
Deciding Effectively Propositional Logic using

DPLL and substitution sets

Leonardo de Moura, Ruzica Piskac and Nikolaj Bjørner

August 15, 2008

Technical Report

MSR-TR-2008-104

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

Deciding Effectively Propositional Logic using

DPLL and substitution sets

Leonardo de Moura, Ruzica Piskac and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com, ruzica.piskac@epfl.ch

Abstract. We introduce a DPLL calculus that is a decision procedure
for the Bernays-Schönfinkel class, also known as EPR. Our calculus al-
lows combining techniques for efficient propositional search with data-
structures, such as Binary Decision Diagrams, that can efficiently and
succinctly encode finite sets of substitutions and operations on these. In
the calculus, clauses comprise of a sequence of literals together with a
finite set of substitutions; truth assignments are also represented using
substitution sets. The calculus works directly at the level of sets, and
admits performing simultaneous constraint propagation and decisions,
resulting in potentially exponential speedups over existing approaches.

1 Introduction

Effectively propositional logic, also known as the Bernays-Schönfinkel class, or
EPR, of first-order formulas provides for an attractive generalization of pure
propositional satisfiability and quantified Boolean formulas. The EPR class com-
prise of formulas of the form ∃∗∀∗ϕ, where ϕ is a quantifier-free formula with
relations, equality, but without function symbols. The satisfiability problem for
EPR formulas can be reduced to SAT by first replacing all existential variables
by skolem constants, and then grounding the universally quantified variables
by all combinations of constants. This process produces a propositional formula
that is exponentially larger than the original. In a matching bound, the satis-
fiability problem for EPR is NEXPTIME complete [11]. An advantage is that
decision problems may be encoded exponentially more succinctly in EPR than
with purely propositional encodings [13].

Our calculus aims at providing a bridge from efficient techniques used in
pure SAT problems to take advantage of the succinctness provided for by the
EPR fragment. One inspiration was [6], which uses an ad-hoc extension of a
SAT solver for problems that can otherwise be encoded in QBF or EPR; and
we hope the presented framework allows formulating such applications as strate-
gies. A main ingredient is the use of sets of instantiations for both clauses and
literal assignments. By restricting sets of instantiations to the EPR fragment, it
is feasible to represent these using succinct data-structures, such as Binary Deci-
sion Diagrams [4]. Such representations allow delaying, and in several instances,
avoiding, space overhead that a direct propositional encoding would entail.

The main contributions of this paper comprise of a calculus DPLL(SX) with
substitution sets which is complete for EPR (Section 2). The standard calculus
for propositional satisfiability lifts directly to DPLL(SX), allowing techniques
from SAT solving to apply on purely propositional clauses. However, here, we
will be mainly interested in investigating features specific to non-propositional
cases. We make explicit and essential use of factoring, well-known from first-
order resolution, but to our knowledge so far only used for clause simplifications
in other liftings of DPLL. We show how the calculus lends itself to an efficient
search strategy based on a simultaneous version of Boolean constraint prop-
agation (Section 3). We exhibit cases where the simultaneous technique may
produce an exponential speedup during propagation. By focusing on sets of
substitutions, rather than substitutions, we open up the calculus to efficient im-
plementations based on data-structures that can encode finite sets succinctly.
Our current prototype uses a BDD package for encoding finite domains, and
we report on a promising, albeit preliminary, empirical evaluation (Section 4).
Section 5 concludes with related work and future extensions.

2 The DPLL(SX) Calculus

2.1 Preliminaries

We use a, b, c,4, ?, 0, . . . to range over a finite alphabet Σ of constants, while
a, b, c are tuples of constants, x, y, z, x0, x1, x2, . . . for variables from a set V ,
x,y, z are tuples of variables, and p1, p2, p, q, r, s, t, . . . for atomic predicates of
varying arities. Signed predicate symbols are identified by the set L. As usual,
literals (identified by the letter `) are either atomic predicates or their negations
applied to arguments. For example, p(x1, x2) is the literal where the binary
atomic predicate p is negated. Clauses consist of a finite set of literals, where
each atomic predicate is applied to distinct variables. For example p(x1, x2) ∨
q(x3)∨q(x4) is a (well formed) clause. We use C,C′, C1, C2 to range over clauses.
The empty clause is identified by a 2. Substitutions, written θ, θ′, are idempotent
partial functions from V to V∪Σ. In other words, θ ∈ V

