p
(
sr
∣∣Xr,L′)C(sr)

p
(
q |Xr,L′) =

å
sr :q∈sr

p
(
sr,Xr

∣∣L′)C(sr)

å
vr : q∈vr

p
(
vr,Xr

∣∣L′) (6.24)

which is the average accuracy count of the utterance r, given observation sequence Xr and the sub-
lattice that represents all strings sr containing arc q.

The diffi culty of computing C
_

r(q) and C
_

r in (6.23) lies in the very large number of terms in
the summation over sr: q Îsr and over sr, respectively. To effi ciently compute C

_
r(q) and C

_
r, we now

further defi ne the following two additional “forward” and “backward” variables for each arc q (fol-
lowing [40]):

 j(q) �
å

{s ′ : s ′ precedes q}
p
(
s ′,q,X ′

r(q),Xr(q)
∣∣L′)C(s ′, q)

å
{s ′: s ′ precedes q}

p
(
s ′,q,X ′

r(q),Xr(q)
∣∣L′) (6.25)

and

 y(q) �
å

{s ′′: s ′′ succeeds q}
p
(
s ′′,X ′′

r (q)
∣∣q,L′)C(s ′′)

å
{s ′′: s ′′ succeeds q}

p
(
s ′′,X ′′

r (q)
∣∣q,L′) (6.26)

In (6.25), j(q) is the weighted average accuracy count of the sublattice that represents all
partial paths (s ¢,q) ending inclusively in q, with the partial observation sequence X ¢r(q) È Xr(q)
(i.e., xr,1, …, xr,eq). In (6.26), y(q) is the weighted average accuracy count of the sublattice that
represents all partial paths s ² that succeeds q, with the partial observation sequence X ¢r(q). Figure
6.3 illustrates the sublattice that represents all sr that contains arc q, together with all the relevant
quantities for defi ning j(q) and y(q) based on the sublattice. To show these quantities in defi ning
j(q), we denote the accuracy count as C(s ¢,q) for a given partial path (s ¢,q) encircled by the dotted
line to the left of Figure 6.3. We denote the weight associated with this partial path as p(s ¢, q, X ¢r(q),
Xr(q)|L ¢). The relevant quantities defi ning y(q) are illustrated to the right of Figure 6.3, including
the partial path (s ²) that is to the future of arc q, the accuracy count C(s ²) associated with this path,
and the associated weight of p(s², X ²r(q)|L ¢).

We now describe the computation of j(q) as defi ned in (6.25) and y(q) defi ned in (6.26)
effi ciently for each arc q in the lattice. For j(q), we use the following effi cient “forward” recursion
(proof omitted):

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 85

85MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

j(q) =

å
{p :p precedes q}

P
(
q
∣∣p,L′)p

(
Xr(q)

∣∣p,L′)a(p)[j(p) + C(q)]

å
{p :p precedes q}

P
(
q
∣∣p,L′)p

(
Xr(q)

∣∣p,L′)a(p)

=

å
{p :p precedes q}

P
(
q
∣∣p,L′)a(p)j(p)

å
{p :p precedes q}

P
(
q
∣∣p,L′)a(p)

+ C(q)

(6.27)

where j(q) is initialized for each starting arc q0 by j(q0) = C (q0), which is the raw phone or word
accuracy for q0. For y(q), we use the following effi cient “backward” recursion (proof omitted):

 y(q) =

å
{v :v succeeds q}

p
(
Xr(v)

∣∣v,L′)P
(
v
∣∣q,L′)b(v) [C(v) + y(v)]

å
{v :v succeeds q}

p
(
Xr(v)

∣∣v,L′)P
(
v
∣∣q,L′)b(v)

 (6.28)

where y(q) is initialized for each ending arc qE by j(qE) = 0.
The recursive computation of j(q) in (6.27) is illustrated in Figure 6.4. Given the partial

observation sequence xr,1, …, xr,eq, [j(p) + C(q)] is the mean accuracy count of the sublattice that
represents all partial paths that pass p and end with q. These paths are marked by the dotted line

FIGURE 6.3: Illustrations of the sublattice that contains arc q, and of the probability weights that de-
fi ne j(q) of (6.25) and y(q) of (6.26) based on the sublattice.

xiaohe
Comment on Text
q

xiaohe
Comment on Text
q

86 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

86MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

in Figure 6.4. j(q) is a weighted sum and the weighted associated with each path passing arc p is
a(p)P(q | p, L¢)p(Xr(q) | p, L¢), where each of the three factors is associated with each corresponding
portion that makes up the path. The three factors are placed in the corresponding portions on the
path in Figure 6.4. The weighted average of [j(p) + C(q)] over all arcs p (directly preceding q) using
the three-factor weight above gives the recursive form of j(q) shown in the fi rst line of (6.27). The
second line of (6.27) removes some redundant computation and has been implemented in practice.

