Deciding Effectively Propositional Logic with Equality

Ruzica Piskac Leonardo de Moura
EPFL Lausanne Microsoft Research
ruzica.piskac@epfl.ch leonardo@microsoft.com

Nikolaj Bjgrner
Microsoft Research
nbjorner@microsoft.com

December 7, 2008

Technical Report
MSR-TR-2008-181

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Deciding Effectively Propositional Logic with Equality

Ruzica Piskac Leonardo de Moura Nikolaj Bjgrner
EPFL Lausanne Microsoft Research Microsoft Research

ruzica.piskac@epfl.ch leonardo@microsoft.com nbjorner@microsoft.com
December 7, 2008

Abstract

Effectively Propositional Logic (EPR), also known as therieys-Schonfinkel class, allows en-
coding problems that are propositional in nature, but EP&bdimgs can be exponentially more
succinct than purely propositional logic encodings. Weengly developed a DPLL-based decision
procedure that builds on top of efficient SAT solving teclugig|to handle the propositional case effi-
ciently while maintaining the succinctness offered by tiRREepresentation. To achieve the effect,
it uses sets of substitutions encoded as binary decisigratizs [5]. It is possible to reduce EPR
formulas with equality to pure EPR, but the reduction reggidding axioms for equality and con-
gruence. This approach potentially increases the seaedte snd could defeat the efficiency we are
aiming to achieve. We here provide a calculus and decisiooguiure that handles equality natively.

The procedure builds in equality propagation, and allowlsiceng dependencies on equalities during
conflict resolution.

Contents

8
3.1 Basic conventions 8
B2 Equality o o 9
3.3 DPLL as an abstract transition SyStemo 9
3.3.1 Refining resolutidon 11
3.4 RelationalAlgebla 11
13.5__Closing relations under equality 12
R ot 13

4 DPLL(SE) 15
4.1 _Decisions and Propagafion 16
4.2 COnfliCtE v v o 16
4.3 Conflict RESOIUtIAN . .« « o o o o o o 19

431 ResolVE 19

432 E-Resolvd 19

433 E-CongRESOIVE o oo 20
4.3.4 _Other conflict resolution rules 20
4.4 _Summarizing the DPLL(SE) calculus o oo 20
A5 Examplds 20
4.6 Soundness, Completeness, Stuck-freeness, and Camplex. 21
5__Conclusions 24

DPLL(SE) Piskac, de Moura and Bjgrner

1 Introduction

Pure Effectively Propositional Logic is a fragment of fistier logic. The satisfiability problem for pure
EPR is to determine satisfiability for formulas of the form

V(T)

wherey is a quantifier free, and atomic sub-formulas range oventerpreted relations.

The satisfiability problem for EPR formulas can be reduce8Ad by first replacing all existential
variables by skolem constants, and then grounding the raailg quantified variables by all combina-
tions of constants. This process produces a propositiamaiuia that is exponentially larger than the
original. In a matching bound, the satisfiability problem EPR is NEXPTIME complete [11]. Ram-
sey [13][2] established that the satisfiability problemBE&R remained decidable when adding equality.
The more celebrated result of the decidability proof is nowown as Ramsey’s theorem. The finite
counter-part hadRamsey theoryemains an active field in combinatorics [9].

It is rather simple to encode EPR with equality into EPR withequality. Sectiof 312 illustrates the
embedding. The encoded equality axioms are Horn, and thepeapplied by unit-propagation only.
Thus, literals occurring in equality axioms need not take jpesplits. The added complexity of handling
equality arises from the potential of having to propagatgatity explicitly. In other words, every time
an equality is added to the current set of assumptions, essignment to literals should be closed
under the added equality. Our calculus for EPR with equalitgresses the closure of predicates under
equality in a uniform way. It avoids explicit equality axigmand propagates equalities implicitly to all
other predicates. The implicit equality propagation reggiin return an explicit apparatus for handling
equalities during conflict resolution. That is, when pradgcuxiliary conflict clauses, and performing
backjumping during the DPLL search.

Before we continue with the main subject of this paper, wigdb formulate a calculus for EPR with
equality, we will first motivate the use of EPR using a set airagles ranging form direct to indirect
applications of EPR.

2 Examples

Example 1 (Orders) Problems arising from program verification often involvdaddishing facts of
guantifier-free formulas, but the facts themselves usdiogls and functions that are conveniently ax-
iomatized using a background theory that uses quantifierditas. One set of examples of this situation
comprise of formulas involving partial orders. The theofypartial orders, orders with tree-like prop-
erties, and other variants can be axiomatized in EPR withaétyu We list a few axioms that can be
combined in different ways to produce different theorielsioéry relations.

Reflexivity Vr.x <x
Anti—Symmetry Ve,y. 2y ANy=x — x>~y
Transitivity Ve,y,z. x 3y Ny=<z — =z
Tree Ve,y,z. x 32 ANy=z - x3y Vy=xzx
Linearity Ve,y.z =y V y=3zx

Note that the above axioms do not include axioms for spagifgense linear orders, or discrete orders
with an infinite number of elements.

DPLL(SE) Piskac, de Moura and Bjgrner

Example 2(Sets and Boolean AlgebrasTonstraints over sets (Boolean Algebras) can be encoded int
EPR by treating sets as unary predicates and lifting eqgieslibetween sets as formula equivalence. For
example AU B C C'is represented agz . A(z) V B(z) — C(x), and we can prove theorems, such as

AUBCCAB\A#0—-ACC
by dually checking satisfiability of:

Vo . A(z)V B(x) — C(x) Ay . B(y) A —A(y)
AN =(Vz. (A(z) = C(2) AJu. C(u) A —A(u))

Equality is useful when expressing properties, suchlas a singleton:(3z . A(z)) A (Vx,y . A(z) A
A(y) — x ~ y). Additional examples of set encodings in EPR have beenrexjpio [8].

Example 3(The map property fragmentYhe Map Property Fragment[3] (for un-interpreted funct&)n
is a Boolean combination of map properties and quantifiez farmulas. The fragment captures several
scenarios, including Boolean Algebrasfap propertyis a formula of the form:

Vi.Gli] — Fla[i] (1)

whereG is an index guard; is a set of bound universal variablesvar, F' is value constraint such that
the bound variables only appear in an array accessg:|. Nested array accesses with bound variables
are not allowed. Instead array accesses have to occur onbgumlities and disequalities. An index
guard is a positive Boolean combination of arbitrary eqtia$i; or disequalities between one constant
taken from some sé&i, and either a universal variable or a constant.

G = GANG|GVG|atom 2
atom = war ~ var | var % c| ¢ % var (3)
var = ¢ | uwvar 4)

As established in |3], the array property fragment is detiléa In fact every positive universal quantifier
can be replaced by a finite conjunction of instantiationsekglthe instances range over the finite set of
index variableghat can be extracted from the formula. The set of possils@imiations is exponential
in the number of bound variables.

One way of reducing the array property fragment to EPR is Hicgrating that a finite amplification
of an array property formula using the index set introducdsoanded set of array values of the form
ali], wherea is an array and: is in the computed index set. We can then replace array ateass by
a function that has a finite range. Finite range functions bamnaxiomatized using relations. So we use
the steps:

1. Collect the set of arrays;, as, as, . .., a,, and the set of index variables, e, . .. , ;.
2. Introduce the set of valuesi; = aile1], a1les], ..., anle1], ..., vnm = anlem].
3. Replace every occurrenceafe;] in the formula byv;;.

IS

. For every array propertyi.G[i] — F'[a[i]] replacea[i] by a fresh variablev,; to form the formula
Vi, wei - G[i] A select(a, i, wq;) — Flwg].

DPLL(SE) Piskac, de Moura and Bjgrner

5. Add either the axiom§g]l(5) and (6), ot (6) ahd (7).

/\ select(aj, e, vjk) (5)
1<j<n,1<k<m

Va,i,v,w . select(a,i,v) A select(a,i,w) — v>~w (6)

Ya,i \/ select(a,i,vjy) @)
1<j<n,1<k<m

The transformation allows to replace the functi@] by a relation. The resulting formula is in EPR and
is polynomial in size of the original formula. The three aro[%) and[(6), and {7) imply thatlectis set
to v;k on arguments:; andey, is functional, and is total. However, as suggested aboveavaot need
all three properties ofselectin the context of the array fragment. If we just assuime (5) @hdthen all
ground occurrences affi] are specified, and all occurrences under a quantifier is ddfatdeast on the
index set. This suffices for the array fragment. On the othedhif we assumé](6) and] (7), then we are
not specifying that; [e;] maps tov;, but in light of axiom[(I) it must map to some constant amogg th
vk, Which suffices for satisfiability.