∼
→ V∪Σ is a substitution

if for every x ∈ Dom(θ) we have θ(x) ∈ V ⇒ θ(x) ∈ Dom(θ) ∧ θ(θ(x)) = θ(x).
Substitutions are lifted to homomorphisms in the usual way, so that substitutions
can be applied to arbitrary terms, e.g., θ(f(c, x)) = f(c, θ(x)). Substitutions
that map to constants only (Σ) are called instantiations. We associate with each
substitution θ a set of instances, namely, instancesOf (θ) = {θ′ ∈ (Dom(θ) →
Σ) | ∀x ∈ Dom(θ) . θ′(x) = θ′(θ(x))}. Suppose θ is a substitution with domain
{x1, . . . , xn}; then the corresponding set instancesOf (θ) can be viewed as a set
of n-entry records, or equivalently as an n-ary relation over x1, . . . , xn. In the
following, we can denote a set of substitutions as a set of instances, but will use
the terminology substitution set to reflect that we use representations of such
sets using a mixture of instantiations, which map variables to constants, as well
as substitutions that map variables to variables.

We discuss in more detail how substitution sets are represented in Section 3.3.
As shorthand for sets of substitutions we use Θ, Θ′, Θ1, Θ2. A substitution-set

constrained clause is a pair C · Θ where C is a clause and Θ is a substitution
set. The denotation of a constrained clause is the set of ground clauses θ(C), for
every instantiation θ ∈ Θ. Notice that there are no ground clauses associated
with C ·∅, so our rules will avoid adding such tautologies. We will assume clauses
are in “normal” form where the literals in C are applied to different variables,
so it is up to the substitutions to create equalities between variables.

Literals can also be constrained, and we use the notation `Θ for the literal
` whose instances are determined by the non-empty Θ. If Θ is a singleton set,
we may just write the instance of the literal directly. So for example p(a) is
shorthand for p(x){a}.

Example 1 (Constrained clauses). The set of (unit) clauses: p(a, b), p(b, c), p(c, d)
can be represented as the set-constrained clause

p(x1, x2) · {[x1 7→ a, x2 7→ b], [x1 7→ b, x2 7→ c], [x1 7→ c, x2 7→ d]},

or simply: p(x1, x2) · {(a, b), (b, c), (c, d)}

A context Γ is a sequence of constrained literals and decision markers (�).
For instance, the sequence `1Θ1, �, `2Θ2, `3Θ3, . . . , `kΘk is a context. We allow
concatenating contexts, so Γ, Γ ′, `Θ, �, `′Θ′, Γ ′′ is a context that starts with a se-
quence of constrained literals in Γ , continues with another sequence Γ ′, contains
`Θ, a decision marker, then `′Θ′, and ends with Γ ′′.

Operations from relational algebra will be useful in manipulating substitution
sets. See also [17], [16] and [18]. We summarize the operations we will be using
below:

Selection σϕ(x)Θ is shorthand for {θ ∈ Θ | ϕ(θ(x))}.

Projection πxΘ is shorthand for the set of substitutions obtained from Θ by
removing domain elements other than x. For example, πx{[x 7→ a, y 7→
b], [x 7→ a, y 7→ c]} = {[x 7→ a]}.

Co Projection π̂xΘ is shorthand for the set of substitutions obtained from Θ by
removing x. So π̂x{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} = {[y 7→ b], [y 7→ c]}.

Join Θ 1 Θ′ is the natural join of two relations. If Θ uses the variables x and
y, and Θ′ uses variables x and z, where y and z are disjoint, then Θ 1 Θ′

uses x,y and z and is equal to {θ | π̂z(θ) ∈ Θ, π̂y(θ) ∈ Θ′}. For example,
{[x 7→ a, y 7→ b], [x 7→ a, y 7→ c]} 1 {[y 7→ b, z 7→ b], [y 7→ b, z 7→ a]} = {[x 7→
a, y 7→ b, z 7→ b], [x 7→ a, y 7→ b, z 7→ a]}.

Renaming δx→yΘ is the relation obtained from Θ by renaming the variables x

to y. We here assume that y is not used in Θ already.

Restriction Θ oθ restricts the set Θ to the substitution θ. It is shorthand for a se-
quence of selection and co-projections. For example, Θ o [x 7→ a] = π̂xσx=aΘ,
and Θ o [x 7→ y, y 7→ y] = π̂xσx=yΘ. More generally, Θ o θ is π̂xσx=θ(x)Θ

where x is the subset of the domain of θ where θ is not idempotent. Thus,
if x = {x1, . . . , xn}, then θ(x1) 6= x1, . . . , θ(xn) 6= xn.