The recursive computation of y(q) in (6.28) can be similarly interpreted as the weighted
average of the accuracy count C(v) + y(v) for all arcs v directly following q.

Now given that both j(q) and y(q) are computed, and assuming that arc q depends only on
the arcs directly preceding it and succeeding it, we can use (6.25) and (6.26) to directly prove that

 C̄r(q) = j(q) + y(q) (6.29)

as one of the two quantities required to compute Dg (i, r, t) in (6.23). The interpretation of (6.29) is
offered by using Figure 6.3. By defi nition, C

_
r(q) is the average accuracy count for utterance r over

the sublattice shown in Figure 6.3 that contains arc q. This count can be decomposed into two parts.
The fi rst part is the “forward” average accuracy count of the left part of the sublattice in Figure 6.3
for the utterance from t = 1 to eq, which is j(q). The second part is the “backward” average accuracy
count of the right part of the sublattice for the utterance from t = eq + 1 to Tr, which is y(q).

FIGURE 6.4: Illustrations of the sublattice containing arc q and of the recursive j(q) computation based
on the sublattice. Each solid line represents an arc in the sublattice, and each dashed line represents the
transition between two arcs. The dotted line encircles all partial paths that pass p and end with q.

xiaohe
Comment on Text
q

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 87

87MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

The second quantity, C
_

r, required to compute Dg (i, r, t) in (6.23) can be proved to be

 C̄r =

å
q :q∈{ending arcs}

j(q)a(q)

å
q : q∈{ending arcs}

a(q)
 (6.30)

The interpretation of (6.30) is as follows. Let arc q be an ending arc in the lattice. And recall that
j(q) is the average accuracy count of utterance r given the sublattice that represents all sr containing
(sublattice-ending) arc q, and j(q) is the weight of this sublattice. Therefore, C

_
r, which is defi ned in

(6.22) as the average accuracy count for the entire lattice, becomes a weighted sum of the average
accuracy counts of all sublattices as shown in (6.30).

This completes the description of the computation of Dg (i, r, t) in (6.23).

6.2.3 Computing Dg (i, r, t) for MCE Involving Lattices
Finally, we discuss using lattice approximation (6.13) to compute Dg (i, r, t) of (6.11) for MCE. As
we mentioned earlier, whereas (6.13) is unifi ed between MPE and MCE, the specifi c form of C(sr) =
d(sr, Sr) in MCE permits special simplifi cation of Dg (i, r, t) of (6.11) for MCE. The simplifi cation
steps, followed by the use of (6.13), lead to

Dg(i, r, t) = å
sr

p
(
sr
∣∣Xr,L′)[C(sr)− p

(
Sr
∣∣Xr,L′)]gi, r, sr(t)

= p
(
Sr
∣∣Xr,L′)gi, r,Sr(t)− p

(
Sr
∣∣Xr,L′)[å

sr
p
(
sr
∣∣Xr,L′)gi, r, sr(t)

]

= p
(
Sr
∣∣Xr,L′)gi, r,Sr(t)− p

(
Sr
∣∣Xr,L′)⎡⎣ å

q : t∈[bq, eq]
gi, r,q(t) · å

sr :q∈sr
p
(
sr
∣∣Xr,L′)⎤⎦

= p
(
Sr
∣∣Xr,L′)gi, r,Sr(t)− p

(
Sr
∣∣Xr,L′)⎡⎣ å

q : t∈[bq, eq]
gi, r,q(t) · p

(
q
∣∣Xr,L′)⎤⎦

= p
(
Sr
∣∣Xr,L′)

⎡
⎢⎢⎢⎢⎢⎢⎣gi, r, Sr(t)︸ ︷︷ ︸

gnum
i, r (t)

− å
q : t∈[bq, eq]

gi, r,q(t) · p
(
q
∣∣Xr,L′)

︸ ︷︷ ︸
gden

i, r (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.31)

88 DISCRIMINATIVE LEARNING FOR SPEECH RECOGNITION

88MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

The last line shows striking similarity between lattice-based MCE and MMI. In (6.31),

p(q |Xr, L¢) =
p(q |Xr, L¢)

p(Xr, L¢)

 is computed by (6.16) and (6.17) for the numerator and denomina-

tor, respectively. Also in (6.31), we have p(Sr |Xr, L¢) =
p(Xr |Xr, L¢)p(Sr |L¢)

p(Xr, L¢)

 , where correct string Sr

is known. Hence, gi,r,Sr(t) and p(Xr |Sr, L¢) in (6.31) can be effi ciently computed by the standard

forward–backward algorithm for the HMM [43]. Finally, for the computation of p(Sr | L¢) and p(Xr

| L¢), we use the language model and Sq :q Î{ending arcs}a(q), respectively.
Note that the computation for the lattice-based MCE we provided in (6.31) does not require

removing the correct word string Sr from the lattice.

