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Abstract

Recently direct optimization of information retrieval (IR) measures
becomes a new trend in learning to rank. Several methods have been
proposed and the effectiveness of them has also been empirically verified.
However, theoretical justification to the algorithms was not sufficient and
there were many open problems remaining. In this paper, we theoreti-
cally justify the approach of directly optimizing IR measures, and further
propose a new general framework for this approach, which enjoys several
theoretical advantages. The general framework, which can be used to
optimize most IR measures, addresses the task by approximating the IR
measures and optimizing the approximated surrogate functions. Theoret-
ical analysis shows that a high approximation accuracy can be achieved by
the approach. We take average precision (AP) and normalized discounted
cumulative gains (NDCG) as examples to demonstrate how to realize the
proposed framework. Experiments on benchmark datasets show that our
approach is very effective when compared to existing methods. The em-
pirical results also agree well with the theoretical results obtained in the

paper.

1 Introduction

This paper is about direct optimization of IR measures in learning to rank, which
is considered as one of the most important directions for the area [24]. Several
methods have been developed and they can be grouped into two categories.
The methods in the first category introduce upper bounds of IR measures and
try to optimize the upper bounds as surrogate objective functions [23, 25, 7, 6].
The methods in the other category approximate IR measures using some smooth
functions and conduct optimization on the surrogate objective functions [17, 10].
For other methods, please refer to [3, §].

Previous studies showed that the approach of directly optimizing IR mea-
sures can achieve high performances when compared to the other approaches
[23, 25, 7, 24, 17]. However, theoretical analysis was not sufficiently conducted
to build solid grounds for the proposed methods.



First, it seems natural to take the direct optimization approach, but theo-
retical justification to it was not sufficiently provided.

Second, the relationships between the surrogate functions and the corre-
sponding IR measures have not been sufficiently studied. This is a critical issue,
because it is necessary to know whether optimizing the surrogate functions can
indeed optimize the corresponding IR measures.

Third, some of the proposed surrogate functions are not easy to optimize.
Existing methods have to employ complicated techniques in the optimization.
For example, both SVM™ [25] and SVM"9 [7] use Structured SVM [19] to
optimize the surrogate objective functions (i.e., AP and NDCG respectively).
However, the optimization technologies are measure-specific, and thus it is not
trivial how to extend them to new measures.

In this work, we propose a general direct optimization framework, which can
effectively address the aforementioned three problems.

e We first investigate the theoretical foundation of the direct optimization
approach. Based on the consistency theory in statistical learning, we show
that when an IR measure is bounded and the function class is not very
complex, directly optimizing the IR measure on a large training set can
guarantee a high test performance in terms of the same IR measure. By
further applying the generalization theory, we prove that under certain
conditions, no other approach can outperform the approach of directly
optimizing IR measures in the large sample limit.

e We then propose the general framework, which can accurately approxi-
mate any position-based IR measure, and then transform the optimization
of an IR measure to that of an approximated surrogate function. The key
idea is as follows. The difficulty in directly optimizing IR measures lies in
that the measures are position based, and thus non-continuous and non-
differentiable with respect to the score outputted by the ranking function.
If we can accurately approximate the positions of documents by a con-
tinuous and differentiable function of the scores of the documents, then
we will be able to approximate any position based IR measure. We give
theoretical analysis which demonstrates that highly accurate approxima-
tion of a position based IR measure can be obtained and thus high test
performance in ranking can be achieved.

e Taking AP and NDCG as examples, we show that it is easy to derive
learning algorithms (ApproxAP and ApproxXNDCG) to optimize the sur-
rogate functions in the framework. Experimental results show that the
derived algorithms can outperform existing algorithms.

The contributions of this work are as follows. We provide a theoretical jus-
tification to the direct optimization approach. We propose a general framework
for direct optimization, which is applicable to any position based IR measure,
theoretically justifiable, and empirically effective. Two example algorithms for
optimizing AP and NDCG have also been provided.



The remainder of this paper is as follows. We start with a review on exist-
ing methods in Section 2, and then give theoretical justification to the direct
optimization approach in Section 3. Section 4 sets up a general framework to
approximate and optimize IR measures, and shows two examples of using this
framework. Theoretical analysis about the framework is given in Section 5.
Experimental results are presented in Section 6. We conclude the paper and
discuss future directions in the last section.

2 Related Work

2.1 IR Measures

To evaluate the effectiveness of a ranking model, IR measures such as Precision,
AP (Average Precision) [1], NDCG (Normalized Discounted Cumulative Gain)
[13] and MRR (Mean Reciprocal Rank) [21] are being used. Here we review
some of them.

Precision@k is a measure for evaluating top k positions of a ranked list using
two levels (relevant and irrelevant) of relevance judgement:

k
1
Pre@k = z Z rj, (1)
j=1
where k denotes the truncation position and

{1 if document in j-th position is relevant,
Tj =

0 otherwise,

AP, another measure using two levels of relevance judgement, is defined on
the basis of Precision:

1
AP =— )% r; x Pre@j, (2)
D | ; !

where | D | denotes the number of relevant documents with respect to the query.
Given a ranked list for a query, we can compute an AP for this query. Then
MAP is defined as the mean of AP over a set of queries.