Set operations Θ ∪Θ′ creates the union of Θ and Θ′, both sets of n-ary tuples
(sets of instances with n variables in the domain). Subtraction Θ \Θ′ is the
set {θ ∈ Θ | θ 6∈ Θ′}. The complement Θ is Σn \Θ.

It is important to point out here that we distinguish between ∅ and {[]}. While
∅ represents the empty set, {[]} represents a substitution set with the empty
domain. We illustrate the difference on the following example: let Θ1 = {[x 7→
a, y 7→ b]} and Θ2 = {[y 7→ c]}. Their join evaluates to Θ1 1 Θ2 = ∅ while
π̂yΘ2 = {[]}. In the Example 3 the difference between ∅ and {[]} plays an im-
portant role in proving unsatisfiability of a formula.

Notice, that we can compute the image of a most general unifier of two sub-
stitutions θ and θ′, by taking the natural join of their substitution set equivalents
(the join is the empty set if the most general unifier does not exist). That is, if σ
is the most general unifier of the two substitutions θ and θ′, then instancesOf (σ◦
θ) = instancesOf (θ) 1 instancesOf (θ′). In more detail, let us recall the defini-
tions for composing substitutions and computing most general unifiers of subistu-
tions. Let θ1 = [x1 7→ t1, ..., xn 7→ tn] and let θ2 = [y1 7→ s1, ..., ym 7→ sm] be two
substitutions. Their composition θ2◦θ1 is a substitution obtained by applying θ2
to ti and adding entries in the domain of θ2 that are not in the domain of θ1. As
an example, consider θ1 = [x1 7→ a, x2 7→ y2] and θ2 = [x1 7→ b, y1 7→ z, y2 7→ b].
Then, θ2 ◦ θ1 = [x1 7→ a, x2 7→ b, y1 7→ z, y2 7→ b]. Having two substitutions θ1
and θ2, a unifier of θ1 and θ2 is a substitution σ such that σ◦θ1 = σ◦θ2. In order
to define the most general unifier (mgu), we introduce the ordering on the set
of substitutions: θ1 � θ2 iff instancesOf (θ2) ⊆ instancesOf (θ1) (or equivalently,
if there is a substitution σ, such that σ ◦ θ1 = θ2). The most general unifier for
substitutions θ1 and θ2 is a unifier σ such that there is no unifier σ′ such that
σ′ ≺ σ. Consider substitutions θ1 = [x 7→ z, y 7→ b] and θ2 = [x 7→ a, y 7→ b]. We
calculate the mgu as mgu(θ1, θ2) = [z 7→ a].

If two clauses C ∨ `(x) and C′ ∨ ¬`(x), have substitution sets Θ and Θ′

respectively, we can compute the resolvent (C ∨ C′) · π̂x(Θ 1 Θ′). We quietly
assumed that the variables in C and C′ were disjoint and renamed apart from
x. If they are not disjoint, they can easily be made disjoint. We illustrate the
technique on the following example: let (p(x) ∨ q(x)) · {[x 7→ a], [x 7→ b]} and
(p(x) ∨ r(x)) · {[x 7→ b], [x 7→ c]} be two clauses and let y and z be two fresh
variables. Then, the given clauses are equivalent to (p(x)∨ q(y)) · {[x 7→ a], [x 7→
b]} 1 {[y 7→ x]} and (p(x)∨r(z))·{[x 7→ b], [x 7→ c]} 1 {[z 7→ x]}. After evaluating
join operations, we obtain clauses (p(x)∨ q(y)) · {(a, a), (b, b)} and (p(x)∨ r(z)) ·
{(b, b), (c, c)}. Their resolvent is (q(y) ∨ r(z)) · {(b, b)} which corresponds to the
above rule.

In the rest of the paper, we assume that variables are by default disjoint, or
use appropriate renaming silently instead of cluttering the notation.