Both [3) and[(6) are relatively expensive because they requproduct of arrays and indices. But
@) allows an incremental use of an EPR solver. Initiallylyoassertselect(a;, ex, v;i) if ajle;] occurs
as a ground instance. Check for satisfiability. We can eifbkemodels generated by the EPR solver, by
adding functionality axioms when the models don't satisgnt, or we can use a different trick known
from finite model finders: assert

Va,i . /\ (a#ajVe,#i) — select(a,i, Wnew) V Ans(a,) (8)
ajlex]
If Ans(a,7) is non-empty, then add constants for (at least one) memlmrifs

Example 4 (Arrays with Theories) The Map Property Fragment from the previous examiple 3 can be
generalized for the case where the array formulas are imttsgt withtheories One such theory is the
theory of discrete linear orders, in which case we obtainairay property fragment. An array property

is a formula of the forn{1), but this time atoms in index ggdtthe atoms in the formul&) are from a
larger vocabulary that includes relations.

atom = wvar ~ var | var % ¢ | ¢ % var | R(var,...,var) 9)

The value constraints can in this case be generalized towdsaininterpreted relations.

F == FAF|FVF|val_atom (10)
val_atom = wal ~ val | val % val | R(val, ... ,val) | =R(val, ..., val) (12)
val = alvar]|ec (12)
LetZ = {¢y,...,c,} be a set of constants occurring in the formula which is flattened into

conjunctive normal form. I does not contain any constants, then introduce a dummy awinst Let
Tr be atheory forR. For the sake of using this example for bootstrapping EPRrtas, we could even
assume thap contains a set of axioms fdrg formulated within EPR. To simplify our treatment, let us
also assume thaR is a binary relation. Let74,...,G,, be the index guards iy (all other clauses
are in already within EPR) and to further make our lives siempalso assume that the array property
formulas contain at most one bound variableWe then say thaf coversy if (the EPR portion of)p
implies

vi. \/ N\ [Gjli] — Gjle] (13)

ceZ j=1

DPLL(SE) Piskac, de Moura and Bjgrner

Thus, wheneve€ ;[i] holds for some, then there is a constant iy such thatG;[c] holds, and such
that the same constant satisfies all the other guardg that are satisfied by. This property on index
guards implies thaf induces a congruence relation: variables are congruertigftsatisfy the same set
of index guards. Furthermore, every variable is congruensame constant ifi. With the congruence
relation we can form a choice function that for eveérgssociates a constamntc 7 to satisfy formula
(13). For future reference, we will call the choice functigio j (7).

In this case, it suffices to instantiate the quantifiers ugugj the constants i@. The justification
for this restriction is as follows: Led/ be a finite interpretation that satisfies the EPR fragmenp of
together with all the ground instances of the array fragmaing. We may liftAl to an interpretation)/
of ¢ by interpretinga[i] using the interpretation fou[proj(i)], and we can interpret predicates in the
value constraint, such aB(al:], b[j]), using the value foR(a[proj(i)], b[proj(j)]). To validate tha\/
satisfiesp, notice that it satisfies the EPR fragment:ofind wheneversatisfies guardé , Go, G, then
proj(i) satisfies the same guards. Sindesatisfies the entire formula, it must be the case aty, F;
are satisfied by the values induced by the interpretatiorieérray access termgi|, b[j], c[k],

Our notion of the array property fragment is an abstractidntite presentation in [3]. There, the
index guard may contain arithmetical inequality, but not strict inequality. In the theory of integer
arithmetic it is possible to replace strict inequality besn a bound variable and a closed term by non-
strict inequalities by adding or subtracting 1 from the @dgerm. In other words, the predicate< ¢
wherei is a bound variable andis a closed term is equivalent ic< ¢ — 1. The theory of linear orders
ensures that for every index guard using a positive comhtuinadf < there is some: ¢ 7 satisfying
condition [I3). Notice that if we use the theory of densealirders and replace non-strict inequality
< by strict inequality,<, then the property does not hold. For example, assumingd b are the only
variables inZ, then given the guard formulaS;[z] : a < x Az < b, Goz] : © % a, Gs[z] : © £ b,
neithera, nor b can be used for the case whersatisfies71 [i| (S0 is strictly betweem andb).

We here make the observation that the condition on indexdgliamot specific to the theory of linear
orders. For example, iR (from now on writteriC) satisfies distributive lattice axioms, then we can create
the setZ consisting of the closure of all constantsgrwith respect to suprema and infima under In
other words, if the constantsy, . .., ¢, } occur inZ, then create the finite set of at mast elements
closed under1 andL! (term overZ usingL andm can be written in disjunctive normal form each using
up to2" conjunctions). I{G|x] is a positive Boolean combination of inequalities of therfar C ¢, and
x satisfiesG|x], then letZ, be the subset ¢f such thatx C ¢ for ¢ € Z,, and letZ; be the subset ¢f
such thatc C z, for ¢ € Z;. ThenuZ; C x C MNZ,, and we can choose either bound (at least one of the
setsZ; or Z,, has to be non-empty) as the representativerfor

Example 5 (Finite domains and QBF)The satisfiability and validity problem for Quantified Bamte
Formulas (QBF) is PSPACE complete. Bound variables in QBmiitas range over Boolean truth
values. Formulas where bound variables range over a finitmalo D can be more handy, but don't
add expressive power. For example, we can reducec {0,...,7} . p[x ~ 5] to Vag,x1,22 €
B . ¢[zg A —x1 A z2]. We can also directly reduce finite domain constraints to ERRR example,
consider the formula:

VeeD.JyeD.Vz€D.plxy,z

where we assume (andy, z) appear in equalities of the form ~ d, whered € D, in . Skolemization
produces:

\V/l',Z € D . gD[ZL',fy(l'),Z]
and we can relativize the quantifiers by introducing defimisi for the finite domain:

Vo,z . D(x) AD(2) — o[z, fy(z), 2]

5

DPLL(SE) Piskac, de Moura and Bjgrner

Now replace every occurrence $f(x) ~ d in ¢ by a predicatep,(x,d). Finally, add axioms for the
properties ofD andp,:

Vo .D(z) < \/:U:d
deD
Vz,u,v . py(z,u) Apy(z,v) —u~wv

Vz \/ py(z,d)

deD

The embedding of QBF into EPR is obtained from this constmidiy specializing the domaip to the
set{tt,ff}. A more general logic of finite domains includes predicatesides equality. An embedding
of this logic into EPR is provided in Chapter 4 ¢f [10]. The mageneral finite domain logic with
predicates is easily seen equivalent to EPR, because ERRIfas are equi-satisfiable to a finite domain
restriction, but the finite domain variant with just equigd is not. It corresponds to PSPACE, as opposed
to NEXPTIME.

So, we embedded a set of problems that belong in PSPACE tdHaPRR & potentially exponentially
more succinct formalism. Our decision procedure for EPR dikes up to exponential space. One
could wonder if we could simulate a PSPACE procedure for QBRIRVEPR. To this end, let us start
examining a canonical way of evaluating QBF formulas. Itqeeds by evaluating a QBF formula by
recursive descent, while building up a contgxiThen the closed formula is equivalent tacrue if and
only if [} = true.