NDCG@k is a measure for evaluating top k positions of a ranked list using
multiple levels (labels) of relevance judgment. It is defined as

k
NDCG@k = N g(r)d(j), (3)

j=1
where k is the same as that in Eq (1), IV}, denotes the maximum® of Z?:l g(r;)d(7)

, 7; denotes the relevance level of the document ranked at j-th position, g(r;) de-
notes a gain function, e.g., g(r;) = 2"/ —1, and d(j) denotes a discount function,

e.g., d(j) =1/logy(1 4+ 7).

IThe maximum is obtained when the documents are ranked in the perfect order.




With the above specific definitions of the gain function and the discount
function, NDCG@E can be reformulated as

k

2 -1
-1 E

(4)
If considering all the n documents for a query, we get NDCG@n, which is
called as NDCG for short in this paper in the case without confusion:

n

NDCG = NDCG@n = N ! Z 102 i 1_+1j (5)
2

2.2 Learning to Rank

Learning to rank is aimed at constructing a ranking function f with training
data consisting of queries and their associated documents. The function is then
used in ranking, specifically, to assign a score to each document associated with
a query, to sort the documents in the descending order of the scores, and to
generate the final ranking list of documents for the query.

One approach in previous work takes document pairs as instances and re-
duces the problem of ranking to that of classification on the orders of document
pairs. It then applies existing classification techniques to ranking. The methods
include Ranking SVM [11, 14], RankBoost [9], RankNet [4]. See also [26, 18].

Another approach regards ranking lists as instances and conducts learning
on the lists of documents. For instance, Cao et al proposed using a probabilistic
model in the ranking learning and employing a listwise ranking algorithm called
ListNet [5]. In their recent work [22], they further studied the properties of the
related algorithms and derived a new algorithm based on Maximum Likelihood
called ListMLE. See also [16, 3].

2.3 Direct Optimization of IR Measures

In addition to the learning to rank methods described above, people have also
studied how to learn a ranking function by directly optimizing an IR measure.
This new approach seems more straightforward and appealing, because what is
used in evaluation is exactly an IR measure.

There are two major categories of algorithms for direct optimization of IR
measures. One group of algorithms tries to optimize objective functions that are
bounds of the IR measures. For example, SVM™? [25] minimizes a hinge loss
function, which bounds 1-AP from above. SVM"4¢9 [7, 6] minimizes a hinge loss
function, which bounds 1-NDCG from above. AdaRank [23] minimizes an expo-
nential loss function which can upper bound either 1-AP or 1-NDCG. Another
group of algorithms manages to smooth the IR measures with easy-to-optimize
functions. For example, SoftRank [17, 10] smooths NDCG by introducing ran-
domness into the relevance scores of documents.



The effectiveness of these algorithms have been empirically verified. How-
ever, as mentioned in the introduction, theoretical analysis on the algorithms
was not sufficiently provided. In this paper, we theoretically justify this ap-
proach and further propose a novel framework for direct optimization of IR
measures.

3 Theoretical Justification

In this section, we will give a theoretical justification to the approach of directly
optimizing IR measures, on the basis of the consistency theory of empirical
learning process and the generalization theory in statistical machine learning.
That is, if an algorithm can really directly optimize an IR measure on the
training data, then the ranking function learned by the algorithm will be one
of the best ranking functions one can ever obtain, in terms of the expected test
performance defined by the same IR measure.

3.1 Training Performance vs. Testing Performance

Suppose that {g;,7 = 1,2, --- ,m} represents m training queries and ¢ represents
a test query, sampled from the entire query space, according to an unknown
probability distribution P(q). We use M (g, f) to denote the performance of
ranking function f € . with regards to query ¢ in terms of IR measure M.
Then M(f) and M,,(f) defined below represent the expected test performance
and the empirical training performance of the ranking function f in terms of IR
measure M:

M(f) = / M(q. f)dP(q) (6)

£
=
I

=3 Mg f) ™

By applying Theorem 3.4 in [20], which is about the consistence of any em-
pirical learning process, we can obtain the following theorem on the consistency
of empirical learning-to-rank process.

Theorem 1. If the ranking function space Z is not complex?, and the IR mea-
sure M(q, f) is uniformly bounded over the function space &, then the training
performance My, (f) of a learning to rank algorithm uniformly converges to the
test performance M (f) of it.

P{sup |M(f) = M (f)] > 8} =70 (8)
fes

2The complexity of a function space has its strict definition, which is beyond the scope of
this paper. Please refer to Section 3.8 of [20] for more details. For example, a space containing
a finite number of functions is not complex.



Since most IR measures including NDCG, MAP and Precision take values
from [0, 1], the corresponding M(q, f) is uniformly bounded for any ranking
function f € .%. Theorem 1 implies that under certain conditions, the training
performance of a ranking function will be very close to the test performance of it,
when the number of training queries becomes large (i.e., |M(f) — My (f)] =3
0).

It is easy to understand that if an algorithm can directly optimize an IR
measure on the training set, then the learned ranking function will have a high
performance on the training set. Theorem 1 pushes it further by saying that the
ranking function is very likely to have a high performance on test set as well,
when the training set is large enough. This gives a theoretical justification to
the approach of directly optimizing IR measures in learning to rank.

3.2 Direct Optimization vs. Other Methods

We can draw an even stronger conclusion from the generalization theory. That
is, when the number of training queries is extremely large, the learned ranking
function in direct optimization of IR measures will be the best ranking function
that one can ever obtain in terms of the measures.