2.2 Inference rules

We will adapt the proof calculus for DPLL(SX) from an exposition of DPLL(T)
as an abstract transition system [12, 10]. States of the transition system are of

the form Γ ||F, where Γ is a context, and the set F is a collection of constrained
clauses. Constrained literals are furthermore annotated with optional explana-
tions. In this presentation we will use one kind of explanation of the form:

`C·ΘΘ′ All Θ′ instances of ` are implied by propagation from C ·Θ

We maintain the following invariant, which is crucial for conflict resolution:

Invariant 1. For every derived context of the form Γ, `C·ΘΘ′, Γ ′ it is the case
that C = (`1 ∨ . . . ∨ `k ∨ `(x)) and there are assignments `iΘi ∈ Γ , such that
Θ′ ⊆ πx(Θ 1 δx→x1

Θ1 1 . . . 1 δx→xk
Θk) (written Θ′ ⊆ πx(Θ 1 Θ1 1 . . . 1 Θk)

without the explicit renamings). Furthermore, Θ′ is non-empty.

Example 2 (Establishing the invariant). We show how to establish the invariant
on the following example. Consider a clause C0 = p(x)∨q(x)∨r(x) and a context
Γ that contains literals p(a) and q(a). Standard unit propagation rule infers
that r(a) has to be added to the context Γ . We formulate that in the previously
introduced notation. First, we rename variables and obtain a substitution-set
constrained clause C1 = C ·Θ = p(x1)∨ q(x2)∨ r(x3) · {[x1 7→ x3, x2 7→ x3, x3 7→
x3]} and then, using a unit propagation rule, we add the literal r(x3)

C·ΘΘ′ to a
context Γ (and Θ′ = {[x3 7→ a]}). In order to establish the invariant, we define
substitution sets Θ1 = {[x1 7→ a]} and Θ2 = {[x2 7→ a]}: they are satisfying that
p(x1)Θ1 ∈ Γ and q(x2)Θ2 ∈ Γ . To verify that Θ1 and Θ2 are good choices for
substitution sets, first we calculate Θ 1 Θ1 1 Θ2 = {[x1 7→ a, x2 7→ a, x3 7→ a]}.
Projecting x3 in this substitution-set results with πx3

(Θ 1 Θ1 1 Θ2) = {[x3 7→
a]} = Θ′, i.e. the invariant is established.

We take advantage of this invariant to introduce a notion of premises(`C·ΘΘ′)
that extracts Θ 1 Θ1 1 . . . 1 Θk (or, to spell it out for the last time: Θ 1

δx→x1
Θ1 1 . . . 1 δx→xk

Θk). For a clause C = (`1 ∨ . . . ∨ `k ∨ `(x)) and a
context Γ , one can think about premises(`C·ΘΘ′) as a set of tuples that make
literals `1, . . . , `k false and `(x) true in Γ .

During conflict resolution, we also use states of the form

Γ ||F ||C ·Θ,Θr

where C · Θ is a conflict clause, and Θr is the set of instantiations that falsify
C; it is used to guide conflict resolution.

We split the presentation of DPLL(SX) into two parts, consisting of the
search inference rules, given in Fig. 1, and the conflict resolution rules, given in
Fig. 2. Search proceeds similarly to propositional DPLL: It starts with the initial
state ||F where the context is empty. The result is either unsat indicating that F
is unsatisfiable, or a state Γ ||F such that every clause in F is satisfied by Γ . A
sequence of Decide steps are used to guess an assignment of truth values to the
literals in the clauses F . The side-conditions for UnitPropagate and Conflict are
similar: they check that there is a non-empty join of the clause’s substitutions
with substitutions associated with the complemented literals. There is a conflict
when all of the literals in a clause has complementary assignments, otherwise, if

` ∈ F If `Θ′ ∈ Γ or `Θ′ ∈ Γ , then Θ 1 Θ′ = ∅
Decide

Γ ||F =⇒ Γ, �, `Θ ||F

C = (`1 ∨ . . . ∨ `k), `iΘi ∈ Γ, Θr = Θ 1 Θ1 1 . . . 1 Θk 6= ∅
Conflict

Γ ||F, C · Θ =⇒ Γ ||F, C · Θ ||C · Θ, Θr

C = (`1 ∨ . . . ∨ `k ∨ `(x)), `iΘi ∈ Γ, i = 1, .., k

Θ′ = πx(Θ 1 Θ1 1 . . . 1 Θk) \
⋃
{Θ` | `Θ` ∈ Γ} 6= ∅

Θ′
1

⋃
{Θ

`
| `Θ

`
∈ Γ} = ∅

UnitPropagate
Γ ||F, C · Θ =⇒ Γ, `C·Θ · Θ′ ||F, C · Θ

Fig. 1. Search inference rules

all but one literal has a complementary assignment, we may apply unit propaga-
tion to the remaining literal. The last side condition on UnitPropagate prevents
it from being applied if there is a conflict. Semantically, a non-empty join implies
that there are instances of the literal assignments that contradict (all but one
of) the clause’s literals.