[V . ¢l, = [[‘P]]p[:c»—»true] and [[@ﬂp[foalse]
[Fz . 90]]/) = [[‘P]]p[m»—»true] or [[‘P]]p[m»—»false]
[V 1/’]]/) = [[‘P]]p or [[w]]p
[[SO A 1/1]];) = [[‘P]]p and [[M]p

[[_‘SO]]/J = not [[‘P]]p

[«], = p(2)

Consider aformul&/z;, 223yQZ . ¢[y] in prenex form. Skolemizingproducesiz, z2Qz . ¢[Ry(x1, x2)).
Thus, for every evaluation ef, andz;: (true, true), (true, false), (false,true), (false, false),
we have to determine whether the corresponding tuple beltmg,. Note that in order to evaluate the
formula it suffices to perform this guessly onceper combination of, x5. Let us use this observation
to sketch a DPLL-based strategy for EPR that works in polyabspace when the EPR formula is ob-
tained from a QBF or finite domain formula. Thus, assuihis a set of clauses where every occurrence
of predicateR is applied to the same set of variables. This holds for QBFfaritt domain formulas
obtained by skolemization. Then for each predic&tef arity m enumerate the arguments using
a lexicographic ordering:ay,az, ..., apm=, where eachy; has aritym. Following the enumeration,
start with the partial model : R(@;). Assume without loss of generality that the arguments tothér
relations are the same as the ones passe®.tdf the other relations areS andT', we would create
the modell : R(a;),S(a1),T(a1). The model suffices to evaluate all clauseg'¢f,]. If some clause
is not satisfied, then the assignment forces at least oneeakthtions to not contaim;, and standard
DPLL backtracking can be used to either adjust the assigmitaetine relations, or detect thdt' is un-
satisfiable. If all clauses are satisfied, then the inferresgignment does not contradiet Now proceed
by guessing an assignmentdg. The inference steps are independent of the steps useq fmcause
every occurrence of every relation uses the same argumintsis way, we can gradually build up an
interpretation for all relations by examining elemeants thena,, etc. Now observe that the assignments

6

DPLL(SE) Piskac, de Moura and Bjgrner

for @; were irrelevant when examinirg,. We therefore do not need to maintain the partial model for
assignments that have been previously examined. We cdulthisgprocessguess, assign, and forget
We saw that the process is sound and complete when relatrerspalied to the same arguments and
when enumerating assignments in a prescribed order.

Example 6 (Finite model finding) The DarwinFM [1] model finder reduces model finding problems t
EPR. We here review an approach to EPR-based finite modehdiraatid combine it with a refutationally
complete extension similar to a GEO-style model-expansitarences([7]. Other finite model finders
are SEM [17], MACE[[12] and Paradox [4]. These model findere Based on either pure SAT solvers
or on a combination of SAT solver with solvers for unintetpdefunction symbols (which is the case
with SEM). To encode finite domain functions, the solverd tenrequire a super-linear number of
propositional clauses compared to the size of the input.

Like DarwinFM, we can take advantage of the expressiveneE® R to encode functions as rela-
tions, and avoid splitting finite relations into propositial variables.

To simplify the presentation below, assume we have a singéybfunction f. We introduce the
3-ary relationR y to encode the function graph ¢t The functionf can be eliminated from the input
clauses in a standard way, while preserving satisfiabilliyat is:

1. Eliminatef from every claus€’:

Va,y, 2.Cf (x,y)] — Vo, y, z,u.=Rs(z,y,u) V Clu] (14)
2. Add axioms:
VE,y,y' . Re(Z,y) ANRy(Z,y) — y~y (15)
Vi . \/ Re(& c) Vv Ansp(Z) (16)
e

The auxiliary predicaté\ns () tracks dependencies on the constraints on the range of

3. For each functiory assert

0
Vi, \/d; ~ TV -Ansy(). (17)
j=1

The resulting set of clauses are in EPR, and if the clausesatrisfiable, there is a finite model for
the original formula. On the other hand, if the clauses arsatisfiable, then there is a resolution
proof of unsatisfiability. If the proof does not use the axidm), then the original clauses are
unsatisfiable. Assume that proof-search is constrainedradyze proofs that do not use (17)
whenever possible. Thus, if the clauses are unsatisfialth®utiusing the range constraints gn
we will discover this before depending on the current rargeft

4. Let us assume that the EPR clauses are unsatisfiable, aresalution proofs of unsatisfiability
require [IT). In this case there is also a finite ground instathat is unsatisfiable. Suppose the
ground instance uses the unit#\ns(d;), ..., 7Ans¢(d,). We now repeat adding fresh constants
corresponding to terms and modify the cladsé (17). Assuifijeg bf the form:

n
VI . \/ a; ~ & V —=Ansg(Z).
j=1

7

DPLL(SE) Piskac, de Moura and Bjgrner

for n > 0, and that the clauses are unsatisfiable using the groun@mests: ~Anss(d,+1), - . -,
—Ans(dn+m). Replace it by the clause:

m-+n
vi. \/ @ ~% v -Ansy(Z). (18)
j=1
Furthermore introduce fresh constants of the farpy) to provide range elements for the function
f and add the facts:

m

N\ R (@ cra,) (19)

j=n

Theorem 1. The model search algorithm is both refutationally compbtavell as complete for finding
finite models.

Proof. If there is a finite model of siz&V of the original set of clauses, then every term of depth more
than N contains itself as a sub-term. We therefore only have tdemnstants that correspond to terms
of depth at mostV in order to admit a finite model of siz¥.

Refutational completeness follows by compactness of dirdér logic: If a set of clauses is unsat-
isfiable it is unsatisfiable for a finite amplification. We wikked a fair way to enumerate the Herbrand
Universe. One way of achieving this is to give precedencedofp that introduce terms of the smallest
possible depth. O

This presentation of the finite model-building routine exgffrom a few practical problems. We
presented the process for modifying the clalisé (17) by cept@nt. A better approach, in the context of
DPLL, is to assert the original version df ([17) as a unit lagrand ensure that the literal does not get
simplified away from conflict clauses (it is common to sim@ifvay unit literals from conflict clauses
because their assignment never changes). In subsequentsicadd a fresh answer literal corresponding
to the number of rounds, and add a clause that interprets tee@us round’s answer literal by the newly
introduced constants and the new answer literal. Anothéemital drawback is that the scheme searches
the space of terms, and not number of elements. Thus, theréenexponentially many terms of depth
N, but a finite model finder based on domain cardinalities daggeqguire searching the set of depth
terms, whereas this could.

3 Preliminaries

3.1 Basic conventions

We use lower case letters from the beginning of the alphabgt, . . ., to range over a finite alphabBt
of constants, while, 5, c are tuples of constants. We use lettersg, z, zg, 1, x2, . . . for variables from
a set)V; and tuples are variables are writtény, z. The range of letterg,, p2,p,q, 7, P,Q, R, S, T, ...
are used for atomic predicates of varying arities. Signedlipate symbols are identified by the et
As usual, literals (identified by the letté) are either atomic predicates or their negations applied to
arguments. For examplep(z1,x2) (Or p(z1, z2)) is the literal where the binary atomic predicatés
negated.

Clauses consist of a finite set of literals, where each atpneidicate is applied to a tuple of variables
and constants. For examplézy,a) V g(z3) Vv g(b) is a (well formed) clause. We ugg C’, Cy, Csy
to range over clauses. When we later combine clausesswihiktitution set¢Sectior 3.4), we will use
normalizedclauses. These are clauses where predicates are appliestinatdvariables. The empty
clause is identified by &.

DPLL(SE) Piskac, de Moura and Bjgrner

3.2 Equality

EPR remains decidable if we add the theory of equality. Therhof equality can be directly encoded
in EPR by supplying the usual equality and congruence axidrhgs, to axiomatize that equality is an
equivalence relation, add the axioms:

Reflexivity V.21~ 21
Symmetry Vay,xe . (1 £ 2o Va9 ~ 27)

Transitivity Vay, e, x3 . (x1 £ 1oV axg £ a3V ~ x3)

Furthermore, for each additional predicate, suck dsf arity n) and@ (of arity m), add the axioms:

n
Cong(p) Va1, Ty Y1y Un - (0(@1, 0 n) V \/ @i 2 4i V P (U1, - 9n))
i=1

m
Cong(q) \V/l'l, 3 Tms Y1y - Ym - (_‘Q(ml, --7$m) N \/ Z; ;é yi V q(ylv 7ym))
i=1

Clearly, if a formulad@Vyp(Z, i) has a model where equality is interpreted literally as etyugthen
the same model satisfies the additional equality axiomsv&saly, if there is a model &fz2Vyp(Z, ¥)
and the additional equality axioms, then we can take a quotiEsuch a model under. The quo-
tient still satisfies the formula, and furthermore the gemitiensures that no two different elements are
congruent modulo equality.

3.3 DPLL as an abstract transition system

Key ingredients to recent efficient decision procedure8tmilean Satisfiability have been a combination
of non-chronological back-jumping, lemma learning, anficieint Boolean propagation using literal
watch heuristics. We will here recall back-jumping and learlearning using a presentation of DPLL as
an abstract transition system. As we later develop DBLY) and DPLL(SE), the inference rules used
for the purely propositional case will be generalized foREdhd then for EPR with equality.