We use f,, to denote the ranking function in .% with the best training
performance in terms of the IR measure M, and f* to denote the ranking
function in .% with the best testing performance, also in terms of M:

fm = argmaxM,,(f) 9)
feF

ff = argmaxM(f) (10)
feF

Then we have the following theorem based on [2]. The proof can be found
in Appendix.

Theorem 2. The difference between the testing performance of f., and the
testing performance of f* can be bounded as below,

[M(fm) — M(f7)] SQng;-'M(f)_MM(f)" (11)

Combining the results above Theorem 1 and Theorem 2 yields |M(f.,) —
M(f*)] ™=5° 0. Note that M(f*) is the best test performance one can ever
obtain over the entire function space. For the ranking function learned by other
methods, Theorem 2 does not necessarily hold. Therefore, it is safe to say that
no other learning to rank algorithms can perform better than the approach of
directly optimizing IR measures in the large sample limit.

3.3 Remarks

Theorem 1 and Theorem 2 hold only when the conditions in them are met.



e For some unbounded IR measures, such as DCG, there is no guarantee that
the same conclusion holds as in Theorem 1. As a result, it is not clear
whether high training performance can result in high testing performance
in terms of such measures.

e Note that the two theorems hold only in the large sample limit. In prac-
tice, the number of training data is always limited. Theoretically it is
difficult to analyze how a direct optimization method would perform in
such situations. Note that this is the case for any learning algorithm.
Therefore, we need to compare the performances of learning algorithms
empirically.

e As discussed in Section 1, existing direct optimization methods try to
optimize surrogate objective functions but not IR measures. In many cases
the relationships between the surrogate functions and the IR measures
have not been verified. Thus, it is not clear whether the existing direct
optimization algorithms can outperform other methods in the large sample
limit.

4 General Framework

In this section, we propose a general framework for direct optimization of IR
measures. The framework is applicable to any position based IR measure, the-
oretical justifiable, easy to use, and empirically effective.

In the framework, we take the approach of approximating the IR measures.
The framework consists of four steps:

o Reformulating an IR measure from ‘indezing by positions’ to ‘indexing by
documents’. The newly formulated IR measure then contains a position
function and optionally a truncation function. Both functions are non-
continuous and non-differentiable.

e Approximating the position function with a smooth function of ranking
scores.

e Approzimating the truncation function with a smooth function of positions
of documents.

e Applying an optimization technique to optimize the approxrimated measure
(surrogate function).

Next, for ease of explanation we take some examples to describe the steps
in details. We first give some notations here.

Suppose that X is a set of documents for a query, and x is an element in X.
A ranking function f outputs a score s, for each x:

Sz = f(z;0),x € X



where 6 denotes the parameter of f. A ranked list = can be obtained by sorting
the documents in descending order of their scores. We use 7(z) to denote the
position of document z in the ranked list 7. Given the relevance label r(z) of
each document x, an IR measure can be used to evaluate the goodness of 7. Note
that different f’s will generate different n’s and thus achieve different ranking
performances in terms of the IR measure. The approach of direct optimization
is to find an optimal f from a function class .# by directly optimizing the
performance on the data in terms of the IR measure. Further, we use 1{A} to
denote an indicator function:

1, if Ais true
1{A} = ’ ’ 12
{4} {07 otherwise. (12)

4.1 Measure Reformulation

Most of the IR measures, for example, Precision, AP and NDCG are position
based. Specifically, the summations in the definitions of IR measures are taken
over positions, as can be seen in Eq. (1), (2), (3) and (4). Unfortunately, the
position of a document may change during the training process, which makes the
handling of the IR measures difficult. To deal with the problem, we reformulate
IR measures using the indices of documents.

When indexed by documents, Precision@k in Eq. (1) can be re-written as

Preak — % S r(@)1{n(z) < k}, (13)

reX

where 7(z) equals 1 for relevant documents and 0 for irrelevant documents, and
1{m(x) < k} is a truncation function indicating whether document z is ranked
at top k positions.

With documents as indices, AP in Eq. (2) can be re-written as,

AP = ﬁ ;r(y) x PreQm(y). (14)
Combining Eq. (13) and Eq. (14) yields
1 1
AP = myezxr(y) x @gr(x)l{ﬂ(x) <m(y)}
1 () o M) < ()
S 2\ Fw T2, YT "

where 1{7n(z) < 7(y)} is also a truncation function indicating whether document
x is ranked before document y.
Similarly, when indexed by documents, Eq. (3) of NDCG@Ek can be re-

written as:

< k). (16)

2r(®) 1
_ —1
NDCG@k = N;, ;ex om (L 7(2) 1{r(z)



Here r(z) is an integer. For example, r(2) = 0 means that document z is
irrelevant to the query, and r(x) = 4 means that the document is very relevant
to the query.

Note that NDCG does not need the truncation function,

or(@) 1

NDCG =N, '} (17)
reX

go(1+m(z))

The reformulated IR measures (e.g., Eq. (13), (15), (16) and (17)) con-
tain two kinds of functions: position function 7(z) and truncation functions
Hn(z) < n(y)} and 1{r(z) < k}. Both of them are non-continuous and non-
differentiable. We will discuss how to approximate them separately in next two
subsections.

4.2 Position Function Approximation

The position function can be represented as a function of ranking scores:

m@) =1+ Y 1fss, <0}, (18)

YEX yFz

where 55, = 5, — 5y.

That is, positions can be regarded as outputs of a function of ranking scores.
Unfortunately the position function is non-continuous and non-differentiable
because the indicator function is so.

