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Abstract — The ESP Game [15] was designed to har-
vest human intelligence to assign labels to images - a task
which is still difficult for even the most advanced sys-
tems in image processing [2, 8]. However, the ESP Game
as it is currently implemented encourages players to as-
sign “obvious” labels, which are most likely to lead to an
agreement with the partner. But these labels can often
be deduced from the labels already present using an ap-
propriate language model and such labels therefore add
only little information to the system.
We present a language model which, given enough in-
stances of labeled images as training data, can assign
probabilities to the next label to be added. This model
is then used in a program, which plays the ESP game
without looking at the image. Even without any under-
standing of the actual image, the program manages to
agree with the randomly assigned human partner on a
label for 69% of all images, and for 81% of images which
have at least one “off-limits” term assigned to them.
We then show how, given any generative probabilistic
model, the scoring system for the ESP game can be re-
designed to encourage users to add less predictable la-
bels, thereby leading to a collection of informative, high
entropy tag1 sets. Finally, we discuss a number of other
possible redesign options to improve the quality of the
collected labels.

Author Keywords
ESP Game, Image Labeler, Tagging, Flickr

ACM Classification Keywords
H.1.1 Information Systems: Systems and Information The-
ory; H.1.2 Information Systems: User/Machine Systems

INTRODUCTION
The ESP Game [15] is one of the best-known examples of
successful “crowd-sourcing”, where the human intelligence
of thousands of contributors is harvested for a task which is
still difficult for machines: labeling images [2, 8]. Assigning
labels to images is useful as otherwise there is little chance
to retrieve an image relevant for a certain query. In the orig-
inal paper [15] evidence is presented that for a selection of
9 labels all images, which were assigned one of these labels,
are indeed relevant for the corresponding query. However,
it is at least questionable, how much a large image repos-
itory benefits if the label “car” is correctly assigned to an
unlabeled image. Microsoft’s Live Image Search2 currently
returns 150 million results for this query. If the main pur-
pose of the ESP Game is indeed to label images for search
purposes, then one can argue that adding informative tags
such as “red bmw” or even “talbot 1923”3 is more beneficial
and that users adding such tags are adding the most value.

We show that the ESP Game in its most popular implemen-
tation fails to collect such informative labels.4 Namely, we
1We use the terms “label” and “tag” interchangeably.
2http://images.live.com
3http://en.wikipedia.org/wiki/Talbot
4We used the version licensed by Google and available

show that (i) the sets of tags already present can be gener-
ated from a low entropy distribution and (ii) new tags added
by players are highly predictable given only the “off-limits”
terms, which are the tags already assigned to the image. To
demonstrate the second point, we implemented a small pro-
gram, which we will refer to as “robot”. This robot plays the
ESP game without deriving any knowledge from the image
itself and by only using the list of off-limits terms. Under-
lying both the entropy estimates and the labels used by the
robot is a generative probabilistic model, derived from 13K
images obtained while playing this game.

Google apparently noted these shortcomings and, in May
2007, introduced different scores for different labels accord-
ing to the “specificity” of the term5. These scores vary be-
tween 50 and 150 points. However, as our analysis will
show, (i) this is not a strong enough differentiation, (ii) it
punishes terms too much which are globally unspecific, but
which add relevant information for the particular context,
and (iii) the current scores are not directly linked to the de-
gree of predictability of a label. We show how to assign
scores optimally for a simple model of the ESP game. Fur-
thermore, we discuss a number of possible changes to the
game, such as pairing experts for certain topics and intro-
ducing time limits before certain terms become “active”.

The rest of the paper is structured as follows. In the follow-
ing section we discuss work related to (i) the ESP Game,
(ii) tag suggestion or (iii) tagging behavior of users with re-
spect to navigability or other aspects of our work. Then,
we discuss in more detail shortcomings of the current imple-
mentation of the ESP Game. The next section then presents
our probabilistic model, which uses a Naive Bayesian setup.
After this, we present both the implementation details and,
more importantly, the results of our robot. The following
section then uses the data obtained by the robot and looks
at the entropy of the game, i.e. how diverse the sets of off-
limits terms are and how much uncertainty exists concerning
the labels entered by human players. Thereafter, we analyze
optimal scoring schemes for the ESP Game, when the objec-
tive is to obtain high entropy tag sets. Finally, we discuss a
number of extensions and other practical aspects of the ESP
Game.

RELATED WORK
The ESP Game [15], where two players are randomly paired
up and have to agree on appropriate labels for images, is
often cited as a successful application of a game to use hu-
man intelligence and time for solving tasks, which are in-
tractable by current computer technology. In this work we
will show that, although the idea underlying the game is an
extremely powerful one, more care needs to be taken in the
design as the tags which are most likely agreed upon, are not
the tags which add the most information to the system. The
idea of a “bot” playing the game was also already mentioned

at http://images.google.com/imagelabeler/, rather
than the version available at http://www.gwap.com/gwap/
gamesPreview/espgame/, as the first is vastly more popular.
5http://en.wikipedia.org/wiki/Google_Image_
Labeler#History
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in [15]. There the idea was to use recorded sequences of tags
suggested by humans during previous rounds of play, when
there are not enough human players in the system.