During search, the states of the abstract transition syaterof the form

I'|F

whereI is a partial model and” is a set of clauses. The partial model consists of a sequdnce o
literals that are either proceeded bylecisionmarker< to indicate that their value was assigned as a
consequence of a guess; or the literals are annotated bysedso they are of the foréy'V¢) to indicate

that their value was assigned as a consequence of a unitgatigpa The clause annotation provides
an explanationfor the propagated literal assignment. It will be convehienusel directly as a partial
assignment, that is a map from literals to Boolean valueflsvs:

true if¢el
re) = false iffel (20)
undef otherwise; and we say'is unassigned if”

We will use the definition to capture the case where all liteiraa clause are forced false by a context

rl--c = 1) = talse foreverytinC (21)

9

DPLL(SE) Piskac, de Moura and Bjgrner

¢ or ¢ occurs inF T'(¢) = undef

Decide T[F — Tol|F
_ I'(¢) = undef T’ H— -C
UnitPropagate
L|F,CVe = TV F,C VY
I'\—-C
Conflict ‘F

I'|F,C = T|F,C|C
Factoring T'|F|CV{Vi = T|F|CV/{

gC\/@EF
I|F|C'VE = T|F|CvC

r|--c

TolT'|F|CVE = TV F

Resolve

Backjump

Unsat M | F|O — unsat

C¢gF
MF|C = T[FC|C

Learn

Figure 1: Core DPLL calculus for Boolean satisfiability

During conflict resolution, the abstract transition systeaintains states of the form
INPTe

where(is aconflictclause and, as beforE,is a partial model and’ is the current set of clauses.

A search process in the abstract presentation of DPLL stdttsa statee | F' comprising of an
empty partial modet and a set of clauseB. The possible steps from a stdtd F' are to (1) guess
a literal assignment (using theecide rule) to a literal that has not already been assigned, (2)qus
UnitPropagate) propagate a literal assignment by assigning a truth valzeliteral ¢ when it appears
in a clauseC' Vv ¢ where all literals inC' have been assigned to false, (3) to detect that the curterslli
assignment contradicts a clausg(flict), or (4) to conclude with a complete assignmErihat satisfies
all clauses. In the last case, the search is done and a sajisfysignment has been extracted. In case
(3), the current assignment needs to be undone by jumpirgtbacprevious partial assignment and flip
a previous guess. This process is guided by conflict resolstieps that use and modify a conflict clause
in order to track the dependencies of decisions that calseddnflict. The conflict resolution rules use
a rule Resolve in order to refine the conflict clause by dependendiestoring to remove duplicate
literals, andBackjump to flip the last literal assignment that caused the conflict.

The premises for thBecide andUnitPropagate rules ensure that the context is always satisfiable.
That is, we have the invariant;

Invariant 1. For every generated context of the foff) 7/ andT" | F' | C' and every atomic predicate
it is the case that eithey ¢ T" or p ¢ T". Thus, equatiorf (20) is well defined.

One thing to notice about conflict resolution is tiBatckjump is always enabled if the context con-
tains at least one decision literal. This claim follows as literals in the conflict clause are inserted

10

DPLL(SE) Piskac, de Moura and Bjgrner

Resolve TWCV* | F|C'"vi = T |F|C V'

1¢C
Y |F|C = T|F|C

Skip

Figure 2: First unique implication point resolution

according to the ordering ifi. More precisely, théJnitPropagate andBackjump rules directly estab-
lish the following invariant:

Invariant 2. For every generated context of the foft”V‘T” | F it is the case thaF' |- —C.

3.3.1 Refining resolution

In Figurell we formulated the resolution step to apply to &it@ary non-decision literal in the contekt

A refinement of this general conflict resolution rule is fist unique implication poin{FUIP) conflict
resolution strategy [18]. There, the first-unique implicatpoint heuristic for conflict resolution was
shown experimentally to offer advantages over an arrayladrgbroposals. We can capture the strategy
by restricting conflict resolution to always pop the top-iidteral from the partial model” until the
context below the last decision literal implies a confliagu¥e[2 contains this rule. We should of course
always applyFactoring as much as possible prior Resolve to avoid getting stuck.

3.4 Relational Algebra

The extension of DPLL to EPR uses notations known from i@tati algebra heavily, and we will recall
those here. These will be useful in manipulating substitugets that are used in DPLLY). See
also [15], [14] and([[1B].

For a fixed set of variable® and a fixed set of constants a substitutiory is an idempotent partial
function fromV to V U X. A domain of a substitution can also be the empty set. If atguben
maps variables only to constants then it is calilestantiation With each substitution we associate
a set of instances, denoted withstancesOf(#). As an illustration, for the substitutiof = [z +—
Y,y — y,z — a] and set of constants = {a, b, c}, set of instances ignstancesOf(0) = {[z —
a,y — a,z — al,[r — by — b,z — al,[r — ¢,y — ¢,z — a]}. Formally, it is defined as
instancesO f(0) = {0’ € (Dom(#) — %) | Vo € Dom(6). ¢'(z) = 6'(0(x))}.

We define a set of substitutions as a set of instances, but IMesgithe terminology substitution set
to express that we will represent those set as a compositioistantiations and substitutions.

We denote sets of substitutions with Those sets are used in the notion of substitution-set con-
strained clauses. A substitution-set constrained clausepairC - ©, whereC' is a clause an® is a
substitution setC' - © = {6(C) | § € ©} andd(C) is defined in a standard wag(¢; V...V {,,) =
O(01)V ...V O(ly) andd(f(t1, ... tm)) = f(O(t1),...,0(tm)).

Clauses can be represented more succinctly when usingtatibss sets, for example set of clauses
p(a,b), p(b,c), p(c,d) can be represented g&e, y) - {[z — a,y — b, [z — b,y —], [x — ¢,y — d]},
or simply: p(z,y) - {(a,b), (b,c), (¢,d)}.

The operations we consider on substitution sets are:

11

DPLL(SE) Piskac, de Moura and Bjgrner

Selection o, 0 is shorthand fo{6 € © | p(0(Z))}.

(&
Projection 70 is shorthand for the set of substitutions obtained ff®ray removing domain elements
other than?. For exampler,{[z — a,y — b], [x — a,y — |} = {[z — da]}.

Co Projection7z0 is shorthand for the set of substitutions obtained f@imy removingz. So7,{[x —
a,y = b, [z —a,y — c} = {[y — b], [y —]}

Join © X O is the natural join of two relations. ¥ uses the variableg andy, and®’ uses variables
Z and Z, wherey and Z' are disjoint, ther® X ©' usesz,y andz and is equal td6 | 7z(0) €
O, 7;(0) € ©'}. For example{[z — a,y — b], [z — a,y — } X {ly — b,z — b],[y —
b,z—al} ={[x—a,y— bz b |[x— ay— bz al}.

Renamingdz_.;O is the relation obtained fror® by renaming the variableg to ;. We here assume
thaty is not used ir® already.

Restriction © ! 6 restricts the se® to the substitutiord. It is shorthand for a sequence of selection and
co-projections. For exampl@. [z — a| = 71,0,-,0, andO [z — y,y — y] = 7,0,—,0. More
generally,© 0 is Tz0 gz © where is the subset of the domain éfvhered is not idempotent.
Thus, ifZ = {z1,...,2,}, thenf(x1) # z1,...,0(x,) # Tp.

Set operations® U ©’ creates the union @b and©’, both sets ofi-ary tuples (sets of instances with
variables in the domain). Subtractién\ ©' is the set{§ € © | § ¢ ©’}. The complemen® is
¥\ O.

The empty sef) should not be confused with the singleton set containingsthstitution{[]} with an
empty domain. For exampl@,X © = (), but{[]} X © = ©.

3.5 Closing relations under equality

We will also recall how binary relations can be closed undéexivity, symmetry and transitivity. In the
following, let R be a binary relation, then we define auxiliary operationgion

R™' = {(y,2) | (z,y) € R} (22)
R = {(z,y) |z =y} (23)
R = RYU#(8y—o(R") X 6,z (R")) (24)
R* = RARURUR?U... (25)
[R] = (RUR Y (26)

We call [R] the equivalenceclosure of R. The equivalence closure of any relation contains the ijent
relation. In the following, we will usd for a binary relation that is closed under equivalence, ithate
will assume that:

[E] = E.