We want to approximate the position function to make it easy to handle.
A natural way for the approximation is to approximate the indicator function
1{s;, < 0} using a logistic function®:

exp(—asz,y)

OGP\ XSay) 19
1+ exp(—asg,y) (19)

where a > 0 is a scaling constant.
Then we can replace 7(z) as 7(x)

€ —QS,
wa)=1+ D oo +Xp( C 2) ) (20)
YEX yita EXPl—QSg,y

while 7 (x) is a continuous and differentiable function.
Table 1 shows an example of the above position approximation process. We
can see that the approximation is very accurate in this case.

3Note that the logistic function is a special case of sigmoid functions. In fact, we can use
any other sigmoid function for this approximation, such as the ordinary arc-tangent function,
the hyperbolic tangent function, and the error function. In this paper, we take the logistic
function as an example, and all the derivations and conclusions can be naturally extended to
other sigmoid functions.



Table 1: Examples of position approximation

document S m(x) | #(z) (= 100)
T 4.20074 2 2.00118
To 3.12378 4 4.00000
T3 4.40918 1 1.00000
T4 1.55258 5 5.00000
5 4.13330 3 2.99882

Now we can get the approximation of NDCG by simply replacing 7(x) in
Eq. (17) with 7(z):

or(@) _

NDCG = N, ' ) - (21)
reX

go(1+ 7 (x))’

4.3 Truncation Function Approximation

As can seen in Section 4.1, some measures have truncation functions in their
definitions, such as Precision@k, AP, and NDCG@Qk. These measures need
further approximation on the truncation functions. We will introduce in this
subsection how it is done within the proposed framework. Some other measures
including NDCG do not have truncation functions; In this case, the techniques
introduced below can be skipped.

Due to space limitations, we take AP in the first category as an example
to show how to approximate the truncation function and then approximate the
measure.

To approximate AP, we need to approximate the truncation function 1{n(z) <
7(y)} in Eq. (15). A simple way is to use a logistic function?:

exp(B(7(y) — 7(z)))
1+ exp(B(7(y) — #(2)))’

in which 8 > 0 is a scaling constant.
Thus, we get the approximation of AP as follows.

>

oL r(y) r(y)r(z) exp(B(#(y) — #(x)))
A2 5w T2 T rw) Treslir@ -r@)

4.4 Surrogate Function Optimization

With the aforementioned approximation technique, the surrogate objective func-
tions (e.g., AP and 1\60\6‘:) become continuous and differentiable with respect
to the parameter 6 in the ranking function, one can choose many optimization
algorithms, e.g., the simple gradient method, to maximize them.

4Similarly to position approximation, we can also use other sigmoid functions.

10



Again we take AP and NDCG as examples to show how to perform the opti-
mization, and call the corresponding algorithms ApproxAP and ApproxXNDCG
respectively. The details about the derivation of gradients of AP and NDCG
can be found in Appendix B.2 and B.1.

The training process is shown in Algorithm 1. This process will generate T'
ranking functions with parameters 61,605, - - - ,07. We usually need a validation
set to select the best model for testing.

From the two examples (ApproxAP and ApproxNDCG), we can see that
by using the framework, the corresponding surrogate objective function can be
easily optimized by many existing optimization techniques, such as gradient
methods. Measure specific optimization techniques are no longer needed.

Algorithm 1. ApproxAP (ApproxNDCG)

Input:

1: m training queries, their associated documents and relevance judgments.
2: Number of iterations T

3: Learning rate 7.

Training:

4: Initialize the parameter 0y of the ranking function f(z;6);
5: Fort=1to T do

6: Set 0 =20,_q1;

7:  Shuffle the m training queries;

8 Fori=1tomdo

9: Feed i-th training query (after shuffle) to the learning system;

10: Compute the gradient Af of AP (1\6C\G) with respect to 6§ using
Eq. (44) (using Eq. (41));

11: Update parameter § = 0 + n x Ab;

12:  End for

13:  Set 6, = 0.

14: End for

Output:

15: Parameters of T ranking functions: {6,0,, --- ,01}.

5 Theoretical Analysis

As mentioned in Section 1, the relationships between the surrogate objective
functions and the corresponding IR measures are not clear for the previous
methods. In contrast, the relation between the approximated surrogate func-
tions within our framework and the IR measures can be well investigated.

5.1 Position Function Approximation

The approximation of positions is a basic component in our framework. In order
to approximate an IR measure, we need to approximate positions first; in order

11



to analyze the accuracy of approximation of IR measures, we need to analyze
the accuracy of approximation of positions.

Note that if s, , = 0 (i.e., document = and y have the same score), there
will be no unique ranked list by sorting. This would bring uncertainty to IR
measures. For the sake of clarity, in this paper, we assume that

0= min |s >0 23
z,yGX,Z¢y| el (23)
The following theorem shows that the position approximation in Eq. (20)
can achieve very high accuracy. One can refer to the Appendix for the proof of
the theorem.

Theorem 3. Given a document collection X with n documents in it, for Va. > 0,
Eq. (20) can approzimate the true position with the following accuracy:

n—1

< exp(dza) + 1’ (24)

where 0; = MiNyex y£q |Sp.yl-

This theorem tells us that when §, and « are large, the approximation will
be very accurate. For example,

lim #(x) =n(x).

drx—00
A corollary of Theorem 3 is given below:

Corollary 4. Given a document collection X with n documents in it, for Vo >
0, Eq. (20) can approzimate the true position with an accuracy as below.