Games “with a purpose” have also been applied to obtain
common sense facts (“Verbosity” [17]), to locate objects within
an image (“Peekaboom” [18]), to tag music (“TagATune”
[9]), to trace the shapes of objects (“Squigl”6), to elicit human-
transcribed data for automated directory assistance ( “People
Watcher” [10]) and to get descriptions, rather than mere la-
bels, for images (“Phetch” [16]). All of these games share
the properties that (i) players share the common goal of “agree-
ing” on certain things, (ii) players are matched randomly,
and (iii) no communication is allowed, as this would make
the agreement trivial and prone to spamming. Our arguments
apply at least partly also to the tagging of music (where la-
bels such as “loud” or “fast” are probably of little use). In-
terestingly, the “Phetch” game for describing images avoids
most of the problems discussed, as it implicitly involves other
players trying to find a particular images for a given descrip-
tion. This avoids low-precision descriptions such as “A man
standing next to a woman.”.

Our proposal, to use probabilistic models and information
theory to quantify the amount of information added by hu-
mans to a system, also has implications for the “Mechanical
Turk” [3], where humans are given financial incentives to
perform AI-complete tasks. In such a setting it might be
desirable to compensate people more, if they take on tasks
where predictions made by a machine are most inaccurate.

Closely related to our study of inferring the next label to be
added, is the issue of tag suggestion [6, 13, 7, 14]. In fact,
such schemes could also be directly employed by our robot
to play the ESP Game. Though we did use a scheme from
[6], trained on data from Flickr before we had enough data
from the ESP Game to train our model on, we ultimately
used only our model as it directly gave probabilities. The
model we used is also similar to but different from a model
used in [6]. The biggest differences are that (i) we give a
clear definition of what exactly is modeled and (ii) we work
not only with the ranking of tags but with the probabilities.

The idea of looking at the entropy of the tag distribution and
its relation to navigability for collections of tagged objects
was looked at in [4]. Whereas they looked at the entropy for
individual tags over a shared collection of items, it would be
interesting to investigate, using our model, how the entropy
for sets of tags for personal collections of items relates to
the navigability of such collections. This is closely related
to what actually constitutes a “good” label for an object.

This later question was investigated in [11], where the focus
was on which kinds of labels might be found useful by a user
for at least some object, rather than a particular one. Related
to the issue of the quality of labels is the question of why
users tag [1] and how their usage patterns is influenced by
other users and suggestions made by the tagging system [12,

6http://www.gwap.com/gwap/gamesPreview/
squigl/

14].

As far as our estimates of the entropy of the labels of the
ESP Game are concerned, these estimates are always with
respect to our model. An improved model would lead to a
higher predictability and to an even lower estimate of the
entropy. The possibility of using humans to obtain entropy
estimates was discussed in [5]. Such an approach, involv-
ing volunteers, is also applicable in our setting, but requires
modifications as, e.g., humans can be expected to know the
whole English alphabet but cannot be expected to be aware
of every imaginable tag.

SHORTCOMINGS OF THE ESP GAME
If one looks at how people label images via the ESP Game7,
then one quickly notices the following.

• There is a lot of redundancy in the tag sets. That is, often
synonyms are present and images are labeled, e.g., as both
“man” and “guy”. Of all 496 (out of 14.5K) images la-
beled as “guy” 81% were also labeled as “man”, although
only up to five off-limits terms are shown.

• Even when tags are not exactly synonyms, they are often
“to be expected” given the other tags, so that images are
labeled as “water”, “blue”, “sky” and “clouds”. E.g., 68%
of all the 85 images labeled as “clouds” had also been
labeled as “sky”.

• There is a tendency to match on colors. See Table 1 for
details on the distribution of colors in labels assigned by
the ESP game.

• People tend to add more generic labels such as “building”
as opposed to “terraced house”.

The common reason for these points is that it is far more
likely for two people to agree on a general term (and in par-
ticular on colors), than to agree on more specific terms. In
a sense, experts or anybody deviating from the standard tag-
ging behavior is punished by the system. Even if a player
knows that a particular image depicts an oak, it will be point-
less for her to enter this term, as the chances to agree with
her partner are considerably smaller than for “tree”, “plant”,
“leaves” or “green”. Note that none of the assigned tags are
wrong in any sense, but the question arises, whether one has
to rely on humans to obtain them. It should also be made
clear that people are indeed more likely to search for general
terms than for concrete terms, so that terms such as “man”
or ‘tree” could be deemed more valuable for a search appli-
cation. But for these general terms there are already millions
of publicly available and searchable images online.

A PROBABILISTIC TAGGING MODEL
What Needs to be Modeled
We want to meaningfully assign a probability to the event
that “term t will be added to the tag set S by humans pre-
sented with the image and with the set S”. However, this as
7We use the terms “ESP Game” and “Google Image Labeler” in-
terchangeably, although all of our experiments were only run for
the latter, more popular version of the game.
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Label %-age all %-age images
black 3.3 14.7
red 2.2 9.8
blue 2.2 9.8
white 1.8 8.1
green 1.3 6.0

Table 1. Distribution of some color related tags among the off-limits
terms for 14.5k images with at least one off-limits label. The first per-
centage refers to the total number of tag occurrences among the off-
limits terms made up by the particular term. The second percentage
refers to the number of images with at least one tag, which have already
been assigned this tag. Over 10% of all off-limits labels are colors.

it stands is ill-defined for several reasons. First, it is unclear
if “being added” is to be interpreted as “being added as the
immediate next tag” or if it refers to “being ultimately added
before the labeling process stops”. Second, the “tag set S”
can be both interpreted as a set or a sequence. Third, the
setting and motivation of the humans might influence their
decisions, depending on the future user of the tag. Fourth,
humans will, of course, differ both with regard to expertise
(understanding the image) and the kind and level of language
used (putting things into words), so that the “by humans” is
ill-defined.