The construction for the equivalence closure outlined aland in particular i (24) uses iterative squar-
ing. The number of iterations required for computing thehemjance closure is therefore logarithmic in
the diameter of the graph induced By

For ann-ary relation® and equivalence relatioR define the closure ab underFE as:

Ol = {#13eO0 M . (zyw)<E} (27)
i=1

12

DPLL(SE) Piskac, de Moura and Bjgrner

Suppose is ann-ary relation. We can compute the closure using a convaiuig, where:

Oy = O
Ory1 = Ty(EXNO), 0<k<n

We can also compute theary equality closurd?,, by using the auxiliary definition:

Ey, = E°
Ek+1 = EkN(s%y—’wk,ykE

Lemma 1. The convolution computes the closurepiinder £
O] = On = 0y, —z, (75, (0 X Ey)).
Lemma 2. Supposer is closed under equivalence. Tha{is] = E. Let R be a binary relation, then
[EUR] = EU][R]g] (28)

Proof. The inclusionD is immediate. To establish consider a paifa, b) that is an element d& U R].
Thus, there is a pattry, . . ., ¢,), wherea = ¢; andb = ¢, such that each pair on the path is in either
Eorin Ror RL. If all elements on the path are il we are done because theénb) € E. So assume
the path contains pairs of elementsiin Each subsequence that contains at most one palr(the rest

in E) will be in [R],. These subsequences are combined by taking the reflexivenstyic, transitive
closure, which ig[R] ;]. O

3.6 ADPLL(SX) calculus for pure EPR

We here extend the basic DPLL calculus presentation to EPdRetailed treatment of this extension is
provided in [6], but we repeat the main calculus wsfmultaneousinit propagation rules as it prepares
the ground for adding built-in inference support for egyaio EPR.

In DPLL(SX), a clause is represented as a j6ai®, whereC as before is a list of literals, comprising
of n-ary predicate symbols, anél is a set of instances for the predicatesCin The set© may be
represented succinctly using a combination of Binary DeciBiagrams and substitutions (as described
in [6]); so we call® asubstitution set The definition of a contexr is also lifted to substitution sets.
Literals inI" are associated with set of instances, so now a context i€dbtm¢,0, ... /7. 0;..

The rules use a generalization of definitibn](20) to sukstitusets; namely:

re = (J{elt-ecry (29)

Thus, the truth assignments for a litefatonsists of the union of instances foin I".

Figured 8 an@l4 summarize DPLLY). For example, th®ecide rule has been generalized to use
substitution sets for identifying new case splits. InstefdequiringI’(¢) = undef it requires a more
general side conditiof'(¢) X © = I'(f) X © = (). Likewise, unit propagation is generalized as it
assigns new instances to a literal based on joining therioetaassigned to the complement of other
literals in a clause. A clause is conflicting if the instanassigned to the complement of all literals in it
forms a non-empty intersection.

One property maintained by the resulting system is that timextI” is always consistent. That is,

similar to invarianfdl we have

Invariant 3. For every generated context of the fofhj F' it is the case that'(¢) N T'(¢) = (.

13

DPLL(SE) Piskac, de Moura and Bjgrner

So whenevelUnitPropagate, Decide and Conflict are disabled, then the invariant allows us to
conclude that the set of clauses are satisfiable with model

Invariant2 admits a similar lifting:

Invariant4. For every derived context of the fold“©e'T’ itis the case thal' = (¢1 V... V £ V £(Z))
and(Z) 75 e’ - Tz (@ X F(El) X ... X F(fk))

Invariant[4 allows us to introduce the notion of the set ohpiees for a literal. We writ@remises
(¢€-9@’) to extract particular literal position§ 01, ..., /,0; in T such thal®’ X ©; M ... X O # ()
(where the variables i®1, . . ., ©; have been renamed appropriately to align with the namesin$g.

(eEF TUXO=T{L)XO =1

Decide T[F — TolOF

C= (V.. .Vl VID)),

O =7mz(@XIT(l) M ... X)) \T(¥) #£0

_ ' XTI =0
UnitPropagate
I'|F,C-©6 = TY“®.0'|F,C -0
C={1V...VL), GT:GMP(E)M... NP(?k) |

Conflict

T[F,C-© — T'|F,C-0|C-0,6,

Figure 3: Search inference rules

§5—zmzO, X Oy = 0 for everyl(y) € C', Cy = (C(§) V U(T))
Ol = 7z(0, X O, X premise§lQ,)) # 0, " = 7z(0© X)

70, | P (C'(2) v £(#) - 0,0, = T|F|(C@H) Vv C'(2))- 0,6,
dj—zmyOr X Oy = 0 for everyl(y) € C
r“®e,|F|C-0,0, — T|F|C-0,0,
O = #7070, # 0, O = 71205-50
TFI(C@) VIR VL) 0,0, = T[F|(C@) VL), 6.

C-O¢F
T|F[C-0,0, — [|F,C-0]|C-06,6,

UnsatT' | F|O0-0,0, = unsat if© #0

Resolve

Skip

Factoring

Learn

C= (V.. VIV,
o = Wf(@ X Fl(?l) X... X Fl(Zk)) \Pl(g) #*]

Iolo|F|C-0,0, = T'\®e|F
Refine T o (oI | F|C-0,0, = To(O)|F if)#£6]C6;

Backjump

Figure 4: Conflict resolution rules

14

DPLL(SE) Piskac, de Moura and Bjgrner

4 DPLL(SE)

The main objective in this paper is to give direct supporefguality as an extension to DPLEL’). This
section presents the extension. While the rules in DBLX) are based on extracting truth assignments
using the auxiliary functiod'(¢), a key change here is to extend this facility to take the sessérted
equalities into account. The reason is that we wish to ussbalequences of asserted equalities during
search without creating an explicit trail of equality prgpdon. Define:

BI) = ()] (30)
T = POl = [t 10 e (31)

e E(I") denotes the equivalence closure constructed using alliggsighat occur in the context

e '~ (/) describes the set of all instances of the litérddat occur in the context. Moreover,I'> (¢)
also contains all the instances &f) that are inferred using the congruence clostif¢’). Note
thatlI'~(~) = E(I).

The next step is to lift the rules for DPLE) to the equality case. We will lift invarianks 3 ahH 4.

Invariant 5. For every generated context of the fofhj F’ it is the case that'=(¢) N T"=(¢) = (.

Invariant 6. For every derived context of the foiid“ ©@'T” itis the case thal' = (¢1 V... V £ V £(T))
and() # 6’ C 7z(© XM I=(f) X ... X T=(ly)).

But a direct lifting of the calculus that could be obtainedjbgt replacingl’(¢) by I'=(¢) is not
possible. We will expose one of the difficulties and hint at @pproach before formulating DPLL(SE)
in detail.

Example 7 (A difficulty with equality). Consider the search state:

op(a), op(b) | p(b) Va ~b

One application of unit propagation produces the context:

= UnitPropagate
op(a), op(b), a = b° | p(b) Va = b

This context is no longer consistent in the theory of egudlitwve aim to develop a calculus and decision
procedure where contexts are always satisfiable, such tivairiant[3 holds (and inconsistencies are
captured by conflict clauses), then cases like this one habe thandled by limiting unit propagation
and instead identify uses for applying equality axioms. fepial problem in this example is that the
clauseC is not directly a conflict clause with the current cont&xt

Our presentation of the extensions to DPELY() explain how to change the basic calculus in a way
that avoids producing inconsistent contexts during seafdtis will be mostly done using the axioms for
equalities (transitivity and congruence) and applyingithiestances. In the above state we can resolve
C with the axionp(a) V a % bV p(b) which is an instance of the congruence axiomfoll he resulting
clause becomes(a)Vp(b)Vp(b) which after factoring simplifies t(a) VVp(b). This clause is conflicting
in I and we proceed with conflict resolution.

15

DPLL(SE) Piskac, de Moura and Bjgrner

The derivation in the new calculus that we will present isafare:

= E—CongConflict

op(a), op(b) | C'| p(a) vV p(b) V p(b)
—> Factoring

op(a), op(b) | C'|p(a) v p(b)
= Backjump

op(a), p(b)PVr®) | C

4.1 Decisions and Propagation

For literals different than equality we can lift theDecide rule directly. We call itE-Decide to distin-
guish it, but the only difference is the useldf (¢) instead off’(¢).

