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Abstract

Crowd-sourcing is increasingly being used for providing an-
swers to online polls and surveys. However, existing systems,
while taking care of the mechanics of attracting crowd work-
ers, poll building, and payment, generally provide little by
way of cost-management (e.g. working with a tight budget),
time-management (e.g. obtaining results as quickly as pos-
sible), and controlling the margin of error (e.g. working on
a sample population which is largely different from the gen-
eral census statistics). The problems above create significant
pain points for those wanting to run large-scale surveys, such
as people doing polling for political campaigns, marketing
professionals, and the like.

Our work unlocks the possibility of large-scale polling on
a budget though the use of novel optimization strategies. Our
work, is based on InterPoll, a platform for programming
crowdsourced polls. In this paper, we present three static
and three runtime optimizations for InterPoll polls repre-
sented as LINQ queries. The former share some similarities
for traditional compiler optimizations, while the latter bor-
row insight from databases and real-life polling strategies.

These optimizations lead to significant improvements in
practice. In our experiments we observed tenfold savings in
survey cost and time savings of as much as 20 hours for some
of the queries.

1. Introduction

Online surveys have emerged as a powerful force for assessing
properties of the general population, ranging from conduct-
ing marketing studies, to product development, to political
polls, to customer satisfaction surveys, to medical question-
naires. Online polls are widely recognized as an affordable
alternative to in-person surveys, telephone polls, or face-to-
face interviews. Psychologists have argued that online sur-
veys are far superior to the traditional approach of finding
subjects in the college student pool, leading to the famous
quip about psychology being the study of the college sopho-
more [6].

Online surveys allow one to reach wider audience groups
and to get people to answer questions that they may
not be comfortable responding in a face-to-face setting.
While online survey tools such as Instant.ly, SurveyMonkey,
Qualtrics, and Google Customer Surveys take care of the
mechanics of online polling and make it easy to get started,
the results they produce often create more questions than
they provide answers [7–9, 12, 15, 33]. Indeed, polling too few
yields results that are not statistically significant; polling too

many is a waste of money. Prior work [22] has focused on de-
ciding how many people to poll to get statistically represen-
tative responses. Surveys, both online and offline, suffer from
selection biases, to mitigate which InterPoll supports au-
tomatic unbiasing.

Our work in this paper is based upon InterPoll, a
crowd-sourced survey building tool [21]. One of the goals
of InterPoll is to make running crowd-sourced polls easy
for the developer. InterPoll accomplishes this by using
LINQ [25], language-integrated queries. 1 These queries are
translated into surveys that are run on a general-purpose
crowd backend, such as Amazon’s Mechanical Turk. In-
terPoll provides a runtime that effectively integrates hu-
man and machine computation. This paper showcases some
of the optimizations this platform enables.

1.1 Motivating Examples

One of the goal of InterPoll is to make running crowd-
sourced polls easy for the developer as well as make them
easy to integrate into existing bodies of code.

Example 1 (Liberal arts majors) A simple poll may be
performed the following way:

1 var people =new MTurkQueryable<Person>(true, 5, 100, 2);
2 var liberalArtsPairs = from person in people
3 where person.Employment ==Employment.STUDENT
4 select new {
5 Person = person,
6 Value = person.PoseQuestion<bool>(
7 ”Are you a liberal arts major?”)
8 },
9 Income = person.Income;

The first line gets a handle to a population of users, in
this case obtained from Mechanical Turk, although other
back-ends are also possible. Populations on which we operate
have associated demographic information; for example, note
that the where clause on line 3 ensures that we only query
(college) students. This poll will ask (college) students if they
study liberal arts, producing an iterator of 〈Student, bool〉
pairs represented in .NET as IEnumerable. �

Example 2 (Counting) Given liberalArtsPairs, it is
possible to do a subsequent operation on the result, such as
printing out all pairs or using, the Count operation to count
the liberal arts majors:

1 var libralArtMajorsCount =
2 (from pair in liberalArtsPairs

1LINQ is natively supported by .NET languages, with Java
providing similar facilities with JQL.
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3 where pair .Value ==true
4 select person).Count();
5 var percentage = 100.0* libralArtMajorsCount/ liberalArtsPairs .Count();

Lines 5 and 6 compute the percentage of liberal art majors
within the previously collected population. �

Example 3 (Uncertainty) InterPoll explicitly supports
computing with uncertain data, using a style of program-
ming proposed in Bornholt et al. [4].

1 var liberalArtWomen =from person in people
2 where person.Gender ==Gender.FEMALE
3 where person.Employment ==Employment.STUDENT
4 select person.PoseQuestion<bool>(”Are you a liberal arts major?”);
5

6 var liberalArtMen = from person in people
7 where person.Gender ==Gender.MALE
8 where person.Employment ==Employment.STUDENT
9 select person.PoseQuestion<bool>(”Are you a liberal arts major?”);

10

11 var femaleVar = femaleSample.ToRandomVariable();
12 var maleVar =maleSampleList.ToRandomVariable();
13 if (femaleVar > maleVar){
14 Console.WriteLine(”More female liberal arts majors. ”);
15 }else{
16 Console.WriteLine(”More male liberal arts majors. ”);
17 }

Here, we convert the Boolean output of the posted question
to a random variable (lines 11 and 12). Then we proceed to
compare these on line 13. Note that the implicit > compar-
ison on line 13 actuality compiles to a t-test on femaleVar
and maleVar. �

1.2 High-Level Optimization Goals

In optimizing queries in InterPoll, we try to satisfy the
following goals, in order of general importance.

� Reduce overall cost for running a query; clearly for
many people, reducing the cost of running survey is
the most important “selling feature” when it comes to
optimizations. Not only does it allow people with a low
budget to start running crowd-sourced queries, it also
allows survey makers to 1) request more samples and 2)
run their surveys more frequently. Consider someone who
may previously have been able to run surveys weekly not
able to do so daily.