Concerning the first point, we will focus on the event of
term t being added immediately next. This corresponds more
closely to the situation we are facing in the ESP game. As
for the second point, we use the interpretation of a set with-
out order being present. This kind of approach is imposed
by the sparsity of the corresponding problem of assessing
the probabilities involved. Essentially, a set contains an ex-
ponential number of subsets, which we can learn from, but a
sequence only contains a linear number of subsequences (or
quadratic, if one varies both the starting and end point of the
subsequence). Furthermore, we will work with the bigger
event of a set already present containing all tags in S, rather
than being identical to S. This, as we will see, will avoid
having to estimate the significance of a certain tag not being
present, which is even harder to estimate from a compara-
tively small set of samples. The third and fourth issues re-
late to the source of the data used for training. As we mostly
train on data obtained from the Google Image Labeler, the
interpretation is that a term would be next in the list of off-
limits terms, which in turn are derived from human players
agreeing on a certain match. However, in the context of tag
suggestion, we can also fit a model for a person’s tagging
past for, say, images on Flickr8, in which case the interpreta-
tion changes. In the first setting, we are mostly dealing with
an “average” player of the game, whereas in the latter setting
the model would be for a particular user.

As the whole point of the model is, to measure what can be
predicted without using the image, we will only use the set
S and no other information related to the image. In fact,
even human players are also often influenced by the set S of
off-limits labels. This influence is strongest for images de-
picting unidentifiable or blurry objects. Here the player uses

8http://www.flickr.com

the clues of the off-limits labels, to “understand” the image,
which leads to an automatic reinforcement of the previous
interpretation.

How we Model it
The probability we are interested in can be written, using
Bayes’ formula as follows.

P (‘t is next label’|‘set T already present’)
= P (‘set T already present’|‘t is next label’) ∗

P (‘t is next label’)/P (‘set T already present’)

For our applications we assume, as mentioned above, the
probability that some label will be added next is 1.0. This
allows us to drop the denominator from consideration as we
know that the expression, summed over all possible terms
t, has to yield 1.0. Of course, if we are only interested in a
ranking of the probabilities for the terms t, then this assump-
tion is not required.

Now the probability of P (‘t is next label’) can be empiri-
cally estimated by the number of occurrences of the tag t
among the observed tag sets9, divided by the total number of
observed tags.

So the only relevant and non-trivial probability to estimate
is P (‘set T already present’|‘t is next label’). Again, if we
had enough training data for every possible set T , we could
directly estimate this probability. But given the unavoidable
problem of data sparsity in the face of an exponential number
of possible sets, we make the following conditional indepen-
dence assumption.

P (‘set T already present’|‘t is next label’)

=
∏
ti∈T

P (‘ti is already present’|‘t is next label’)

This is the usual “naive” assumption in a Naive Bayes classi-
fier. For arbitrary labels, it will not hold true. E.g., given that
“jaguar” is added next, the probability of “car” being present
is clearly not independent of the probability of “cat” being
present. Generally, this assumption leads to a certain lev-
eling effect of underestimating high probabilities and over-
estimating low probabilities. E.g., the probability of “stars,
stripes” being present given that “flag” is next would be un-
derestimated (assuming that “stars” and “stripes” often oc-
cur together with “flag”), while the probability that these
two terms are present given that “bright” is next would be
overestimated (assuming that both “stars” and “stripes” of-
ten occur with “bright”, but rarely both at the same time).
Still, this assumption is a good compromise between being
close to reality and not requiring an unrealistic amount of

9This number will be equal to the number of tag sets containing t,
as no tag set contains any label twice.
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training data. Ultimately, its use can be empirically justified
by the performance of the robot playing the ESP Game.

The individual probabilities P (‘ti is already present’|‘t is
next label’) are now estimated by dividing the number of tag
sets, or rather sequences, in which the label ti occurs before
t by the total number of tag sets containing t. Note that these
estimates are the maximum likelihood estimators. Although
the conditional independence assumption has vastly reduced
the problem of sparsity, there is still the risk of prematurely
estimating a probability P (‘ti is already present’|‘t is next
label’) to be zero, due to lack of observed tag sequences.
Therefore, the probability P is replaced by a smoothed vari-
ant P̃ using a mixture model based on a combination with a
simple unigram model.

P̃ (‘ti is already present’|‘t is next label’)
= (1− λ)P (‘ti is already present’|‘t is next label’) +

λP (‘ti is already present’)

The P (‘ti is already present’) is estimated as the number of
observed tag sets containing ti divided by the total number of
tag sets. Note that in the mixture model above a λ = 1.0 cor-
responds to an assumption of full independence between the
terms in a set. Also note that for 0 < λ ≤ 1 and for any pre-
viously seen tag ti this probability estimate will never give
zero. In all of our experiments, we used a value of λ = 0.85.
This value was chosen using a validation set of images, not
part of the test set used to estimate the predictive perfor-
mance of the model. With this smoothing, we then obtain
the following probabilistic model.