A AN _n-1
S—I&agh(x) m(w)| < oxp(6a) + 1 (25)

For the example in Table 1, we have an accurate approximation:

5-1
0.00118 = ¢ < ~ 0.00471.
© = exp(0.06744 + 100) + 1

5.2 Measure Approximation

The following theorem quantifies the error in the approximation of MAP. The
proof can be found in Appendix.

Theorem 5. If the error € of position approximation in Eq. (25) is smaller
than 0.5, then we have

. 1 |D4 | [D4] 1
|AP7AP|<1+eXp(6(1—25))z;i—aJrZE;i-(i—a)' (26)

12



The theorem indicates that when ¢ is small and ( is large, the approximation
of AP can be very accurate. In the extreme case, we have

lim AP = AP.
e—0,—0
For the example in Table 1, if setting 8 = 100, |D| = 1, we have |ﬁ’ —AP| <
0.0024. That is, the AP approximation is very accurate in this case.
The following theorem quantifies the error in the approximation of NDCG.
The proof can be found in Appendix A.4.

Theorem 6. The approzimation error of NDCG can be bounded as

€
2In2°

This theorem indicates that when ¢ is small, the approximation of NDCG
can be very accurate. In the extreme case, we have

INDCG — NDCG)| < (27)

lim NDCG = NDCG.

For the example in Table 1, we have |1\6C\G —NDCG| < 5555 = 0.00085. That
is, the NDCG approximation is very accurate in this case.
From these two examples (AP and NDCG), one can see that the surrogate

functions in the framework can be very accurate approximations to IR measures.

5.3 Justification of Accurate Approximation

We already show that the surrogate objective function we obtain with the frame-
work will be very close to the original IR measure. One may argue: why do we
need accurate approximation? Is there any benefit from the accurate approxi-
mation? Actually, such a high accuracy in the approximation is very important
for a direct optimization method. The reasons are as follows.

As discussed in Section 3, directly optimizing IR measures will likely lead
to a high test performance. One question arises here: after using the surrogate
objective function, can we still have the same or similar conclusion?

Here we use fm to indicate the ranking function in % with the best training
performance in terms of the surrogate objective function, M:

fm = arg maXMm(f) (28)
feF

Then we have the following theorem. The proof of the theorem is very similar
to that of Theorem 2. Due to space limitations, we omit the details here.

Theorem 7. The difference between the testing performance fm and the testing
performance f* can be bounded as below,

|M (fr) = M(f%)] <
2 sup |M(f) = My (f)] + 2 sup [My(f) = Mo (f)]. (29)
fez fez

13



Note that Theorem 1 implies that

sup [M(f) = My (f)] =" 0.

fesF

If we further have R
sup |Mp,(f) — M (f)] — 0,
feF

then we will attain that
| M (fin) = M(£)] =" 0.

In other words, if the surrogate objective function is very close to the IR measure
(i-e., supse g [Mp(f) — M, (f)] ™= 0), then the test performance of the rank-
ing function learned by a method of optimizing the surrogate objective function
can also converge to the best test performance one can ever obtain in the large
sample limit.

6 Experimental Results

We used LETOR? [15] in our experiments, which is a benchmark dataset devel-
oped for learning to rank research. We used the TD2003 and TD2004 datasets
in LETOR to test ApproxAP and the OHSUMED datset in LETOR to test Ap-
proxNDCG, since the first two datasets contain two-level relevance judgments
and the third one contains three-level relevance judgments. We used linear rank-
ing function for ApproxAP and ApproxNDCG since all the baseline algorithms
also used linear ranking functions.

6.1 Datasets

The documents in the TD2003 and TD2004 datasets are from the “gov” collec-
tion, and the queries in them are from TREC 2003 and 2004 respectively. There
are 50 queries in TD2003 and 75 queries in TD2004, with each query associated
with about 1,000 documents. The relevance degrees of documents with respect
to queries are offered by TREC, on two levels: relevant or not relevant. There
are 44 features extracted for each query-document pair(refer to [15] for details).

The documents in the OHSUMED dataset are from the OHSUMED col-
lection [12], which is a subset of MEDLINE. There are 106 queries, each with
a number of associated documents. The relevance degrees of documents with
respect to queries are provided, on three levels: definitely relevant, partially rel-
evant, or not relevant. There are in total 16,140 query-document pairs with rel-
evance judgments. Each query-document pair is represented by a 25-dimension
feature vector. For the details of the features, please refer to [15].

5The data set can be downloaded from http://research.microsoft.com/users/LETOR/.
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Figure 1: Accuracy of AP approximation on TD2004 dataset. This is training
curve over fold 1. The x-axis is the number of iterations. Here we fix § = 10.

6.2 Accuracy of Approximating IR Measures

We evaluated the accuracy of approximations of AP and NDCG using AP and
NDCC. R

As seen in Section 4.3, there are two parameters in AP, a, and 5. We
first fixed § = 10 and set three different values for a. Then, we applied the
ApproxAP algorithm to the TD2004 dataset with three different parameters.
Figure 1 shows the error p in the training process defined as

p= =37 |KP(g) - AP(g),
@l &

in which @(q) and AP(¢q) mean the values of AP and AP respectively over a
query ¢, ) is the training query set, and |@| is the number of queries in the
training set.