CeF, (£~ OMNT=() =0, OXT=T) =0
T[F — TFolO|F

For equality~ we have the potential problem that asserting a new equabtgtes invariant 3. We
filter potential violations in the pre-condition for de@ns on equalities:

E-Decide

I'=Tox~y-0, forevery/ e 'y TT(¢) XTT() =0
NF = Ty |F

Similar to applications oE-Decide we ensure that unit-propagation does not ignore conflies th
are implied by adding equalities to the context. We theeefdreck that the new context is consistent
when adding the implied literal. This additional check i¢yamecessary when the new propagated literal
is ~, but we formulate the rule with this generality for an arduiyr propagated literal.

C:(gl\/...\/gk\/g(f)),
O =mp(O X T™(l1) M ... XT=(E)) \T=(0) #0

O'XI=(l) =0, I' =Twe'
() X TE() = 0, for each?’ occurring inl*

I'|F,C-©6 = TY“®.0'|F,C- -0

E-Decide~

E-UnitPropagate

4.2 Conflicts

We may lift basic conflict detection to equalities directlyyconflict detected by taking the closure of
instantiations under equality is still a conflict. So DPLE{Setains a variant of the rul@onflict:

C=(lV.. V), D£0,=0XT>{)X... XTI

E-Conflict T|FC.© — T[FC-0]C-0.0,

However, the case covered BtConflict is not the only way that an assignmdntcan induce a
contradiction. Examplel 7 gave an appetizer of the situatioccomprised of a conteXt containingp(a)
andp(b), while the set of clauses containg(h) VV a ~ b. We solved it by replacing ~ b in C by the
literalsp(a) V p(b).

Basically, we need to detect and resolve conflicts if an agsantI” and clause”' vV z ~ 3y - ©
implies a set of equalities by unit propagation fram but the newly propagated equalities contradict
the assignment ifi. The problem boils down to inferring congruence relatianplied from (would-be)
propagated equalities, and extracting a conflict statecbaséhe (would-be) propagation. We summarize
this situation in the rul&-CongConflict.

16

DPLL(SE) Piskac, de Moura and Bjgrner

C=1V...V{Vr~y),

0, =0 XIT=(l;)X ... XMIT=(l,) X E(T),
O =70, # 0,

I =Tz ~y0’

~

I'T(p) XI'T(p) # 0, for somep occurring inl*

E-CongConflict
gr-ontt [|F,C. 6 — [|FC-0]C-0,0,

The rule requires thad,. is the set of instances that imply ~ y. We obtain®,. by joining the
instances for the complement of the literalsGh The derived substitution s€’ is obtained from
O, by projectingz and y, and subtracting instances that are already equal. Obseavesincel is
consistent, and we subtracted the complement of existingedkeequalities, we have th&’ does not
contain any instances for disequalities;&p X I'=(%£) = (). The rule then checks for the complement
of the enabling condition foE-UnitPropagate. In this case there is a predicaten I" that receives
contradictory assignments by the implied equality.

Prior to producing a conflict clause, our approach is to kestilis particular literal with the congru-
ence axiom for the literal that would receive a contradictassignment.

Example 8. Consider the state:

p(a) p(f) = = y{(a,b),(c,d), (e, f)} q(b,c) q(d,e) [q(z,y) Vo =y

The clause satisfies the premiseEefongConflict. A corresponding conflict clause is:

a(b,c) v g(d,e) vV p(b) V ple)

The function CongConflictinstance is used to produce theatksesolvent. We will motivate the
function by first establishing a lemma that implies the exist of the function:

Lemma 3. Following the pre-conditions of rule-CongConflict: Given aclaus&” = ({1 V...V {, V x ~ y)
and a context’, let ©' = 7, (© X I['™(¢;) X ... X I'=(¢)) \ E(T). If © # 0 then define the new
contextl’; = 'z ~ y©'. If there exist occurring inT" such that'{"(p) X I'T(p) # 0, then there exists

a clauseC; 0, such that

1. C10; is conflicting inI". In other words, the premises of ruie Conflict apply.
2. (1064 can be derived fron®’© using congruence and resolution

Proof. Letp be a predicate occurring in such thaf'{"(p) X I'T'(p) # 0. Assume that the premises of
the lemma are satisfied. That implies that(p) X I'(p) = 0.

For simplicity we assume that the aritypfs 1. If p has a greater arity, then it is enough to apply the
procedure that we will describe in this proof on an argumiesttp such that'$(p [;) X T'T(p |;) # 0.
We know that at least one such an argument needs to exist.

The fact that adding equalities~ y©’ will raise the contradiction in the contektis expressed as
follows:

I'=(p) ™ 5:B—>yF:(p) MET)=0 (32)
but,

F:(]_?) X 5m—>yF:(p) X E(Fl) 7é 0 (33)

17

DPLL(SE) Piskac, de Moura and Bjgrner

That implies that there exist a set of equalities~ yOy € E(I'1) that bindsI'=(p) andT'"=(p).
Before adding equalities ~ y©’ to the contextl’ those two sets were disjoint. Sindg(I';) =
[I'1(~)] = [I'(~) U ©’] achain of equations connectifi§ (p) andI'=(p) will consist of a finite number
of equalities belonging t&'(T") or ©'. At least one equality fror®’ has to be present. Figurk 5 visualizes
the idea: the chain of equalities that conndctqp) andI'=(p) consists of alternating equalities from
[©’] and E(T"). The chain is defined as:

Hy 2 6,0, [0] M 60y mion B(T) X X By o B(T) X 5y, [O] (34)

and an integem is chosen in such a way that

B Y 5, T=F) X Hy W T=(p) £ 0 (35)

3l
8
|
2
<
2
I
<
3

Figure 5: The chain of equalities bindidg (p) and'™(p) is constructed alternating equalities fra@h
andE(T)

Applying this on the Examplg]8 we obtain the following sutsion set: B = {[z — b,n; —
¢,01 — d,y — €|}. Note that theB was constructed using onfy’ and £(T"). Now we explain how to
derive the formula®;©, from CO.

First we construct the formul@ % ny Vny £ 01 V...Vo, # yVa ~ y)H, where the substitution
setH contain atuple of values that were used to establish thedfi@qualities. This formula represents
a transitive derivation of ~ y m,,, H. All equalitiesn; ~ o; m,,,, H are already contained ii(I"). The
remainingm + 1 inequalities are resolved with the equality in thie= (¢; vV ...V ¢ V x ~ y) clause.

The resulting clause has the form

(V. VOGNV NV v TV g~)R (36)

wherern,,Or = T,y H.

Next, we construct the axiortp(z) V = % y V B(y))ms, H. This is a congruence axiom fpr We
resolve this axiom witH(36) and denote the resulthy,. C, 0, is conflicting inT" and it was derived
from CO.

O

Definition 1 (CongConflictinstance)For a contextl” and a clause”'© that fulfills the preconditions of
Lemmd.B, let”; ©, be a clause derived froff© as described in the proof of the Lemma. We introduce
the following shorthand to describe this fact:

(10, = CongConflictinstandd’, C, ©)

Definition 2 (Bridge). Given a context’, a new set of equalities ~ y©’ added tal’ and an integern,
with Bridge(E(T"), ©', m) we define a chain of equalities of size. — 1 defined in the same manner as
in the proof of Lemmial 3:

Bridge(E(I),©',m) < 6, 1, [0'] M buynion ET) X ... X Guy o o B(T) X 5y, [O]

DPLL(SE) Piskac, de Moura and Bjgrner

4.3 Conflict Resolution

Propagation of equalities are left implicit in the searcfeiance rules. The price to pay is that depen-
dencies on equalities in conflicts have to be re-producemhgwonflict resolution. So, a given conflict
clause may depend on some subset of the asserted equalifiesGonflict resolution would have to
determine which. In this section we show how the set of etyudkpendencies can be unfolded lazily
during conflict resolution.