P (‘t is next label’|‘set T already present’)

=
∏
ti∈T

P̃ (‘ti is already present’|‘t is next label’) (1)

∗P (‘t is next label’)/C

Here, C =
∑

t

∏
ti∈T P (‘ti is already present’|‘t is next

label’)∗P (‘t is next label’), as the model assumes that some
label twill be applied next. Again, when it comes to ranking
of the labels t, the constant C is irrelevant. It is only needed
if we want to interpret the result as a probability. Also note
that in settings where T is empty, we use the probability P (‘t
is next label’).

Ultimately, the actual model used is not crucial as our main
objective was simply to show that the labels on the ESP
game are predictable using only the off-limits terms. An
improvement in future models would only make this claim
more true and it would lead to even lower estimates of the
entropy. Similarly, the predictive power should improve fur-
ther with more training data, which would also reduce the
need for smoothing and hence result in a lower value of λ.

A ROBOT PLAYING THE ESP GAME

To show that in the current implementation of the ESP Game,
tags added are predictable from the tags already present, we
used the model presented in the previous section to imple-
ment a robot which plays the game without extracting any
information from the image itself.

Implementation Details
We used the Watir10 library for Ruby11 to have a scripting in-
terface to the Internet Explorer. Using this library we could
get the current status of the game and automatically add new
labels or pass as appropriate. The input rate, that is the num-
ber of labels entered within the time limit of 120 seconds,
was throttled to play more human-like and not add, say, 100
tags in one second. Therefore we always waited a few sec-
onds before adding any tag for a new image and, similarly,
we waited a couple of seconds before adding an additional
tag or “reacting” to a user’s request to pass. Averaged over
all the 2, 600 games played, our robot suggested around 4.3
labels per image, before (i) finding an agreement, (ii) pass-
ing or (iii) running out of time. This corresponds to an input
rate of 4.4 seconds per label entered, compared to 5.1 sec-
onds for the human players. We set an upper limit of 10 to
the number of labels added to any image, at which point we
would ask the partner to pass. Figure 1 shows a screen-shot
of the robot playing the game. In order to avoid tracking of
our robot and to limit the possibility of “personalized” im-
ages during the games, we waited between 5 and 10 minutes
between two consecutive games and we removed any identi-
fying cookies. At the end of the game, all suggestions made
by the partner are revealed and this information is then also
recorded by our robot.

Figure 1. A screen-shot of our robot playing the ESP game. Only using
the off-limits terms “car” and “suv”, it has produced the list “wheels,
vehicle” and is entering “truck”. This will then lead to a match for 120
points.

The Cold Start
Before we had obtained a sufficient number of tag sets from
the ESP game to train a good model, we used the “global”
tag suggestion scheme from [6] in combination with tagging
data obtained from Flickr. This way, we avoided obtaining
the initial data set by human play. As this initial scheme did
not perform as well (for the task of playing the ESP game)
as our later scheme based on the model corresponding to

10http://wtr.rubyforge.org/
11http://www.ruby-lang.org/
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Equation 1 we do not report any performance numbers for
this first phase.

Different Playing Strategies
Maximizing the number of matches. Without knowing the
scores awarded by the Image Labeler Game to different la-
bels, the only reasonable strategy seems to be to try to max-
imize the total number of agreements with the partner while
playing. If we were to add only a single tag, then it would
be optimal to add the label for which our model output the
highest probability estimate. However, as we have the possi-
bility to add multiple tags, until we either find a match with
our playing partner or until we pass, at least two different
strategies are possible. One is to simply rank the terms by
the probability of being added next, as output by the model.
This ranking is then not changed while subsequent terms are
added. This strategy we call MaxMatches. If one were to
also estimate the significance of a certain label not being
present, then one could update this list at each step, condi-
tioned on the assumption that the labels suggested so far to
the partner will not be selected next. E.g., if for the off-
limits term “jaguar” the label “cat” had already been sug-
gested, such an approach would favor suggesting “car” next,
rather than reinforcing the “cat” interpretation by suggesting
a tag such as “zoo”. However, we only experimented with
MaxMatches as synonyms, which would be avoided by this
approach, are indeed desirable in our setting.

Maximizing the number of points. Once we have played the
game successfully for some time, we can learn the number
of points awarded, especially for the common words, such
as colors or general terms such as “woman” or “man”. For
previously unmatched terms, a prior estimate of 140 is fairly
accurate in most cases, as (i) the maximum number of points
awarded is 150, (ii) if the term was frequent (and would
give less than, say, 100 points), we would have probably
had at least one match using this term, and (iii) by far the
most terms ever agreed on gave 140 points. See Table 2 for
details on the awarded points in relation to the number of
matches. Using this knowledge about the point value of a
label, we can weight the probability estimates by this num-
ber of points. Thus, we would prefer a high-scoring term
over a low-scoring term, even if the latter is slightly more
likely to be agreed upon than the first. This strategy we call
MaxPoints.