� Reduce the end-to-end time for running a query; we
have observed that in many cases, making surveys re-
quires iterating on how the survey is formulated. Clearly,
reducing the running times allows the survey maker to
iterate over their surveys to refine the questions much
faster. Consider someone who needs to wait for week only
to discover that they need to reformulate their questions
and run them again.

� Increase the precision and reduce the error rate (or con-
fidence interval) for the query results; while we support
unbiasing the results in InterPoll, one of the drawbacks
that is often cited as a downside of unbiasing is that the
error rate goes up. This is only natural: if we have an
unrepresentative sample which we are using for extrap-
olating the behavior for the overall population, the high
error rate will capture the paucity of data we are basing
our inference on.

This paper focuses on a mix of both static and runtime,
feedback-driven optimizations targeting the three goals
above. We note that unlike many compiler or runtime opti-

mizations, savings in this paper are of the 10× variety, not
the 10% variety2.

1.3 Contributions

Our contributions consist of optimizations, designed to fulfill
the three goals outlined above.

� We propose three static optimizations of LINQ trees;

� We implement optimizations for separating qualifying
questions and running queries in stages so as to reduce
the cost of surveys with a low yield;

� We develop strategies for re-balancing queries that re-
quire considering pairs of people to reduce the amount
of wasted effort and decrease the completion time;

� We automate the process of creating representative pan-
els in order to reduce the margin or error when unbiasing
surveys and to minimize the amount of wasted effort.

� We evaluate these ideas experimentally on surveys that
involve hundreds of crowd workers. Our optimizations
lead to significant improvements in practice. In our ex-
periments we observed tenfold savings in survey cost and
time savings of as much as 20 hours for some of the
queries.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2
presents static optimizations that involve requiring LINQ
query trees. The next three sections present and evaluate
individual runtime optiomizations. Since evaluations tend to
be fairly different, we found this approach easier to under-
stand than having an overall evaluation section at the end
of the paper. Section 3 focuses on dynamic execution strate-
gies that optimize for the query yield. Section 4 presents
optimizations designed to re-balance decision queries that
require considering pairs of people. Section 5 presents op-
timizations designed to pre-compute a balanced panel. Sec-
tion 6 gives an overview of related work and Section 7 con-
cludes. To help with exposition, throughout this paper, we
decided to co-locate descriptions of optimizations with ex-
perimental results.

2. Tree Rewriting Optimizations

One of the reasons we chose Language-Integrated
Queries (LINQ) in .NET was the support for intricate
providers, which allow the semantics of query processing to
be redefined in significant ways. Additionally, LINQ queries
seamlessly connect SQL-like queries over human-generated
data with the rest of the programs with all its traditional
constructs such as ifs, whiles, function calls, etc. Figure 4
shows some examples where regular constructs such as
boolean tests and arithmetic operations are embedded
within (and potenially outside) LINQ code.

2Lastly, we also aim to reduce potential frustration on the part
of the workers. While it is possible to create aggressive evaluation
strategies using InterPoll, doing so may result in a certain
amount of push-back from the workers and a loss of reputation
for InterPoll. One way to measure worker sentiment is via sites
such as various discussion fora such as HITsWorthTurkingFor
(http://www.reddit.com/r/HITsWorthTurkingFor/) or sites like
www.turkernation.com, which aim to highlight easy and well-
paying HITs (human interest tasks) and warn others about hits
that, for instance, do not pay as well as advertised or require more
time than expected to complete. Throughout the experiments
described in this paper, we aimed to remain “good citizens.”
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collection ::= from var in collection
[where boolExpr] select getter

collection ::= from var in collection
[where boolExpr] select creation

collection ::= Set
getter ::= var.field | var.getter(args)
creation ::= new struct
struct ::= {alias[, ...]}
alias ::= name = getter
boolExpr ::= true | false | getter compOp const |

boolExpr logicalOp boolExpr | !boolExpr
compOp ::= == | ! = | > | >= | < | <=
const ::= ”...” | 0, 1, ...|...
logicalOp ::= && | ||

Figure 1: Small BNF for LINQ expressions which InterPoll
can optimize.

1 from structure in
2 from person in employees
3 where person.Wage > 4000 && person.Region ==”WA”
4 select new {
5 Name = person.Name,
6 Boss = person.GetBoss(),
7 Sales = person.GetSales(42)
8 }
9 where structure . Sales .Count > 5

10 select structure .Boss;

1 from person in employees
2 where (person.Wage > 4000 && person.Region ==”WA”)
3 && (person.GetSales(42).Count > 5)
4 select person.GetBoss();

(a) Single-level flattening.

1 from structure in
2 from person in employees
3 where person.Wage > 4000 && person.Region ==”WA”
4 select new {
5 Name = person.Name,
6 Boss = person.GetBoss(),
7 Sales = person.GetSales(42),
8 Winter = person.Q1 + structure.Q2,
9 Summer = person.Q3 + structure.Q4

10 }
11 where structure . Sales .Count > 5
12 select Employee.GetMin(structure.Winter, structure .Summer);

1 from person in employees
2 where (person.Wage > 4000 && person.Region ==”WA”)
3 && (person.GetSales(42).Count > 5 && person.Q1 > 10)
4 select person.Q4;

(b) Multi-level flattening.

Figure 2: Tree flattening optimizations illustrated.

LINQ expressions & LINQ providers: LINQ provides
an easy way to programmers for accessing the internal parts
in each LINQ query. That is possible via LINQ expressions.
Each LINQ query is translated into a expression ASTs,
which can be rewritten by LINQ Providers. This is how
InterPoll operates: by providing an appropriate set of
visitors to rewrite LINQ query trees to both optimize them
and also connect query trees to the actual data which comes
from Mechanical Turk. The latter kind of “plumbing”
is responsible for obtaining Mechanical Turk data in
XML format and then at runtime parsing and validaing

1 protected override Expression VisitMethodCall
2 (MethodCallExpression node)
3 {
4 var methodName =node.Method.Name;
5 switch(methodName) {
6 case ”Select ” :
7 ...
8 return <newly−constructed−node>;
9 case ”Where” :

10 ...
11 return <newly−constructed−node>;
12 }
13 }

Figure 3: Rewriting LINQ expression trees.

it, and embedding the data it into type-safe runtime data
structures. The process of expression tree rewriting is done
via visitors whose job is to override one of more methods in
the visitor parent class.