6.3 ARBITRARY EXPONENT SCALING IN MCE
IMPLEMENTATION

In this section, we discuss one of the two empirical issues in MCE implementation that were raised
in Chapter 3. In (3.15), if we use the exponent scaling factor h ¹ 1, we can obtain the following
result corresponding to (3.17):

lr (dr(Xr,L)) =

å
sr, sr �=Sr

ph (Xr, sr |L)

å
sr

ph (Xr, sr |L)

The corresponding result to (3.19) then becomes

OMCE(L) =
R

å
r=1

ph (Xr,Sr |L)
å
sr

ph (Xr, sr |L)

which can be reformulated into a rational function using the same steps as in Section 3.4.2:

 OMCE(L) =
ås1, ..., sR

ph (X1, . . . ,XR, s1, . . . , sR |L)CMCE(s1, . . . , sR)

å
s1, ..., sR

ph (X1, . . . ,XR, s1, . . . , sR |L)
 (6.32)

The remaining derivations in Chapters 4 and 5 will no longer follow strictly for the more
general and practical case of (6.32). In the MCE implementation that we have done, however, we
modify (6.11) for computing Dg (i, r, t) in the following manner in order to include the effects of
the exponent scaling factor:

Dg(i, r, t) =å

sr
p̃
(
sr
∣∣Xr,L′)(C(sr)−å

sr

p̃
(
Xr
∣∣sr,L′)C(sr)

)
gi, r, sr(t) (6.33)

xiaohe
Comment on Text
a) numerator:
p(q,X_r|\Lambda')

b) denominator:
p(X_r|\Lambda')

xiaohe
Comment on Text
S_r

xiaohe
Comment on Text
use '|' instead of ','

PRACTICAL IMPLEMENTATION OF DISCRIMINATIVE LEARNING 89

89MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

where p̃(sr |Xr, L¢) is the generalized posterior probability of sr, which can be computed as

p̃
(
sr
∣∣Xr,L′) =

ph (Xr, sr |L′)

å
sr

ph
(
Xr, sr

∣∣L′) (6.34)

After this modifi cation, all derivations in Chapters 4 and 5 are unchanged.

6.4 ARBITRARY SLOPE IN DEFINING MCE COST FUNCTION
The second empirical MCE implementation issue raised in Chapter 3 concerns the use of a ¹ 1 in
(3.16). For 1-best MCE, a acts as h; that is, we can equivalently set h = a, and a = 1. Then, we can
compute Dg (i, r, t) according to (6.33). For N-best MCE (N > 1), given the discriminant function
defi ned in (3.15) and sigmoid function defi ned in (3.16), we have the following result correspond-
ing to (3.17):

 lr (dr(Xr,L)) =

(
å

sr, sr �=Sr

ph (Xr, sr |L)

)a

ph ·a (Xr,Sr |L) +

(
å

sr, sr �=Sr

ph (Xr, sr |L)

)a (6.35)

Now, a is applied outside of the summation of scaled joint probabilities over all competing
strings, making rigorous computation intractable. In our practical MCE implementation, we in-
stead use Ssr, sr ¹ Sr p

a × h(Xr, sr |L) to approximate (Ssr, sr ¹ Sr p
h(Xr, sr |L))a. This approximation (which

is exact when h approaches infi nity) makes it equivalent to setting the new “h” as a · h, and setting
the new a = 1. Then, again, we can compute Dg (i, r, t) according to (6.33). It should be noted that,
with this approximation, the computation for the lattice-based MCE we provided in (6.31) does
not require removing the correct word string Sr from the lattice, as shown in (6.31) (Section 6.2.3).
This contrasts the solution in [31, 46] where the removal was necessary without using the approxi-
mation, making it more diffi cult to implement in practice.

The two empirical solutions cited above have been successfully implemented in our speech rec-
ognition system, yielding strong practical results (published in [20, 58]) that validate the solutions.

• • • •

90MC_He_Ch06_v1.indd Achorn International 06/25/2008 11:19AM

AQF v1.0
Achorn International, Inc.

The following queries have arisen during the typesetting of your manuscript. Please answer
these queries.

Query Marker Query Reply
Q1 "420" was tagged as (4.20). Please

check if this correct.

Thank you very much.

Author Query Form

(Queries are to be answered by the Author)

He – Chapter 6