Results
Table 3 gives a summary of the robot’s performance for both
playing strategies. Most notably it achieves to find a match
for roughly 80% of images, which have at least one off-limits
label. For images, where a match was found, the match was
usually between 2nd and 3rd in the list of suggestions made
by the human. This indicates that the robot does indeed
manage to “read the human’s mind” and does not match on
unlikely terms. The differences between MaxMatches and
MaxPoints are rather small. On a per-match basis MaxPoints
does indeed score higher, but as it takes more labels to find a
match, its overall score in the limited time is worse. The fact
that the performance difference is so small is due to the fact
that in 95% of cases, the two methods agree for the high-

Points awarded Distinct words Matches Example
150 1 1 a joy
140 225 360 actress
130 42 68 fight
120 26 86 cloud
110 17 26 kid
100 16 39 music
90 6 13 plant
80 7 50 guy
70 1 1 beach
60 4 10 ocean
50 29 270 black

Table 2. Distribution of points when the MaxMatches strategy is em-
ployed. The points awarded for a match are independent of the strat-
egy, but the distribution can change.

est ranking label and, on average, they agree on 4.8 out of
the first 5 labels. This high degree of similarity is in turn
explained by a rather mild (negative) correlation between a
high Google Image Labeler score and an overall probabil-
ity/frequency of only −.28 for the 50 most frequent terms.
If this correlation was stronger, then the two strategies would
be expected to differ significantly more.

Strategy
MaxMatches MaxPoints

Number of
- games 205 208
- images 1, 335 1, 238
- imageso12 1, 105 1, 008
%-age w match
- all images 69% 67%
- only imageso 81% 78%
%-age tags matched 17% 15%
Average score
- per game 467 437
- per image 72 73
- per imageo 85 88
- per match 104 109
Av. labels entered
- per image 4.1 4.5
- per game 26.7 27.0
Agreement index
- mean 2.6 2.8
- median 2.0 2.0

Table 3. The percentage of tags matched refers to the number of tags
entered by the robot, leading to a match, divided by the total number
of tags entered by the robot. By “agreement index” we mean the index,
starting at 1 in the partner’s list of suggestions, for which we found an
agreement. A low agreement index indicates that we did not rely on the
partner to enter dozens of tags. Only images with a match are taken
into account for this. Note that the average score per match is (slightly)
higher for the MaxPoints strategy.

Is our “Robot” Playing with Other “Robots”?
There is the possibility that the other player is actually not a
human. However, we claim that this is unlikely.

First, if prerecorded game play of an actual human player
is used, as already proposed in [15], the labels still come

5



from humans and our line or reasoning is still valid. Sec-
ond, there does indeed seem to be some human input, as the
labels entered by the other player frequently contain mis-
spellings such as “cemetary” or “limosine”, often immedi-
ately followed by the correct spelling. Third, at least some
of the games seem to be clearly played in a live setting as,
when our robot fails to find “obvious” matches, in particu-
lar for images without any off-limits terms, the other player
often resorts to entering various insults, including politically
extremely incorrect terms, which are unlikely to be entered
by any robot.

INFORMATION CONTENT OF TAG SETS
We have repeatedly stated that the labels entered by humans
in the current implementation of the ESP Game are highly
predictable, given only the off-limits terms. This in turn then
leads to fairly general set of tags. In this section, we will
quantify this claim by looking at the entropy of the labeling
game.

We want to measure, how much information was added at
each step, as the list of off-limits terms grew from empty
to (up to) 5 terms. For each label position, we measure the
information defined as − log2 p(t), where p(t) is the prob-
ability of tag t being added next as predicted by Equation
1, which uses the previously added labels. The unit of this
information quantity is “bits”, as the information measures,
how many bits would be required to encode the particular
event. The entropy of a random source is then defined as
the expected amount of information. More correctly, we
are dealing with the empirical entropy, which is simply the
average information. Note that the numerical estimates of
the information and the entropy would change for a different
probabilistic model.

One potential problem is that the term to be added next might
not be in the list of previously seen labels. Hence, it would
be assigned a probability of 0.0. To avoid this problem, we
must adapt the empirical estimate of P (‘t is next label’) to
take into account the possibility that t might fall outside the
known vocabulary. To achieve this, we down-weight the
total probability mass assigned to terms in the vocabulary
(which so far summed to 1.0). This way, we have some prob-
ability mass “left” to accommodate the possibility of un-
known tags appearing. Concretely, we allowed an unseen la-
bel to be generated next with a probability equal to the prob-
ability of the rarest tag being next (roughly 19/1, 000, 000).
This is an underestimate, as for the given vocabulary size the
probability that the next occurrence of a label will be an un-
known label is empirically observed to be around 1%. Thus,
all of our entropy estimates are in fact overestimates.13

Table 4 shows how later labels among the off-limits terms
become more and more predictable. If one assumes, that
the order of the off-limits terms corresponds to the order in
which they were added by players, then one can conclude

13It is not immediately obvious that assigning lower probabilities
than the true probabilities to rare events, and therefore higher prob-
abilities to more frequent events, does indeed give an overestimate
of the entropy, but this can be easily shown.

Av. information per position of label in tag set
1 2 3 4 5

9.2 (9.2) 8.5 (7.8) 8.0 (6.8) 7.7 (5.9) 7.5 (4.6)

Table 4. A model was trained on 13, 000 tag sets. The empirical en-
tropy, i.e. average information (− log2(p)), is then reported for each
label over a test set of 1, 546 tag sets. As the previous labels of a set are
used to predict the next label, the labels become more and more pre-
dictable. The numbers in parentheses are the results when the model
is tested on the training set. An equidistribution over all seen 4, 958
words would correspond to 12.3 bits. If terms were independent of the
previous labels and followed a unigram model, the information at any
position would be 9.3 bits.

that there is an effect of “diminishing returns”, where later
terms add less and less information to the set already present.