A schematic example of such a method is shown in
Figure 3.

We should also keep in mind that LINQ query evaluation
is inherently lazy. Using different LINQ providers allows us
to decide on an evaluation strategy at runtime or change
evaluation strategies as we get more data based on profiling.

Figure 1 shows the subset of LINQ to which our opti-
mizations in this section apply. While other aspects of LINQ
will run just fine, we do not attempt to optimize them. In
the rest of this section, we discuss individual tree rewriting-
based optimizations.

2.1 Query Flattening

To build one’s intuition, some examples of flattening in
action are shown in Figure 4. There are three examples of
flattening, going from the simplest to the most complex.
The complexity is determined by both the level of nesting
and the operations involved. This example concerns itself
with people and and their quarterly earnings (Q1–Q4).
Flattening involves getting rid of inner structures by
“expanding them out.” For instance, using the aliases
{Sales = person.GetSales(42), Boss = person.GetBoss()}

from the original query in Figure 2a becomes

1 from person in employees
2 where person.Wage > 4000 && person.Region =”WA”
3 where person.GetSales(42).Count > 5
4 select person.GetBoss();

which yields the outcome shown at the bottom of Figure 2a
after combining the two where clauses.

The algorithm in Figure 4 describes the process. The
trivial base case is when the LINQ expression is of depth
one. Otherwise, the inner expression in the from clause is
first flattened recursively, and then the process repeats for
the outer layer. The goal of the flattening process is to re-
move intermediate structures that are created. Those anony-
mous structures can only define fields, and, as such, the re-
placement process is focused on expressions with fields as in
var.field. Each such expression is replaced by effectively
inlining expression used in the definition of that field.

The end result is a new LINQ expression where the from
clause is that of the inner expression, the where clause is
the logical AND combination of the where clause from the
inner expression and the outer one (after all the replace-
ments), and the select clause is the outer one (after all the
replacements).
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function Flatten(LinqExpr L)
Returns: LinqExpr L′

1: // Base case
2: if L.Depth = 1 then
3: L′ = L
4: else
5: Inner = Flatten(L.From)
6: OuterWhere = L.Where
7: OuterSelect = L.Select
8: // New types can define fields but not functions
9: for all var.field ∈ OuterWhere ∪OuterSelect do

10: if Inner.Defines(typeof var) then
11: // Get the expression that initializes field
12: Replacement = Inner.Select.ExprFor(field)
13: Swap(var.field, Replacement)
14: end if
15: end for
16: // OuterWhere and OuterSelect have now been altered
17: L′.From = Inner.From
18: L′.Where = Inner.Where ∧OuterWhere
19: L′.Select = OuterSelect
20: end if

Figure 4: Algorithm Flatten for flattening a LINQ expression.

function SplitQuery(LinqExpr L)
Returns: LinqExpr L′

1: AllQuestions = L.Questions
2: AllDemographics = L.Demographics
3: Flat = Flatten(L)
4: FilterQuestions = Flat.Where.Questions
5: FilterDemographics = Flat.Where.Demographics
6: NewStruct = new{
7: Questions = AllQuestions \ FilterQuestions,
8: Demographics = AllDemographics \ FilterDemographics}
9: L′.From = Flat.From

10: L′.Where = Flat.Where
11: L′.Select = NewStruct

Figure 5: Algorithm SplitQuery for splitting questions and de-
mographics in a LINQ expression.

2.2 Query Splitting

The goal of query splitting is to rewrite a LINQ expression
in such a way where general and demographic questions
that filter based on demographic charasteristics are gathered
in the where clause, and all the rest are present in the
select clause. For instance, the end-result might look like
the following:

1 from person in people
2 where person.PoseQuestion(”... ”) > 100 && person.Gender =”MALE”
3 select new {
4 Q1 =person.PoseQuestion(”... ”),
5 Q2 =person.PoseQuestion(”... ”),
6 Education =person.Education
7 }

The algorithm in Figure 5 describes the process. First,
the set with all the general and demographic comparison
present in the LINQ expression is created. Afterwards, the
expression is flattened so that there is only one where clause
and from that a second set of (filter) questions is created.
In the final LINQ expression, the select clause only has
the questions present in the initial expression that are not
already handled in the where clause.

2.3 Common Subexpressions Elimination

Finally, Common Subexpressions Elimination (CSE) aims,
given two LINQ expressions, to identify common subexpres-
sions and then merge the inputs in such a way that each

function CommonSubexpressions(LinqExprL1, LinqExprL2)
Returns: LinqExpr L′

2

1: // Rewrite both expressions normalizing variable names
2: L1 = NormalizeVariableNames(L1)
3: L2 = NormalizeVariableNames(L2)
4: // Create Hash Maps, mapping each subexpression to an ID
5: H1 = CreateHashes(L1)
6: H2 = CreateHashes(L2)
7: // Gather expressions with the same ID
8: Common = H1 ∩H2
9: // Expr1 in L1 has the same ID with Expr2 in L2

10: for all e ∈ Common do
11: e1 = H1[e.Key]
12: e2 = H2[e.Key]
13: Replacements[e1] = e2
14: end for
15: // Using the mapping above, replace subexpressions in L2 with

ones from L1
16: L′

2 = MakeReplacements(Replacements, L2)

Figure 6: Algorithm CommonSubexpressions for merging com-
mon parts in two LINQ expressions.

LINQ expression references the same common subexpres-
sion (instead of having two different occurrences). The opti-
mization is modeled on its counterpart in standard compiler
literature [1]. However, the matching is done on the struc-
ture of LINQ subtrees. Equality is established by computing
hash functions. Computing the hash values for leaf nodes is
trivial, since they will hold constant values. Computing the
hash values for internal nodes is done by combining the hash
values of every children node.