We will approach conflict resolution as an instance of theR-Blirategy. This means that we will
proceed from a conflict stalet"V‘@’ | F | €O, ©, and either pog©®’ from the context by usingkip,
apply Backjump, apply Factoring, or if none of these rules apply, resol¢& Vv ¢ with the conflict
clause. The rules for resolution cannot be identical to tie listed in Figuré #, first because equality is
used implicitly during constraint propagation, secondght of E-CongConflict, we need to super-pose
equalities into literals. Prior to formulating the confliesolution rules, let us consider the possible cases
where they should apply:

4.3.1 Resolve
The first case is when the premisesR#solve apply directly.
S67—zm50, X Oy = 0 for everyl(y) € C', Cp = (C(y) V U(Z))
Ol = 7z(0, X O, X premiseslQ,)) # 0, O" = 7O X O)
I e, | FI(C'(2) v 0(7) - 0,0, = T|F|(CH) V() o6

In this case we can resolvewith the matching negated literal in the context to obtairoaflict
clause without the particular occurrencelof

4.3.2 E-Resolve

It can be the case that the last asserted literal in the cohiteis an equalityr ~ y©’, which is used in
conjunction with other equalities to establish the cur@niflict clause. The inter-dependencies of the
last asserted equality and other equalities have to be giethbefore we can appl-Resolve.

I = Tu~ov®, T=({];) X6, =0, (butl'T(¢ |;) X ©, # 0)

P = bpyz,y,Bridge(E(T),0",m)
Q" = T=({)X P Xz ;0, O =0"X5z_;0,#0
c" = C’\/E(g’)\/xi;énl\/nl;éol\/...\/nm;éom\/om¢yi

F|CVLeD) 0,0, = T1|F|C" 0",/

In the rule, the literal(2) is only contradictory in the context of the equalities~ y©’. That
means there must be an arguménf ¢ such that projecting-th component of results withT'$* (7 |;
) X O, # (. In the rule we consider contradicting arguments ohe by one. Th&ridge relation P
that was introduced in the proof of Leminla 3 encodes the udeedast asserted equalities to derive the
contradiction. Just as in Lemrha 3, we will bound the numbeapgfiications of the inserted equalities
with m. The contradiction can be derived using finite number of Eiesfrom both, E(I") and the set
of newly inserted equalities. That guarantees the existefn:.

19

DPLL(SE) Piskac, de Moura and Bjgrner

4.3.3 E-CongResolve

The ruleE-CongResolve is introduced to matcE-CongConflict when the top-most literal is conflict-
ing with an equality in the conflict clause. used for propagaan equality.

I = D'V®'Q, (isnot~
C (l1V ...Vl VT ~y),

O, = OMI¥({)X...XI=(f) X E(T),
@// - ny(ar 7é wa _
I = To>y0", [Odpr,) MIT) #0

(10,1 = CongConflictinstandg@",C,0,), ©; =0 X 0,
L|F|C-06,8, — T|F|Ci-61,0n

An implied equality in the conflict clause contradicts thp-taost literal assignment in the context, and
the top-most literal assignment is not an equality (thaé eass handled using tHe-Conflict rule). The
side-conditions match the premises of lenitha 3. The lemmaresnshat there ar€, - ©1, O, that can
be derived fromC' - ©, ©,., such that resolution with the top-most literal can be agupli

The rulesE-Resolve and E-CongResolve essentially handle the two cases where standard reso-
lution does not yet apply. The premises for the two rules @j@idt: one handles the case where the
top-most literal inl" is an equality, the other handles the case where it isn’'t aalig The rules both
reduce the dependencies on the top-most literal for theicbalfhuse. Thé=-Resolve rule takes care of
the use of transitive closure, tBteCongResolve rule takes care of the dependencies on conflicts caused
indirectly from congruenceH-CongConflict). These observations are summarized in the following
lemma.

Lemma 4. In every reachable conflict state it is the case that:
1. If E-Resolve applies, then it is only applicable a finite number of times.
2. If E-CongResolve applies, then it is only applicable a finite number of times.

In either case, these rules can be followed only by eitherite fmumber ofactoring, after which either
Resolve, or Refine apply.

4.3.4 Other conflict resolution rules

The other conflict resolution rules are direct liftings oé t,ame rules that apply for DPLE). The
rules for DPLLES X)) were listed in Figurél4, and the rules for DPLL(SE) are tisteFigure[6.

4.4 Summarizing the DPLL(SE) calculus

We can now summarize the full DPLL(SE) calculus as compyisifithe rules listed in Figuile 6 as well
asE-Decide, E-Decide~, E-UnitPropagate, E-Conflict, E-CongConflict, Resolve, E-Resolve, and
E-CongResolve.

4.5 Examples

We here illustrate the rules on a couple of small example. @sr example exercises just the
CongConflict rule. The second example shows how the conflict resolutitas rare used.

20

DPLL(SE) Piskac, de Moura and Bjgrner

I = cmzhel@g, 5g_>fﬂ'g'®7- X [QZ]E(Fl) = for every/(y) € C

Skip o
e e F|lCc-0,0, = TI'|F|C-6,0,
_ O] = 72052 (0:]pr) # 0, O = Tz05-20
Factoring p S S - n Q)
CIF|(C@) V) VEIZ) 0,0, = T|F|(C(F) VL)) 6,0,
C-0&F
Learn

I'F|C-6,0, = T|F,C-0|C-06,0,
UnsatT' | F|O0-0,0, = unsat if© #0

C =l V...V VIUT)),
O = m(O@ M IT=(l) M ... XMIT=(l)) \T=(0) #0
Fol|F|C-06,0, = TY“°e'|F

TolOI'|F|C-0,0, = Tol®|F if(+6]cCo,

Backjump

Figure 6: Remaining conflict resolution rules for DPLL(SE)

Example 9. Let us check satisfiability of the following set of clauses:
x1~xo V a3 2wy -{(a,c,b,)},
x1~xy V a3 ~xy - {(bc,a,b)},
x1 Exo V a3 2wy -{(a,b,a,c)}

A possible derivation can take the form:

Example 10. Let us check satisfiability of the following set of clauses:

p(a),

p(f),

a~bVac~c,

e~ fVe~f,

c~d,

Vo, Vy. x ~yVq(z,y),
d# fVqlac),
azcVq(d, f)
a?bVqb,c)

e fVaq(de)

In order to enhance readability we did not use the notatiosulifstitution sets. Furthermore, where
it is obvious, we do not annotate literals with explanatiori® show that the above set of clauses is
unsatisfiable, a proof looks as follows:

4.6 Soundness, Completeness, Stuck-freeness, and Comitlex

As we have now presented the full DPLL(SE) calculus let usmanre its properties. The more detailed
justification for these properties follow the lines of thetjtication of the corresponding theoremslih [6]
together with lemmaAl3 and lemrh 4.

21

DPLL(SE) Piskac, de Moura and Bjgrner

| F
E—Decide~
o,x1 ~ xa{(a,)} | F
E—UnitPropagate
o, r1 = xZ{(a7 C)}7 T :# xgge)g{(a’ b)} H F
E—CongConflict (the second clause)),~ ¢
0,21 ~ x2{(a,0)}, 21 # 2559 {(a,b)} |
| Fy (1 £ 29V xg ~ 24 Vx5 ~ 26) - {(a,c,a,b,a,b)}
E—Conflict (the newly added clause)
o, w1 ~ wo{(a,)}, w1 2 259 {(a, D)} [1 | ...
| (z1 2 2 V 23 >~ 24 V x5 ~ x6) - {(a,c,a,b,a,b)}
Factoring
o, T = xZ{(CL?C)}?‘Tl # xg“g@g{(a’ b)} H Fy ” (‘Tl * 19V T3 x4) ’ {(CL?C? a, b)}
Resolve (the conflicting and the third clause),
o,x1 ~ xo{(a,c)} | Fi | (x1 % o V a3 % 24) - {(a,c,a,c)}
Factoring
o,x1 = x2{(a,)} [F1 | (z1 # 22) - {(a,)}
Backjump
xy i (0, o)} | By
E—UnitPropagate
w1 # 2§ PN a0y g £ 25O (b o)} | By
E—UnitPropagate
z1 2 g PN (a0 oy 21O (B,)} oan = 2§20 {(a,)} | FY

L

!

!

el

Figure 7: Derivation for examplg 9

Theorem 2 (Soundness)The DPLL(SE) calculus is sound. Thus, whenever it estadignsat, from
e| F, then the set of clausds are unsatisfiable.

Proving soundness is a standard inspection of the denivaties.

Theorem 3(Completeness)The DPLL(SE) calculus is complete. Thus, whenever it stsiia a state
I’ | F where no rule can be applied, then the set of clauBeis satisfiable using the assignmdnt
Conversely, if the sdf is unsatisfiable, then the rules derive the empty clauise

Theorem 4(Stuck-freeness)The transition rules of the DPLL(SE) calculus terminatepémticular the
conflict resolution rules always admit a state where eitBackjump or Refine are enabled.