To see if humans work their way towards less and less pre-
dictable terms, as they think of more labels to add, we did the
following. We looked at the information gain of the labels
suggested by humans, with respect to the off-limits terms, as
a function of their position among the tag sequence. Table 5
shows that the information does indeed go up for later labels.

Av. information per position of human suggestions
1 2 3 4 5+

8.7 (7.8) 9.4 (8.5) 10.0 (9.1) 10.6 (9.7) 11.7 (10.7)

Table 5. The average information, when all the off-limits terms are
used to predict the next label, goes up with every additionally suggested
label. This indicates that (i) a player has to think of less and less obvious
tags to suggest and that (ii) the notion of “obvious” is indeed correlated
with the notion of “high probability” in our model. The numbers in
parentheses refer to the setting where only images with at least one off-
limits term are considered.

IMPROVED SCORE ASSIGNMENTS FOR THE ESP GAME
The main mechanism to steer the players, from the game
designer’s point of view, is the assignment of points to tags.
A valid question is, what should the game designer steer the
players towards? Our answer is “towards high entropy tags”.

First, note that the actual model used is irrelevant for our ar-
gumentation, and does not need to be accurate in any sense.
It only has to capture the system’s current beliefs about which
tag will be added next, that is, what it could have done with-
out any human intelligence. Second, for the application of
image search, the number of relevant images returned for
a very precise query (“steyr car 1920”) is much more of
a problem than precision for a more general query (“cute
dog”). Third, let us remind the reader that, with respect
to a given model, the mathematical notion of information
(− log2(p)) quantifies the usual notion in terms of the num-
ber of bits needed to encode a particular label (see the previ-
ous section). Thus, if we assume that the model does indeed
assign higher probabilities to more general terms, then the
information is a natural measure of how much new knowl-
edge the user actually added to the system. Anecdotal ev-
idence that labels with a higher − log2(p) are indeed more
informative is given in Table 6.

Modeling the Game
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Although the ESP Game certainly is a “game” with players,
who make moves (i.e. add suggestions) and who get certain
payoffs depending on the other player’s moves, a simple for-
mulation of the ESP Game in the framework of traditional
game theory does not lead to any meaningful result. The
reason for this is that, if players are assumed to play ratio-
nally with the objective to maximize their points for a match,
and if the list of possible moves (i.e. labels to add) and the
corresponding payoffs are known to them, they will always
add the label with the highest payoff. Even if there are ties,
adding the lexicographically smallest, highest scoring label
will (trivially) be a Nash Equilibrium14 (just as any other
strategy leading to a match). Note that game theory tradi-
tionally gives more insights (and is more applied) in non-
cooperative settings.

To avoid these problems, we assume that players play ratio-
nally with respect to certain probabilistic assumptions. Con-
cretely, we assume that from player A’s perspective, who can
be either of the two players, player B plays randomly. How-
ever, player A has certain beliefs about the probability that a
certain term will be used by player B for a given image. This
model comes close to how the game is perceived by players
as, arguably, they either consciously or unconsciously judge
the probability that the other player will add a certain label.
Also note that in practice the set of words, deemed to have
a non-zero probability of being added by the other player,
would be fairly small and not contain more than, say, 20 dif-
ferent labels for any image.

Given this probabilistic modeling approach, how would a
rational player make her move? Even for a fixed scoring
scheme, known to both players, there are still other factors
which would need to be taken into account.

• The probability that player B will add a label.

• The order in which labels are added by player B.

• The time to type a label for player A.

• The number of labels suggested by player A.

• The time to type a label for player B.

• The number of labels suggested by player B.

Completely neglecting the time factor would lead to a sim-
ple strategy: add all possible terms, ranked in descending
order of points for a match. Assuming that the order is
taken into account in the case of multiple matches, this gives
the highest possible score. Clearly, this oversimplification is
neither close to reality nor does it give any insights. How-
ever, taking all time-related factors into account leads to a
model, which requires several additional parameters and is
no longer tractable.

For our analysis, we therefore focus on the one-shot ver-
sion of the game, where both players are allowed to make
a single suggestion and there is no time limit involved. Of

14http://en.wikipedia.org/wiki/Nash_
equilibrium

course, players are not allowed to communicate in any way.
Each player knows the scoring scheme used by the system
or, at least, she knows the scores awarded to labels which she
deems could be added by the partner with a non-zero prob-
ability. However, as mentioned above, each player assumes
that the other player plays randomly.15

0th Scoring Scheme: The Original Proposal
In the original description of the game [15] a unit scoring
scheme was proposed, assigning the same number of points
to any match. This scheme is still used on http://www.
gwap.com/gwap/gamesPreview/espgame. It is easy
to see that such a scheme results in people adding the terms
with the lowest information all the time. Google’s current
scheme tries to rectify this, by assigning between 50 and
150 points according to a notion of “descriptiveness”, but (i)
it does not go far enough and (ii) is context independent, so
that even adding “blue” as the first tag to something related
to “blue note records” would only give a player 50 points for
the globally frequent tag “blue”, although it adds quite a lot
of information in the context of “note records”. The current
scheme does not seem to be related to the notion of “infor-
mation added”, as even the common and predictable label
“sexy” is awarded 140 points.