The algorithm in Figure 6 describes the process. First,
there is a preprocessing step where variable names are nor-
malized in each LINQ expression. Afterwards, each expres-
sion is traversed and each subexpression is assigned an ID
is such a way that syntactically equivalent expressions will
have the same ID assigned to them. Subsequently, those IDs
are used in order to identify common subexpressions that
can be afterwards merged so there is only on occurrence in
both initial LINQ expressions.

2.4 Summary

This section has described three different static optimiza-
tions that involve LINQ tree rewriting. In addition to pro-
viding actual optimizations, these serve as a way to both
prepare the reader for more complex optimizations in the
rest of the paper and also to normalize queries for further
optimizations. Subsequent sections will address various run-
time optimizations.

3. Yield Optimizations

One of the key challenges in many surveys is the problem of
low yield. While we can poll a large number of people, only
some meet our filter. For instance, we may be interested in
only females or only in people who are employed full-time
and over the age of 40. Or we may be interested in surveying
those who are iPhone users. All of these are examples of
qualifying questions. These are widely used in marketing, for
example, where one is interested in only a well-defined group
and its response to a particular product, for instance. When
it comes to query performance, having narrow qualifications
both creates queries that both take a great deal of time and
are costly. In this section, speaking broadly, we aim to make
these low-yield queries efficient.
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1 var query = from person in people
2 select new {
3 Hired = person.PoseQuestion<bool>(
4 ”Have you started a new job in the last 6 months?”),
5 HiredFriends = person.PoseQuestion<bool>(
6 ”Have any of your friends or
7 neighbours started a new job in the
8 last 6 months?”),
9 Fired = person.PoseQuestion<bool>(

10 ”Have you quit or lost a job in the
11 last 6 months?”),
12 FiredFriends = person.PoseQuestion<bool>(
13 ”Have any of your friends quit or
14 lost a job in the last 6 months?”),
15 Gender =person.Gender, Employment =person.Employment,
16 Education =person.Education,
17 };
18 query = from person in query where
19 person.Gender ==Gender.FEMALE &&
20 person.Education ==Education.BACHELORS DEGREE
21 select person;

(a) Jobs query.

1 var query = from person in people
2 select new {
3 Hours =person.PoseQuestion(
4 ”In the past month, how many hours of sleep
5 have you gotten each night on average?”,
6 ”More than 10 hours”, ”8−10 hours”, ”6−8 hours”,
7 ”4−6 hours”, ”4−6 hours”, ”less than 4 hours”),
8 WhatToDo =person.PoseQuestion(
9 ”Generally , when you feel yourself getting tired

10 during the day, what do you primarily do to counteract
11 this feeling ?”, ”Drink coffee ”, ”Drink an energy drink ”,
12 ”Get a healthy snack/shake”, ”Take vitamins”, ”Exercise ”,
13 ”Take a nap”, ”Nothing at all ”, ”I do not get drowsy
14 during the day”, ”Other”),
15 Gender =person.Gender,
16 Employment =person.Employment,
17 };
18 query = from person in query where
19 person.Employment ==
20 Employment.WORKED FULL TIME YEAR ROUND
21 select person;

(b) Sleeping habits query.

1 var query = from person in people
2 select new {
3 Activity = person.PoseQuestion(
4 ”What is currently preventing you
5 from being more physically active ?”,
6 ”Time Available”, ”Desire and Motivation”,
7 ”Weather”, ”Laws of Thermodynamics”,
8 ”Physical Disability ”),
9 Gender =person.Gender, Income =person.Income,

10 Employment =person.Employment, Age =person.Age,
11 };
12 query = from person in query where
13 person.Age >= 30 && person.Employment ==
14 Employment.WORKED FULL TIME YEAR ROUND
15 select person;

(c) Physical activity query.

1 var query = from person in people
2 select new {
3 ShopOnline =
4 person.PoseQuestion<bool>(”Do you shop online?”),
5 PercentageOnlineShopping =person.PoseQuestion<int>(
6 ”If so, how much of your holiday
7 shopping do you do online (percentage)?”),
8 MoreOrLess =person.PoseQuestion(
9 ”Do you plan to shop online more or less ?”,

10 ”More”, ”Less”, ”Same”),
11 Gender =person.Gender, Education =person.Education,
12 Income =person.Income, Employment =person.Employment,
13 };
14 query = from person in query where person.Gender ==Gender.MALE
15 select person;

(d) Online shopping query.

Figure 7: Queries for comparing the three evaluation strategies.

3.1 Evaluation Strategies

The default approach of post-filtering once the data is ob-
tained is clearly wasteful for low-yield queries, as we pay
for everyone who takes the poll, not only for those whose
completes are useful to us. If the yield is 10%, we should ex-
pect to pay ten-fold for this kind of query. In this section we
propose three strategies for running surveys with qualifying
questions. We assume that the query has been pre-processed
using the query splitting optimization in Section 2.2.

Each execution strategy is responsible for creating a
survey, polling for results, making dynamic changes to the
survey (e.g. changing the amount of people that take part
or the amount they are paid) and finally presenting the
results to the user. During execution, runtime metrics are
recorded. For instance, the yield of the query or the times
when each person took the survey. Each execution strategy is
also supplied with an execution policy, which is responsible
given the runtime metrics gathered so far to make decisions
about the rest of the execution. For instance, how many
more people to ask or if the reward amount should change.

1. The default strategy involves asking a larger number
of workers and then post-filtering to only include those
which match our qualification criteria.

2. A two-stage survey strategy involves separating our
HIT into two: the first tests to see if a worker matches
our qualification. If so, she is directed to our second-stage
HIT to complete the rest of the survey. Through internal
bookkeeping, we ensure that an unqualified worker will
not be able to accept the second-stage HIT. We use
Amazon’s Mechanical Turk API to notify (via email)
workers that qualified the first-stage. The advantage of
this approach is our ability to balance the payoff in the
two stages. For instance, we can pay quite little for the
first-stage qualifying task and we can pay quite a bit more
for those who qualify to take the second-stage task. Note
that the questions in the first stage can be quite arbitrary.
For instance, we can ask workers to capture their attitude
towards a presidential campaign in 200 characters or less
and then perform sentiment analysis to decide if these
users qualify for the next stage of the survey.