We can see that for all the three « values, the approximation accuracy is
very high, which is more than 95%. Furthermore, when we increase «, the
approximation becomes more accurate: the accuracy is higher than 98% when
a = 100.

We then fixed a = 100 and tried different values of 3. Figure 2 shows the
error p with respect to different 3 values. As can bee seen, when (3 increases,
the accuracy of the approximation also improves.

Figure 3 shows the error p = ﬁ > gc0 |1\ﬁC\G(q) —NDCG(q)| with regards
to different o values. We can observe similar results to those for the approxi-
mation of AP.

All these results verify the correctness of the discussions in Section 5.2, and
indicate that the approximation of IR measures using our proposed framework
can achieve high accuracy.

6.3 Performance of ApproxAP

In the experiments, we empirically set T' = 200, = 0.01 in Algorithm 1. We
adopted the five fold cross validation as suggested in LETOR. for both TD2003
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Figure 2: Accuracy of AP approximation on TD2004 dataset. This is training
curve over fold 1. The x-axis is the number of iterations. Here we fix oo = 100.

0.055
—#a=10 —A—a=50 ——a=300 |

0.045 +

0.035 \\/\‘\A
0.025 A,
0.015 + : . : . . . I

10 30 50 70 90 110 130 150 170 190
Iterations

Approximation error

Figure 3: Accuracy of NDCG@n approximation on OHSUMED dataset. This
is training curve over fold 1. The x-axis is the number of iterations.

and TD2004 datasets. For each fold, we used the validation set to select hyper
parameters « and (3 in the ApproxAP algorithm. The detailed process is as
follows.

(1) We first chose a set of « values {10,20,50,100} and a set of B values
{1,10, 20, 50, 100}.

(2) For each combination of o and 3, we learned a set of ranking models (i.e.,
T models) from the training set. There are 207" models in total.

(3) We tested the performance of each model on the validation set and selected
the model with the highest MAP® as the final model.

(4) We tested the performance of the final model on the test set.

As baselines, we used AdaRank.MAP and SVM™?. For AdaRank.MAP, we
cite its results from the LETOR website”. For SVM™ we used the tool from
the authors® to produce the result. Table 2 shows average MAP for the three

SMAP is the mean of AP of all the queries.
"http:/ /research.microsoft.com /users/LETOR/
8http://projects.yisongyue.com/svmmap/
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Table 2: Ranking accuracy in terms of MAP
Algorithm TD2003 TD2004
AdaRank.MAP  0.137 0.331
SVMmaer 0.198 0.304
ApproxAP 0.233 0.350

algorithms on two datasets®.

As can be seen, ApproxAP performs better than AdaRank.MAP and SVM™4P
on both datasets. For example, ApproxAP gets more than 15% improvement
over SVM™?P on TD2003 and more than 5% improvement over AdaRank.MAP
on TD2004. Furthermore, on TD2004, AdaRank.MAP is better than SVM"*?;
On TD2003, SVM™?P ig better than AdaRank.MAP. Since ApproxAP only uses
a simple gradient method for the optimization (as compared to the structured
SVM and Boosting used in the two baselines), the current result clearly shows
the advantage of using the proposed framework for direct optimization, and
we foresee that with the use of more advanced optimization techniques, the
performance of ApproxAP could be further improved.

6.4 Performance of ApproxNDCG

Similarly to the experiment on ApproxAP, we set T = 200,n = 0.01 for Ap-
proxXNDCG. We used similar strategy to select the hyper parameters o for Ap-
proxXNDCG as in ApproxAP. The minor differences are as follows. First, we
chose a larger set of a values {10, 20,50, 100, 150, 200, 250, 300}. Second, we
used NDCG@n for model selection instead of MAP on the validation set.

As baselines, we used AdaRank.NDCG and SoftRank. For AdaRank.NDCG,
we cite its result published in the LETOR website'?. For SoftRank, we used
the tool provided by the authors to produce the experimental result.

Figure 4 shows average NDCG at position 1-10 for the three algorithms on
OHSUMED. The performances in terms of NDCG@n of SoftRank, AdaRank.NDCG
and ApproxNDCG are 0.6680, 0.6589 and 0.6698 respectively. As can be seen,
ApproxNDCG achieves higher accuracy than SoftRank, especially for top po-
sitions. SoftRank outperforms AdaRank.NDCG. Overall, ApproxNDCG is the
best of the three algorithms. This verifies the effectiveness of our proposed
framework.

6.5 Discussions

There are many different measures used in the literature of IR, such as AP and
NDCG. This makes the task of directly optimizing IR measures slightly com-

9The performance of SVM™@P is different from that reported in [24]. We communicated
with the authors; and they agreed on our result for SVM™P and found a bug in their exper-
iment.
10http:/ /research.microsoft.com/users/LETOR/
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Figure 4: Ranking accuracy in terms of NDCG

plicated. For example, the following questions need to be answered in practice
when one performs direct optimization of IR measures.

(a) What is the most suitable measure to optimize?

(b) WIill the test performance in terms of measure M for an algorithm directly
optimizing M on training set be better than that of an algorithm directly
optimizing another measure M'?

Question (a) is still an open question. Generally speaking, the selection of
the measure depends heavily on the specific task and data. For example, if the
ground truth is given as binary judgment (relevant and irrelevant), then MAP
may be a good choice; if the documents are judged with multi-level relevance
degrees (e.g., Perfect, Excellent, Good, Fair and Bad), then the use of NDCG
may be better.