1st Scoring Scheme: Learning the Distribution
Player A wants to maximize (what she believes to be) the
expected score, namely:

P (‘Player B chooses t’ [according to A’s beliefs]) ∗
(‘score awarded for t given the current tag set’)

We are not assuming that the player is actually correct in her
beliefs. Suppose now, from the system’s point of view, that
P (‘Player B chooses t’) is estimated by the current set of
beliefs of the model. Then, as a reasonable scoring system,
we could set:

Score of t =
1/P (‘Player B chooses t’) (2)

Here, this probability refers to the estimate according to the
current model of the system. Given this scoring, a ratio-
nal player would choose the tag with the biggest ratio of
P (‘Player B chooses t [according to A’s beliefs])/P (‘Player
B chooses t’ [according to the beliefs of the system]).

An interesting observation about this is the following: sup-
pose the system’s model is regularly updated in light of the
tags suggested (but not necessarily agreed on) by the players.
Then, if we assume that the rational players do not change

15Again, if we assumed that the scores are (i) known to both players,
(ii) that both players know that the other players knows the scores,
(iii) that both players play rationally, and (iv) that they assume that
the other player plays rationally, then they would both always add
the highest scoring label.
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their beliefs about the distribution of the other player, and
if we assume that the player’s assumptions only depend on
the same information available to the system (namely, only
the already given tags and not the object itself), then the sys-
tem’s model would converge to the players’ beliefs, as they
will always play labels, which are undervalued by the sys-
tem and which, as the system constantly updates its beliefs,
will then be assigned a higher probability mass.

Note that even if the assumption that the actual image is in-
deed irrelevant given the present tags were true, this property
of convergence is still not desirable. After all the system’s
goal is not to learn the “normal” distribution (which con-
tains many colors and synonyms for “breasts”), but we want
to motivate the players to move away from this distribution
(in order to maximize the entropy of the tag sets).

In practice, the probability beliefs of the players will of course
not only depend on the offlimits terms. This is most obvious
for the very first label, where any probabilistic model can
do no better than using a context independent prior distri-
bution, which will deviate a lot from the labels considered
plausible by a player. So generally this scoring system pro-
motes labels which are “obvious” given the image, but not
obvious given only the other labels. E.g., given only the la-
bel “jaguar” both “car” and “cat” might have a probability
of 1/2 of being added next. But to somebody looking at the
picture, one of these probabilities will be zero, whereas the
other one is high.

Still, this scoring does not motivate people to necessarily add
high entropy tags. E.g., when already several labels have
been added, the system’s model is expected to agree well
with the player’s beliefs and any tag then gives the same
expected score.

2nd Scoring Scheme: Rewarding a high information gain
Whereas the scoring scheme in Equation 2 motivates players
to tell us directly, where the system’s beliefs are most incor-
rect, it does not motivate them directly to add informative
tags. Let us therefore consider the following scoring variant.

Score of t =
− log2(P (‘Player B chooses t’))/P (‘Player B chooses t’) (3)

Again, the probability estimates are with respect to the be-
liefs of the system. If for a given image the system was
correct about its beliefs (compared to the player’s beliefs), a
rational player would add the most information. That is, she
will add the tag which is least expected by the system, but
which still has a non-zero probability of being added by the
other player (according to her beliefs).

If the two probability estimates differ (c.f. the “jaguar” ex-
ample above), two objectives are mingled. First, adding a
tag which adds a lot of information and, second, teaching the
system about the current beliefs by adding a label which is
underestimated by the system. One important thing to note

about this scoring method is that if the player simply as-
sumes the system estimates the other person’s probability to
add a given tag accurately, then she can be convinced that
it is in her own interest to add the tag, which adds the most
information and which her partner still might possibly add
as well. If the system really only cares about adding tags
with the highest information gain, then the following scor-
ing variant is best.

Score of t =
[− log2(P (‘Player B chooses t’))]k (4)

For a large exponent k, it is then optimal for the player to add
the tag with the highest information gain, given that the (es-
timated) probability of her partner also adding it is non-zero.
The large exponent simply ensures that the actual probabil-
ity of a match, as long as it is non-zero, does not change the
order of preference.

Evaluation of Scoring Schemes
Although it would be undeniably preferable, to evaluate the
qualitative differences between scoring variants in a user ex-
periment, we consider this out-of-scope and limit ourselves
to anecdotal evidence. Table 6 shows the given off-limits
terms, the order of the suggested terms used by a human
(which was recorded during plays with our robot), the rank-
ing of the terms according to points awarded by the Google
Image Labeler and the ranking according to Equation 3 for
five images16. Recall that a rational human player would
weight the awarded scores by the probability with which she
believes her partner to add this label. If the player’s esti-
mates of the probabilities are similar to our model, then the
ranking of the last column will remain unchanged.

For both of the first two images, the label entered first by
the human does not add any new information (“kitten” ⇒
“cat” and “man”⇒ “guy”). Equation 3 rectifies this. Sim-
ilarly, the least predictable terms for the other images are
“baby” (for a baby penguin), “cross” (for a cross above a
burning ground) and “castle/building” (for a monastery on
an isolated cliff), and all of these are ranked highest in the
entropy-based ranking. Other terms suggested by the hu-
man, which simply reinforce already present terms, are low
in the ranking.