3. The last qualification-based strategy involves using a
built-in qualification mechanism in Mechanical Turk,
which allows one to qualify users based on multiple-choice
questions. While this approach is less general than the
two-stage strategy above, the key advantage is that we
are not required to pay for users who fail to qualify.

All of three strategies above can be captured by the follow-
ing cost equation, which summarizes the expected cost of
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(a) Job query in Figure 7a.
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(b) Job query in Figure 7a.
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(c) Workout query in Figure 7c.
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(d) Workout query in Figure 7c.
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(e) Online shopping query in Figure 7d.
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(f) Online shopping query in Figure 7d.
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(g) Sleep query in Figure 7b.

0

2

4

6

8

10

12

14

16

0
:0

0

0
:3

0

1
:0

0

1
:3

0

2
:0

0

2
:3

0

3
:0

0

3
:3

0

4
:0

0

4
:3

0

5
:0

0

5
:3

0

6
:0

0

6
:3

0

7
:0

0

7
:3

0

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

Default Qualification Test Two Stage

(h) Sleep query in Figure 7b.

Figure 8: Completion times and money spent for different evaluation strategies. Time is shown on the x axis.

obtaining N qualified workers:

E[CN ] = N ×
[
c1
y1

+
c2
y2

]
where c1 is the first-stage cost per person and c2 is the
second-stage cost per person who reaches that stage. Finally,
y1 is the yield, which we for now assume to be independent
of c1, c2, or other parameters and also constant, i.e. not
changing with as we continue running the survey or depend-
ing on the hour of the day. y2 is the yield for the second
stage: how many people of the ones eligible for the second
stage complete it.

For the default strategy, there is no second stage, so
the equation reduces to E[CN ] = N × c1/y1. For the
qualification-based strategy, there is no extra cost to the first
stage, so the equation reduces to just E[CN ] = N × c2/y2.

For the two-stage strategy, the win may be not as clear and
is dependent on the yields. Note that the second-stage yield
can vary greatly: we see it ranging between as low as 34%
and as high as 90% in our experiments.

3.2 Evaluation

To compare the effectiveness of three execution strategies in
Section 3.1, we have selected four representative InterPoll
queries, shown in Figures 7a–7b. All of these queries have
a relatively broad range of qualifications, i.e. we ask for
females with a bachelor degree or higher (Figure 7a) or
people who work full-time (Figure 7b). The queries focus on
issues of broad appeal ranging from sleep habits to online
shopping.
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(a) Yield for the jobs query in Figure 7a.
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(b) Yield for the workout query in Figure 7c.

Figure 9: Yield for two queries with different evaluation strategies. Time is shown on the x axis.

Results: Figure 8 shows the completion times and the
money spent by each of the three strategies, on the left and
right, respectively.

� The qualification test strategy is consistently cheaper
than the alternatives. Contrast $8.4 vs. $1.2 at 1 hour
and 10 minutes, a ratio of 7× in Figure 7c. Also con-
trast $14.5 vs. $1.4 also at 1 hour and 10 minutes, a
ratio of 10× in Figure 7a. Somewhat surprisingly, the
two-phase strategy is also more expensive than the de-
fault in all of our tests.

� The default, one-stage strategy completes considerably
faster than the more frugal two-stage or qualification
test-based approaches. Contrast 40 minutes vs. 16 hours
in Figure 8b or 50 minutes vs. 12 hours in Figure 8h.

� In summary, the qualification test is preferable if the
end-to-end cost is of the essence. Otherwise, the default
strategy generally delivers results faster.

Figure 9 shows the details of the yield for two of representa-
tive queries of the four we showed in Figure 8. Overall, the
yields are comparable, while the compeletion time and costs
differ, as indicated above.

1 var query = from person in people
2 select new {
3 Attitude = person.PoseQuestion(
4 ”How do you think the US Federal Government’s yearly
5 budget deficit has changed since January 2013?”,
6 ”Increased a lot ”, ”Increased a little ”,
7 ”Stayed about the same”, ”Decreased a little ”, ”Decreased a lot ”),
8 Gender =person.Gender, Income =person.Income,
9 Ethnicity = person. Ethnicity ,

10 };
11 query = from person in query where
12 person.Income ==Income.INCOME 35 000 TO 49 999 &&
13 person. Ethnicity ==Ethnicity.BLACK OR AFRICAN AMERICAN
14 select person;

Figure 10: Budget deficit attitudes query.

3.3 Long-Tail Evaluation

A particularly poignant problem where yield optimizations
help is queries for which the yield is very low, causing them
to run for a long time to get a sufficient number of survey-
takers who qualify. This is the so-called scurvy issue: if
our qualifying question is whether the person suffers from
scurvy, we will have to wait a very long time indeed to find
enough qualifying participants.

We posted the task
to Reddit to attract

extra attention.
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Figure 11: Completions for qualifications and passing for the
budget query in Figure 10.

An more realistic example of such a query is given in
Figure 10. We ran this query for 9 days. While about 900
people took the qualification test (black or African American
with an income between $35,000 and $49,000), only 14
people in total qualified; out of these, the majority, 11 filled
the rest of the poll asking about the budget deficit in the
United States.

Figure 11 shows the number of survey takers which
climbed steadily for four or five days before plateauing. To
“boost” the interest in the task, we posted a link to our task
on Reddit after about a week, which resulted in a surge of
interest, with about 200 more people attempting to qualify,
with two more actually qualifying.

We only paid .10¢×11 = $1.1 for the entire survey, given
that we do not pay unless the worker is qualified, as opposed
to .10¢× 900 = $9. This is a difference of almost one order
of magnitude in terms of the cost (8×). This longer-running
query stresses our point about the importance of picking the
right evaluation strategy.