Question (b) is also an open question. The theoretical discussion in Section 3
gives a sufficient condition for a direct optimization method to perform “almost
perfectly” in the large sample limit. However, we do not know whether it is a
necessary condition. As a result, it is hard to say in practice whether optimizing
M is the best choice when we evaluate the performance of ranking function using
M.

Note that IR measures are not independent from each other. If measure
M’ somewhat covers M , then it is likely that the optimization of M’ on the
training set can also lead to a high test performance in terms of measure M.
This is related to the concept of informativeness in Robertson’s presentation at
SIGIR 2008 Workshop on Learning to Rank for Information Retrieval'l.

To better understand the problem raised in question (b), we performed the
following experiments.

Recall that we used TD2003 and TD2004 datasets to study the performance
of ApproxAP. Now we further ran the ApproxNDCG algorithm on these two
datasets and compared its test performance in terms of MAP with that of Ap-
proxAP. Similarly, we ran ApproxAP on the OHSUMED dataset and compared

Hhttp:/ /research.microsoft.com /users/LR4IR-2008/
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Table 3: Ranking accuracy in terms of MAP
Algorithm TD2003 TD2004
ApproxXNDCG  0.238 0.318
ApproxAP 0.233 0.350
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Figure 5: Ranking accuracy in terms of NDCG

its test performance in terms of NDCG with that of ApproxNDCG. As shown
in Table 3, when measured with MAP, ApproxAP is better than ApproxNDCG
on TD2004 and the two algorithms are comparable on TD2003. As shown in
Figure 5, when measured with NDCG, ApproxAP (with NDCG@n 0.6693) is
comparable with ApproxXNDCG on OHSUMED. These results seem to suggest
that the answer to question (b) needs further investigations.

7 Conclusions and Future Work

In this paper, we have provided theoretical justification to the approach of direct
optimization of IR measures. Our analysis shows that under certain conditions,
the assumption of directly optimizing IR measures is reasonable; the direct
optimization approach can be one of the best approaches to learning to rank.

We have set up a general framework to approximate position based IR mea-
sures. The key part of the framework is to approximate the positions of docu-
ments by their scores. There are several advantages of this framework: 1) the
way of approximating position based measures is simple yet general; 2) many
existing techniques can be directly applied to the optimization and the optimiza-
tion process itself is measure independent; 3) it is easy to conduct analysis on
the accuracy of the approach and high approximation accuracy can be achieved
by setting appropriate parameters.

We have taken AP and NDCG as examples to show how to approximate IR
measures within the proposed framework, how to analyze the accuracy of the
approximation, and how to derive effective learning algorithms to optimize the
approximated functions. Experiments on public benchmark datasets have veri-
fied the correctness of the theoretical analysis and have proved the effectiveness
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of our algorithms.
There are still issues which need to be further studied.

e We have taken AP and NDCG as examples. It is worth considering other
measures including Precision, NDCG@k, MRR and Kendall’s 7.

e We have used simple gradient methods to optimize the approximated func-
tions. We plan to try other optimization techniques as well.

e We have verified the effectiveness of the proposed algorithms on the LETOR,
datasets. We will conduct more experiments on larger datasets in the fu-
ture.

e We have conducted experiments for answering question (b) in Section 6.5,
but have not obtained clear conclusions. It is worth more investigations.
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Approximation Accuracy Analysis

In the appendix, we give proofs of the major theorems in this paper.
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A.1 Proof of Theorem 2
Proof. According to the definitions in Eq. (??) and (??), we have

M(f*) > M(fm),
and
M (f*) < My (fim)-

Hence,

(M (fm) = M(f*)| = =M (fm) + M(f7)
M (fm) = M(fm) + M(f*) = My (fm)
M (fm) = M(fm) + M(f*) = M (f7)
[ Mo (frm) = M(fin)| + [M(f7) = M (f7)]

2 sup [M(f) — Mm(f)]
feF

IN A CIA

A.2 Proof of Theorem 3
Proof. Note that

~ . exp(—asg,y)
[#(2) = 7(@)] = Xy ex e (Trmressls — Uss, < 0})

peplesal s s, < 0} (30)

1+exp(—asq,y)

< ZyGX,y#m

If we can prove that for any document y € X,

exp(—asy ) 1
> -1 E— 1
‘ 1+ exp(—asy,y) {0 < 0}’ exp(dya) + 1’ (31)
then we can have
1 n—1
T — = . 2
(@) = m(@)] < Z exp(dza) +1  exp(dpa) +1 (32)

yeEX, y#z

Now we prove the inequality (31). We consider s, > 0 and s, < 0
separately.

e For s, , > 0, from Eq. (23) we have
1+ exp(asg y) > 1+ exp(dga).

Then,
exp(—asz,y) 1 1

= < .
1+exp(—asz,) 1+exp(ass,) 14+ exp(dpa)
Note that 1{s,, < 0} = 0 when s, , > 0. Hence, for s, , > 0,

exp(—asy y) 1
—— — s,y <0} < ————.
1+ exp(—asy,y) {2 <0} 1+ exp(d,)
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e For s, <0, from Eq. (23) we have
1+ exp(—ass ) > 1+ exp(dza).
Note that 1{s,, < 0} =1 when s, , < 0. Hence, for s, , <0,

exp(—asy )

— 2 — 1{s8,, <0
1+ exp(—asg,y) {52 }

1 1
el < .
1+ exp(—asg,) 14 exp(dpa)

Combining the two cases we end up with Eq. (31). According to Eq. (32),
Theorem 3 is correct. O

A.3 Proof of Theorem 5

We prove Theorem 5 about the accuracy of precision approximation.