The proof of Theorerhl4 is a direct lifting of the theorem farck-freeness of DPLIEX) presented
in [6], except we use ruleE-CongConflict and E-Resolve to reduce the conflict clause to the cases
where the rules from DPLIJX) apply. Stuck-freeness corresponds to a confluence pyopevery
strategy is ensured to make progress towards establisHiether the set of input clausésare satisfi-
able.

Theorem 5(Complexity) Similar to the DPLLEX) calculus, the complexity of applying the calculus
as an algorithm for DPLL(SE) requires up to doubly exporariiime and up to exponential space.

The justification for the theorem follows the same argumeetin [6].

22

DPLL(SE)

T a Ea a a

Piskac, de Moura and Bjgrner

| F

UnitPropagate (3 times)

p(a),p(f),c=d|F

Decide (2 times)

pla),p(f),c=d,ca~boe~ f|F

UnitPropagate (2 times)

p(a),p(f),c = d,0a = b,0e = f,q(b,c),q(d,e) | F

E — CongConflict + E — CongResolve (as described in Examplé 8)
p(a), p(f),c = d,0a =b,0e = f,q(b,c),q(d,e) | F'|q(b,c) Vg(d,e) vV p(b) VB(e)
Resolve (2 times)

B(a), p(f), ¢ = dyoa = byoe = | F | p(b) VB(e) Va g bV e f

E — Resolve + Factoring

p(a),p(f),c~d,ca~boe~ f|F|pb) VD(f)VarbVe#f
Backjump whereCy =p(b) VB(f)VatbVe# f
pa),p(f),c~d,oa~best fO|F

UnitPropagate

UnitPropagate

pa),p(f),c~d,oa=be s f e~ fq(a,c) | F

E — CongConflict + E — CongResolve (preventing to add, ~ ¢)
pa),p(f),c = d,oa~be st f,c~ fq(a,c) | F|p(a) VB(f) V(a,c)
Resolve

p(a),p(f),c=d,oa~be f e [F|pla)Vp(f)Vd#f
E — Resolve

p(a),p(f),c=d,oa=bet fO e fF|pla)Vp(f)Vd#EeVed |
2xResolve + Factoring

p(a),p(f),c~d,ca~b| F|p(a)Vpb)VD(f)VaFbvdrec
Resolve + Factoring

pla),p(f),c~d,oa~b| F|p(a) VD(f)VazEbVdsec
Backjump whereCy = p(a) VB(f) Va2 bVvd#c
p(a),p(f),c=d,a £ b | F

2xUnitPropagate

pa),p(f),c~d,a b a~cq(d f)|F

E — CongConflict + E — CongResolve (preventing to add ~ f)
pa),p(f),c=d,a £ 6% a~cq(d, f)| F|pd) vVD(f)Vad, f)
after sequence of applyirigesolve, E-Resolve, andFactoring
p(a),p(f),c=d| F|p(a) VD(f) Vd#ec

3xResolve

OIF[o

unsat

Figure 8: Derivation for example 110

23

DPLL(SE) Piskac, de Moura and Bjgrner

5 Conclusions

We have presented a calculus for EPR with equality based eD#vis-Putnam-Logemann-Loveland
procedure with substitution sets. By building in equalle talculus avoids explicitly adding equality
axioms and allows for propagating equality facts imphcidluring search. On the other hand, conflict
resolution for backjumping and lemma learning necessitegeonstructing the dependencies on equali-
ties.

Adding the theory of equality as a primitive to a calculus E®PR can be seen as one instance of
adding theory reasoning to an EPR calculus. The wider pnogra is thus to add theory solvers in the
context of an efficient EPR calculus. Just like there is a Bm@y of reducing EPR to propositional
satisfiability by grounding, there is a simple way of addihgdries to EPR calculi based on DPLL.: for
each ground model identified by a the core calculus, ass$@roaind facts to the theory solver. Our work
with handling equality illustrates an approach that seekimgration that does not require grounding.

Future work includes experimenting with the equality chlstand evaluating it relative to alterna-
tives, such as the direct encoding of equality in EPR.

References

[1] Peter Baumgartner, Alexander Fuchs, Hans de Nivelld, @esare Tinelli. Computing Finite Models by
Reduction to Function-Free Clause Logitournal of Applied LogicJuly 2007. In Press, available online,
doi:10.1016/j.jal.2007.07.005.

[2] Egon Borger, Erich Gradel, and Yuri Gurevichhe Classical Decision ProblenSpringer-Verlag, 1997.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Whig'sidable about arrays? In E. Allen Emerson
and Kedar S. Namjoshi, editoMMCAI, volume 3855 of ecture Notes in Computer Scienpages 427-442.
Springer, 2006.

[4] K. Claessen and N. Sorensson. New techniques that ineprace-style finite model finding. BADE-19
Workshop: Model Computation - Principles, Algorithms, Agatgions 2003.

[5] L. de Moura and N. Bjgrner. Deciding Effectively Propamnal Logic using DPLL and substitution sets. In
Allesandro Armando, Peter Baumgartner, and Gilles Dowekoes,|IJCAR 20082008.

[6] L.de Moura, R. Piskac, and N. Bjgrner. Deciding EffeetiwPropositional Logic using DPLL and substitu-
tion sets. Technical Report MSR-2008-108, Microsoft Resg£2008.

[7] Hans de Nivelle and Jia Meng. Geometric resolution: Agfnarocedure based on finite model search. In
Ulrich Furbach and Natarajan Shankar, edittf€AR volume 4130 of_ecture Notes in Computer Science
pages 303—-317. Springer, 2006.

[8] Pascal Fontaine. Combinations of theories and the BerSzhonfinkel-Ramsey class. In Bernhard Beckert,
editor,4th International Verification Workshop - VERIFY’07, Bram&5/07/07-16/07/0duly 2007.

[9] R. Graham, B. Rothschild, and J. Spendeamsey TheorWiley, 2 edition, 1990.

[10] J. A. Navarro PérezEncoding and Solving Problems in Effectively Propositidnzgic. PhD thesis, The
University of Manchester, 2007.

[11] Harry R. Lewis. Complexity results for classes of quficational formulasJ. Comput. Syst. S¢R1(3):317—
353, 1980.

[12] William McCune. Mace4 reference manual and gui@eRR ¢s.SC/0310055, 2003.

[13] F. Ramsey. On a problem of formal logieroc. of the London Mathematical Sociedp:264—286, 1930.

[14] Tanel Tammet and Vello Kadarpik. Combining an infereeagine with database: A rule server. In Michael
Schroeder and Gerd Wagner, editdRsileML, volume 2876 oflecture Notes in Computer Sciengages
136-149. Springer, 2003.

[15] Andrei Voronkov. Merging relational database tectogyl with constraint technology. In Dines Bjgrner,
Manfred Broy, and Igor V. Pottosin, editostshov Memorial Conferencgolume 1181 of_ecture Notes in
Computer Scieng@ages 409-419. Springer, 1996.

24

DPLL(SE) Piskac, de Moura and Bjgrner

[16] John Whaley, Dzintars Avots, Michael Carbin, and M@ni8. Lam. Using datalog with binary decision
diagrams for program analysis. In Kwangkeun Yi, edif&d®LAS volume 3780 of.ecture Notes in Computer
Sciencepages 97-118. Springer, 2005.

[17] Jian Zhang and Hantao Zhang. System description: Géngrmodels by sem. In Michael A. McRobbie
and John K. Slaney, editor€ADE, volume 1104 ofLecture Notes in Computer Sciengages 308-312.
Springer, 1996.

[18] Lintao Zhang, Conor F. Madigan, Matthew W. MoskewicndeSharad Malik. Efficient conflict driven
learning in boolean satisfiability solver. IBCAD, pages 279-285, 2001.

25

	Introduction
	Examples
	Preliminaries
	Basic conventions
	Equality
	DPLL as an abstract transition system
	Refining resolution

	Relational Algebra
	Closing relations under equality
	A DPLL(SX) calculus for pure EPR

	DPLL(SE)
	Decisions and Propagation
	Conflicts
	Conflict Resolution
	Resolve
	E-Resolve
	E-CongResolve
	Other conflict resolution rules

	Summarizing the DPLL(SE) calculus
	Examples
	Soundness, Completeness, Stuck-freeness, and Complexity

	Conclusions