4. Rebalancing

InterPoll supports answering decision questions of the
form r1 boolOp r1, where both r1 and r2 are random vari-
ables obtained from segments of the population. Such a
query is shown in Example 3, which compares the number
of male and female liberal arts majors.
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Question Left filter Right filter Test

Do you believe that
affirmative action on
campus does more
harm than good?

bachelors
and more

some college Left YES,
Right NO

Do you believe that
millennials don’t
stand a chance?

income
50K–75K
∨ income
75K+

income 25K–
35K ∨ income
35K–50K

Left YES,
Right NO

Do you believe that
mass collection of
U.S. phone records
violates the fourth
amendment?

age 35–44 age 18–24 Left YES,
Right NO

Should we ration
end-of-life care?

age <= 35 age > 35 Left YES,
Right NO

Psychological poll
about depression

income
50K–75K
∨ income
75K+

no income ∨
income 10K–
15K ∨ income
15K–25K

Left less
depressed
than
Right

Figure 12: Queries used for evaluating the rebalancing optimiza-
tion summarized to save space.

To answer such decision queries, InterPoll repeatedly
considers pairs of people from the categories on the left and
right hand sides and then performs a sequential probability
ratio test [22] to decide how many samples to request. A
common problem, however, is that the two branches of the
comparison are unbalanced : we are likely to have an unequal
number of males and females in our samples, or people who
are rich or poor, or people who own and do not own dogs.

Lets assume that r1 produces results faster than r2. This
is an issue because we if we end up paying for every person
from r1 and r2 and we have too many from r1, leading to
us paying too much for samples we cannot use, and too few
from r2 creating a bottleneck in terms of speed with which
we can create pairwise tests.

The focus of this subsection is on re-balancing the
branches of such a test to even them out. The primary mech-
anism for re-balancing is changing the reward amount in an
effort to attract more participants to the branch of the deci-
sion query that is too scarce. While many policies for chang-
ing the reward are possible, in practice, we tried increasing
rewards by 50%. Starting with 8¢, we would bump up re-
wards for the slow branch up to 12¢ and then 15¢. We would
also reduce the rewards for the slow branch to 5¢ and 3¢.

4.1 Evaluation

To evaluate the effectiveness of our rebalancing approach,
we use the queries summarized in Figure 12. There are
representative queries which all have a certain degree of
disbalance between the fast and slow branch. To save space,
we do not show the fully LINQ code for these five queries,
only summarizing these queries by showing the question, left
and right filters and the test (binOp).

For comparison purposes, we also executed unoptimized
versions of our queries, which we launch at the same times
as the optimized ones, to reduce the effect of different times
of day naturally attracting different numbers of people, for
instance. Figure 13 shows the effect of the rebalancing
optimization over time. Each chart compares the progress
of the fast branch, the slow branch, as well as the default,
unbalanced strategy over time. The x axis shows the time,
in hours and minutes and the y axis shows the number
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(a) Query for affirmative action.
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(b) Query for the millennials.
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(c) Query for phone records privacy.

of completes (people) for each strategy. We also show the
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(d) Query for rationing end-of-life care.
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(e) Query for depression and anxiety.

Figure 13: Progress over time with and without rebalancing.

rebalancing points, i.e. points in time where we increase and
decrease the rewards in call-outs on each chart.

In all cases, the solid black line (fast branch) attracts
more people, at any point in time. In most cases, the
slow branch and the default strategy both plateau pretty
quickly.

In order to illustrate the time differences more explicitly,
Figure 14 shows the effect of increasing the reward by
measuring the time difference to get to x completes between
the default strategy and the fast branch of our rebalancing
strategy. While the number of completes (people) is shown
on the x axis, the times are measured in hours, shown on
the y axis. Overall, the time savings achieved through the
use of rebalancing are significant: the fast branch gets to 70
completes over 2 hours faster and, for all strategies, to get
to 90 completes, the it takes up to 21 more hours. Part of the
explanation is in the fact that left to its own devices, a HIT
on Mechanical Turk loses its popularity over time. One
way to alleviate this problem is by bumping up the reward,
to maintain an adequate level of interest.
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Figure 14: Time savings to get to x completes for the baseline
approach vs. the fast branch. After about 50 people, the time dif-
ferences become significant; after 70 people, they start exceeding
several hours.
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(b) Representative sample: 100 males and 100 females.

Figure 15: Unbiasing with different samples.

5. Panel Building

While InterPoll queries allow us to run opinion polls to
measure sentiments of Mechanical Turk workers, most of
the time, we want to measure opinions of people in the world
at least, of at least those in a sufficiently big geographical
area like the US. We start with a motivating example that
illustrates the need for representative population samples.

Example 4 (Motivating example) Consider a somewhat
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function BuildPanel(D)
Returns: panel P

1: // Panel qualification mapping workers to categories
2: QP = CreateQualification()
3: // Qualification mapping workers to generation
4: QR = CreateQualification(autogrant = true)
5: U = FindUnrepresented(D,QP ) // Unrepresented categories
6: G = 1
7: QH = CreateQualTest(U,QR)
8: H = CreateAndStartHit(QH) // HIT is created on mTurk
9: while U 6= ∅ do

10: U ′ = U
11: sleep(1 hour)
12: workers = H.GetWorkers()
13: // Move new workers to panel qualification
14: AssignQualification(workers,QP )
15: // mark them so that they don’t retake subsequent hits
16: AssignQualification(workers,QR, G)
17: U = FindUnrepresented(D,QP )
18: if U 6= U ′ ∧ U 6= ∅ then
19: QH .Dispose()
20: H.Stop()
21: // Re-create qual-test and HIT for missing categories
22: G = G + 1 // Next generation
23: QH = CreateQualTest(U,QR)
24: H = CreateAndStartHit(QH)
25: end if
26: end while
27: P = BuildPanel(QP )

Figure 16: Algorithm BuildPanel for incremental panel creation.

artificial example that illustrates the difficulties of unbiasing
with unrepresentative samples. Suppose we run the physical
activity query in Figure 7c which asks people to comment on
why they do not exercise more. Suppose men always blame
the lack of time (choice TimeAvailable) and women blame
the weather (Weather). If our sample consists of 1 man and 7
women, we attempt to unbias it to be representative of the
population as captured by the Census. While the details of
the process are outside the scope of this paper, here this in-
volves providing unbiasing weights 0.48290343705769273/ 1

8

for males and 0.51709656294230733/ 7
8

for females.
Figure 15a shows both the biases and unbiased results,

along with their 95% confidence intervals. We see that for
both the TimeAvailable and Weather answers, the confi-
dence intervals are really large, meaning the results are
quite imprecise. Unbiasing only increases these intervals
(0.24→ 0.40).