THE ESP GAME IN PRACTICE

Transparency and Effect of Scoring Schemes

16Image 1: http://www.chrisspagani.com/
cartoons/hammie-2s.jpg, Image 2: http:
//a776.ac-images.myspacecdn.com/images01/
40/s_47dac64ce46da910b5b4004bf0646e0f.jpg,
Image 3: http://animals.nationalgeographic.com/
staticfiles/NGS/Shared/StaticFiles/animals/
images/primary/emperor-penguin-baby.jpg,
Image 4: http://dancingokra.com/Earlywork/
Art/Armageddon.jpg, Image 5: http://www.
leopalmerphotography.co.uk/ta%20meteora%
20monastiria.jpg
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Scoring order
Off-limits Human Google Eqn. 3

Im
ag

e
1

cartoon cat cat drawing
ears drawing drawing cat

kitten
kitty

orange

Im
ag

e
2

drawing guy guy art
hat art art guy
man

sketch
glasses

Im
ag

e
3

white snow ice baby
wings baby baby snow
bird ice snow ice
cold

penguin

Im
ag

e
4

fire burn flames cross
painting burning burning∗ burn
picture cross burn∗ burning
smoke flames cross flames

art

Im
ag

e
5

mountain green cliff castle
mountains house rocks building

rock castle∗ rock
cliff rock house

painting building cliff

Table 6. Some examples to illustrate the benefit of an entropy-based
scoring scheme. A ∗ indicates that the score is tied with the score for
the word above, as a small set of discrete scores is used in the Google
Image Labeler. The lists for the last example are truncated.

In practice, it is questionable, (i) if typical players appreci-
ate a more involved scoring scheme and (ii) if the scoring
scheme has an effect on their behavior at all. Of course,
even in the current system the scoring scheme is not trans-
parent and players have no way of knowing, why the system
awarded, say, 70 rather than 140 points for a certain match.
With the systems above the idea is that players could (and
should) be told in detail about the scoring mechanism. E.g.,
every time they enter a suggestion the system should imme-
diately show its score, possibly along with the probability
estimate. However, many players might still prefer to go for
many, easy matches, as finding a match is simply emotion-
ally rewarding, even if this leads to a lower overall score.

Motivating Players
The more advanced scoring systems above, in particular Equa-
tion 3, have a nice selling point. Players could be (correctly)
told that the goal of the game is to outwit the machine. E.g.,
if two players find an obvious match, they would (i) get
fewer points and (ii) a smug message could be displayed
“Haha! I saw that coming!”. On the other hand, if they
agree on an informative term, the system could say “Oh, you
caught me by surprise!”, and the players would be awarded
more points.

Educating Players via Robots

Another interesting aspect to consider is, how much can be
gained if the system deliberately uses robots and people would
not necessarily play with a human. Rather than having some-
one wait for 10 minutes, when there are not enough players
in the system, a player could then be given images, which
are already labeled (though the labels are hidden), as pro-
posed in [15]. Similarly, we could use such an approach to
teach players not to use obvious combinations. Over time,
they might simply learn (from the robot players, which they
assume to be humans) that adding “lady” to an image al-
ready labeled as “girl”, “woman” and “model” will not lead
to a match at all. The same could possibly be achieved if the
system simply (secretly) ignores such obvious labels, even if
entered by both human players.

Timing Mechanism
Rather than via the scoring scheme, there are also other ways
of enforcing more informative tags. E.g., terms could come
with a certain time limit, before they are activated. That is,
an informative term such as “frigate bird” would still lead to
an immediate match, if entered by both players, but it takes,
say, 10 seconds before the term “black” becomes active and
can lead to a match. This would cancel the “emotional re-
ward” of a quick match for obvious labels.

Hiding Offlimits Terms
Players could be encouraged to aim for non-obvious matches
by hiding the offlimits terms. They would then only be told
that there are, say, four hidden taboo words from previous
rounds of the game. If they agree on such an unknown taboo
term, the round would immediately be over and they get zero
points. If they agree on a non-taboo term, they would be
awarded a unit score, independent of the match. In such a
setting, both players would probably start with less obvious
labels, as they are less likely to be already present, and then
work their way up to more predictable ones.

Linking Experts
With a scoring system as above (c.f. “Improved Score As-
signments for the ESP Game”), tag sets such as “car, au-
tomobile, black, wheels, auto” could be replaced by more
informative ones such as “black bmw, station waggon, sil-
ver wheel covers, parked car”. However, there is still the
problem that if one player does not know, say, the name of
a particular person depicted, then this image can only be la-
beled with general tags such “woman”, “man” or “person”.
This problem could be partly solved if also matches between
different instances of a game are used. Then two experts
would not have to play together, but it would suffice if both
of them, at different times, enter the label “horst köhler”17

for a particular image. However, (i) this makes the system
more vulnerable to spam, (ii) experts are less likely to en-
ter such terms to begin with, if they have to assume they
are paired with a less knowledgeable person, and (iii) this
would make the scoring either unfair (if experts are not re-
warded) or asymmetric (if one player gets awarded points
but the other does not). Therefore, it is preferable (i) if do-
main experts are paired and (ii) if they only label images

17The current president of Germany.
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related to a certain topic.

Identifying Experts
The status of an “expert” on a topic could be either indicated
by a player herself, as she agrees to, say, only label images
related to music bands, or it could be learned by the system.
One way to achieve the latter would be to have a quiz where,
e.g., images from the Wikipedia are shown to a player and
she has to correctly label as many people/countries/bands as
possible. As players prove their expertise over time, they
could go up in a ranking and only be paired with players of
similar expertise. The topic of an image could be detected
from the first off-limits terms. So if an image is already la-
beled as “tennis player”, it would then be shown to sports
experts in a hope to find more precise labels.
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