Proof. For simplicity, we denote

From Eq. (15) and (22), we have

VAP - MAP| = |Z T~ )
r(y)r(z) (n(e) <n(y)} Ln(x) <7(y)}
t 22 Tp ( #() () )
r(y)r(z) | Hn(z) <n(y)} Un(e) <n(y)}
< 227D ) ") ‘
riy) | 11
t | =] (%)
Now we consider i{”(f})é;r W} _ 1{77(?(;” W} and ﬁ - ﬁ respectively.
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i{r(z) <7(y)} 1r(z) <7(y)}
*(y) m(y)
_|m)i{n(x) <7(y)} — 7 (y)L{n(z) < 7(y)}
m(y)7(y)
_|ry)A{n(e) <7(y)} — Yn(z) < 7(y)}) + ((y) — 7 (y))Hn(z) < 7(y)}
m(y)7(y)
o 7@ (@) <7(y)} — Yr(z) <7(y)})
B m(y)7(y)
L | @) = 7)ia(x) < 7(y)}
m(y)7(y)
Hn(z) <w(y)} — Yn(z) <7(y)} 2
: am W) e
Similar to the derivation of Eq. (31), we can get
. 1
Combining Eq. (34) and (35), we get
r(y)r(z) | (x) <m(y)} Yn(x) <w(y)}
Zy:;} D | 7(y) m(y)
r(y)r(z) 1 £
: zy:g;/ D | <fr(y)(1 Foxp(B(1—29))) | 7Ar(y)ﬂ(y))
1 €
< L) (FoaresEa=mn * o)
1 [D | 1 |Dy | 1
1+exp(6(1—25));i—5+€;i-(i—5) (36)
L1 | |nly) —7(y) 2
Ay ") ‘ #y)() ’ ) (37
Then
riy) | 1 rly) e
21,1 |7 ~ 70 ‘ < LD,
[D4| 1
S DX ia9 (38)



Substitute Eq. (36) and (38) into Eq. (33), we get
1 |D+| |D+|

MAP — MAP
| |1+exp(6(1—25));i—5 |D4 | Z (i—e)

Since |D4| > 1, hence

o 1 [D+] 1 D+
MAP — MAP| < 2
| | 1+exp(ﬁ(1—25));i— +€Z (i—o)

O
A.4 Proof of Theorem 6
Proof. From Eq. (17) and (21), we obtain
INDCG — NDCG|
r(z) log, (147 (z))—log, (14w (x))
< N EIG-X log22 1+7r(19:)) &2 log2(1+ﬁ%12:)) : <39)
Since alog"’a(tlﬂ) = (1+t1) — and 7(z) > 1, #(x) > 1, we have
1 5
#(z)) — — < .
[logy(1+(z)) — loga (1 + 7(@))] < 75 [4(x) — 7(@)] < 7
Considering that log, (1 + 7 (z)) > 1, we have
logy (1 + 7 (x)) — 1?g2(1 + m(x)) o (40)
logy (1 + 7 (x)) 2In2
Then Eq. (39) becomes
— 2r(@) 1 €
NDCG — ND o
INDCG - NDCG| - < Zlog21+7r (@) 2In2
= ND
21n2 CG.
According to the definition of NDCG, we always have NDCG < 1. Hence,
ND ND
| NDCG — CG| < — 21 5
O

B Gradient Derivation

B.1 Gradient of ApproxNDCG
We show how to derive the gradient for ApproxNDCG.
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According to the chain rule, we obtain

27(z) 1
Af — 8NDCG 1 Z log2(1+7r ) 375(9 ) (41)
Further,
87r("c Xp(aszy) Osay
aZy#m (1erfc)pozsty))2 00
exp(asgzy) af(z;0) of (y;0)
aZygﬁw (1+e)1()p(045.ty)) ( 00 aye ) (42)
2m(@) (x
log,(1+7(2) _ _ 2r(® —1 1 (43)
o7 (x) (logo(1 4+ 7 (x)))2 (1 + 7(x)) In2

Substituting Eq. (42) and (43) into (41), we get the gradient for ApproxNDCG.
Note that df(x 9)

function f. For example, for linear function, we have

in Eq. (42) depends on the specific form of the ranking
Bféa(;;e) —

B.2 Gradient of ApproxAP

We next show how to derive the gradient for ApproxAP.
According to the chain rule, we obtain

OAP ) 0
00 |D+\Z7r2y ae |D+|ZZ , (44)

Y TFy

where

Again by the chain rule, we have

aJ(0)  0J(0)0r(y) , 9J(0) d7(x)
00  ox(y) 00 = Or(x) 00

Now we consider giézg and gggzg.

0J(0) _ —1_ Bexp(Bi() — () o)

or(z)  w(y) (1 +exp(B(r(z) —7(y))))?

0J(0) -1 1
07 (y) 72(y) 1 + exp(B(7(z) — 7(y)))
1 Besp(Br() ~ 7)) .
7(y) (1 +exp(B(7(x) — 7(y))))?

Substituting Eq. (42), (46) and (47) into (45), and then substituting Eq.(45)
into (44), we get the gradient for ApproxAP.
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