However, in the case of an equal split of 100 men
and 100 women (men still responding with TimeAvailable
and women with Weather), the result in Figure 15b show
very tight confidence intervals virtually unaffected by unbi-
asing (0.06947→ 0.06942). �

There are two takeaways of the example above: unbiasing
unrepresentative samples can increase the confidence inter-
val; there is no increase of the confidence interval for a rep-
resentative sample. Also, having a representative sample ob-
viates the need for unbiasing in the first place.

Avoiding unbiasing: It is therefore natural to try to avoid
unbiasing as much as possible. Another most subtle reason
is the ability to directly link the data that is obtained to
individuals answering questions, thereby creating a “paper
trail” for later use, following the philosophy of reproducible
research. This is especially valuable if the researcher posting
the query wants to ask some follow-up questions of particular
segment of the responders.

Panel building: Consider the algorithm in Figure 16 which
shows how to incrementally build the panel. One of the
ways to achieve this is by pre-building a panel of workers
whose demographic characteristics are pre-obtained and who
demographic profile matches that of the general population.
Doing so is no easy task. This is because there are some
segments of the population that are genuinely tough to
access.

For instance, people above the age of 75 are exceedingly
difficult to find in the pool of Mechanical Turk workers.
The same is true of people earning in excess of $100,000 per
annum. Finding people who possess both of the above char-
acteristics is that much more difficult. However, if somehow,
over a long period of time, we are able to construct a panel
and then reliably use the workers on that panels for running
polls, the value of such a panel is tremendous. Arguably,
the majority of value of companies such as Instant.ly3 is
in providing fast, on-demand preconstructed and responsive
panels.

Our goal is to pre-build a panel and to use the panel to
achieve better precision obviating the need to rely on unbi-
asing. This is similar to common practices of surveys in the
physical world, where pollsters keep track of certain popula-
tion segments that exhibit the required characteristics, and
then they ask only those subsets that are of interest to take
part in an upcoming survey.

Iterative panel construction: Algorithm BuildPanel in
Figure 16 shows how a panel can be built iteratively, over
a number of long-running generations. The goal of the algo-
rithm is to create a panel P of people marked with a spe-
cial qualification QP . Once the qualification QP has been
granted to them, these people can be used on demand later
on when we need to answer some queries. At every step of
the algorithm, we query the currently running hit for new
workers and then update U , the set of unrepresented cate-
gories. Function FindUnrepresented(D) not shown here finds
categories that are not adequately represented with respect
to the provided target distribution D4. Whenever we reduce
the set of unrepresented categories (check on line 18), we
increment G, the generation counter and create a new hit
to collect more samples. A dummy HIT is created with an
increasingly narrow qualification test for missing categories.
As time progresses, and more categories are completed, the
current HIT is stopped and a new one is created with only
the categories that are still incomplete.

5.1 Evaluation

To test the ideas above, we decided to build a panel based on
three demographic characteristics: Gender, Education, and
Income. Considering (Male|Female) × (High School | Some
college | Bachelors degree) × (8 levels of income) provides 48
categories to fill.

Let us emphasize that the process of panel building is
likely to run for days if not months: at the time of submit-
ting this paper, we have successfully filled 30 categories out
of 48 in the following three dimensions. Figure 17 shows the
histogram of our panel and the US Census5. To simplify the
display, we only show 24 categories for each by combining

3http.instant.ly
4In our experiments, we typically use the US Census [32] as

our target distribution. Unbiasing US-collected data using census
statistics of other countries are another interesting possibility.

5We use absolute numbers for the former and percentages for
the latter, but it is the shape of the histogram that matters.
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Figure 17: Population histograms by category.

males and females. Note that the Mechanical Turk popu-
lation is relatively balanced when it comes to the gender (for
instance, 67%:43%, depending on the country). Focusing on
other characteristics provides more of a stress test for our
approach.

One can see that indeed, most categories are well-
represented based on the shape of the histogram. Some cat-
egories, like less that $5,000 in income are pretty scarce on
Mechanical Turk. Same is true of combinations like High
school graduates who earn over $75,000 per annum. This is
in part because people earning that much are less likely to
appear on Mechanical Turk.

Example 5 (Height computation) The code below is
an a query that asks workers to provide their height, in
centimeters.

1 var frame = from person in people
2 select new {
3 Height = person.PoseQuestion<int>(”What is your height?”),
4 Gender =person.Gender,
5 Ethnicity = person. Ethnicity };
6 var maleHeights =from person in frame
7 where person.Gender ==Gender.MALE select person.Height;
8 var femaleHeights = from person in frame
9 where person.Gender ==Gender.FEMALE select person.Height;

We limit our analysis to 50 respondents. Out of those, 35
were male and 15 female. The average height in the US,
according to Wikipedia, is 176.3 cm for males and 162.2 cm
for females. Assuming a 52%:48% mix in the population, the
average height is 169.4.

Below, we report mean and 95% confidence intervals for
the different mixes. The equal 15:15 mix places the true
value of 169.4 well within the confidence interval, close to
the mean. The very unequal 1:35 mix is a bad predictor of
the true value: 169.4 is outside the confidence interval. We
can see that the unbiasing based on the very unequal 1:35
mix also places the real value of 169.4 outside the confidence
interval.
This example highlights the importance of having a balanced
sample. A more drastic example is unbiasing based on eth-
nicity. Considering the female sub-population only, the mean
height is virtually the same as the Wikipedia value. Unbi-
asing the female heights with respect to ethnicity, however,
produces 166.15± 5.32 cm. This is significantly larger than

Sub-population Mean ±CI Wikipedia Within

Male 175.1 4.58 176.3 X
Female 162.9 4.89 162.2 X

Equal mix (15:15) 168.1 4.20 169.4 X

More balanced mix (35:15) 171.48 3.83 169.4 X
More balanced mix unbiased 168.82 3.68 169.4 X

Unequal mix (35:1) 174.5 4.63 169.4 X
Unequal mix unbiased 163.1 5.73 169.4 7

the true value and the difference emerges when we discover
that our sample is reweighed using a weight of 50 for African
Americans (12% in the population but only 1 in our sam-
ple). This taller woman (188 cm) has a large effect on the
unbiased mean. �

6. Related Work

Perhaps the most closely-related recent project is Survey-
Man by Tosch et al. [30]; SurveyMan provides a lightweight-
specific language to survey developers. In InterPoll, we
choose to use built-in language-integrated queries, which are
already familiar to many developers. The chief focus of Tosch
is to ensure survey and result quality. SurveyMan statically
analyzes surveys to provide feedback to survey authors be-
fore deployment. SurveyMan’s dynamic analyses aim to au-
tomatically find survey bugs, and control for the quality of
responses. We consider SurveyMan to be complimentary to
the work described in this paper: indeed, many of the tech-
niques presented by Tosch et al. can be employed to improve
InterPoll queries and response quality; however, the focus
of this particular paper is on optimizations.

We do not aim to adequately survey the vast quantity
of crowd-sourcing-related research out there; the interested
reader may consult [34]. A great deal of work has focused on
matching users with tasks, quality control, decreasing the
task latency, etc. Moreover, we should note that our focus is
on subjective opinion polls, which distinguishes InterPoll
work from the majority of crowd-sourcing research, which
requires “solving” a particular problem, i.e. deciphering a
license plate number in a picture, translating sentences, etc.
In InterPoll, we are primarily interested in self-reported
opinions of users about themselves and the world.

6.1 Crowd-Sourcing Systems

There has been a great deal of interest in recent years in
building new systems for automating crowd-sourcing tasks.
TurKit [20] is one of the first attempts to automate pro-
gramming crowd-sourced systems. The developer can write
TurkIt scripts using JavaScript. AutoMan [2] is a pro-
grammable approach to combining crowd-based and regular
programming tasks, a goal shared with Truong et al. [31].
The focus of AutoMan is on computation reliability, con-
sistency and accuracy of obtained results, as well as task
scheduling. Turkomatic [18, 19] is a system for expression
crowd-sourced tasks and designing workflows. CrowdForge is
a general purpose framework for accomplishing complex and
interdependent tasks using micro-task markets [17]. Some of
the tasks involve article writing, decision making, and sci-
ence journalism, which demonstrates the benefits and lim-
itations of the chosen approach. CrowdWeaver is a system
to visually manage complex crowd work [16]. The system
supports the creation and reuse of crowd-sourcing and com-
putational tasks into integrated task flows, manages the flow
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of data between tasks, etc. Quizz [14] is a gamified crowd-
sourcing system that simultaneously assesses the knowledge
of users and acquires new knowledge from them.

6.2 Optimizing Crowd Queries

CrowdDB [10] uses human input via crowd-sourcing to
process queries that regular database systems cannot ad-
equately answer. For example, when information for IBM
is missing in the underlying database, crowd workers can
quickly look it up and return as part of query results, as
requested. CrowdDB uses SQL both as a language for pos-
ing complex queries and as a way to model data. While
CrowdDB leverages many aspects of traditional database
systems, there are also important differences. Qurk imple-
ments a number of optimizations [24], including task batch-
ing, replacing pairwise comparisons with numerical ratings,
and pre-filtering tables before joining them, which dramati-
cally reduces the overall cost of sorts and joins on the crowd.
End-to-end experiments show cost reductions of 14.5× on
tasks that involve matching up photographs and ordering
geometric pictures. These optimization gains in part in-
spire our focus on cost-oriented optimizations in Inter-
Poll. Marcus et al. [23] study how to estimate the selectiv-
ity of a predicate with help from the crowd, such as filters
photos of people to those of males with red hair.

6.3 Database and LINQ Optimizations

A survey of query optimizations in databases, with a focus
on join optimizations, among others is presented in Ioan-
nidis [13]. While language-integrated queries are wonderful
for bringing the power of data access to ordinary develop-
ers, LINQ queries frequently do not result in most efficient
executions. There has also been interest in both formalizing
the semantics of [5] and optimizing LINQ queries. Grust et
al. propose a technique for alternative efficient LINQ-to-
SQL:1999 compilation [11]. Steno [26] proposes a strategy
for removing some of the inefficiency in built-in LINQ com-
pilation and eliminates it by fusing queries and iterators to-
gether and directly compiling LINQ queries to .NET code.
Nerella et al. [27] relies on programmer-provided annota-
tions to devise better queries plans for language-integrated
queries in JQL, Java Query Language. Annotations can pro-
vide information about shapes of distribution for continuous
data, for example. Schueller et al. [28] focus on bringing the
idea of update propagation to LINQ queries and combining it
with reactive programming. Tawalare et al. [29] explore an-
other compile-time optimization approach for JQL. Bleja et
al. [3] propose a new static optimization method for object-
oriented queries dealing with a special class of sub-queries
of a given query called “weakly dependent sub-queries”.

7. Conclusions

This paper develops a range of both static and dynamic op-
timizations for crowd-sourced queries, which can be used to
combine human and machine computation. Unlike a typical
optimization effort, one of the clear upsides of our work is
that not only it saves time for the user, it also saves money,
often hundreds and thousands of dollars, when queries are
run at scale.

Optimizations in this paper lead to significant improve-
ments in practice. In our experiments we observed tenfold
savings in survey cost and time savings of as much as 20
hours for some of the longer-running queries. Our work
translates language and runtime optimization ideas into real

and measurable financial savings. Relying on automatically
pre-built penels can also increase result precision and de-
crease the confidence intervals.
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