δy→xπyΘr 1 Θ` = ∅ for every `(y) ∈ C′, C` = (C(y) ∨ `(x))

Θ′

r = π̂x(Θr 1 Θ` 1 premises(`Θ`)) 6= ∅, Θ′′ = π̂x(Θ 1 Θ′)
Resolve

Γ, `
C`·Θ

′

Θ` ||F || (C′(z) ∨ `(x)) · Θ, Θr =⇒ Γ ||F || (C(y) ∨ C′(z)) · Θ′′, Θ′

r

δy→xπyΘr 1 Θ` = ∅ for every `(y) ∈ C
Skip

Γ, `
C`·Θ

′

Θ` ||F ||C · Θ, Θr =⇒ Γ ||F ||C · Θ, Θr

Θ′

r = π̂zσy=zΘr 6= ∅, Θ′ = π̂zσy=zΘ
Factoring

Γ ||F || (C(x) ∨ `(y) ∨ `(z)) · Θ, Θr =⇒ Γ ||F || (C(x) ∨ `(y)) · Θ′, Θ′

r

C · Θ 6∈ F
Learn

Γ ||F ||C · Θ, Θr =⇒ Γ ||F, C · Θ ||C · Θ, Θr

Unsat Γ ||F ||2 · Θ, Θr =⇒ unsat if Θ 6= ∅

C = (`1 ∨ . . . ∨ `k ∨ `(x)), `iΘi ∈ Γ1

Θ′ = πx(Θ 1 Θ1 1 . . . 1 Θk) \
⋃
{Θ` | `Θ` ∈ Γ1} 6= ∅

Backjump
Γ1, �, Γ2 ||F ||C · Θ, Θr =⇒ Γ1, `

C·ΘΘ′ ||F

Refine Γ, �, `Θ1, Γ
′ ||F ||C · Θ, Θr =⇒ Γ, �, `Θ′

1 ||F if ∅ 6= Θ′

1 ⊂ Θ1

Fig. 2. Conflict resolution rules

Conflict resolution rules, shown in Fig. 2, produce resolution proof steps based
on a clause identified in a conflict. The Resolve rule unfolds literals from conflict
clauses that were produced by unit propagation and the rule Skip bypasses prop-

agations that were not used in the conflict. The preconditions of Resolve only
apply if there is a single literal that is implied by the top of the context, if that
is not the case, we can use factoring. Unlike propositional DPLL, it is not always
possible to apply factoring on repeated literals in a conflict clause. We therefore
include a Factoring rule to explicitly handle factoring when it applies. Any clause
derived by resolution or factoring can be learned using Learn, and added to the
clauses in F . The inference system produces the result unsat if conflict resolu-
tion results in the empty clause. There are two ways to transition from conflict
resolution to search mode. Back-jumping applies when all but one literal in the
conflict clause is assigned below the current decision level. In this case the rule
Backjump adds the uniquely implied literal to the logical context Γ and resumes
search mode. As factoring does not necessarily always apply, we need another
rule, called Refine, for resuming search. The Refine rule allows refining the set
of substitutions applied to a decision literal. The side condition to Refine only
requires that Θ1 be a non-empty, non-singleton set. In some cases we can use
the conflict clause to guide refinement: If C contains two occurrences `(x1) and
`(x2), where πx1

(Θr) and πx2
(Θr) are disjoint but are subsets of Θ1, then use

one of the projections as Θ′
1.

To illustrate use of the inference rules we derive a proof that a set containing
p(a) and p(a) is unsatisfiable.

Example 3 (Unsatisfiable set of clauses). Let C1Θ1 = p(x) · {a} and C2Θ2 =
p(x) · {a} and let F = C1, C2. Then the proof for unsatisfiability of F can be
derived as follows:

||F
=⇒ UnitPropagate

p(x)p(x){a}{a} ||F
=⇒ Conflict

p(x)p(x){a}{a} ||F || p(x){a}, {a}
=⇒ Resolve

p(x)p(x){a}{a} ||F ||2 · {[]}, {[]}
=⇒ unsat

The Resolve step is enabled because we distinguish ∅ between {[]}. Here we see
that the difference between ∅ and {[]} is not artificially introduced: {[]} can be
seen as a binding for 2.

The next example is more complex and illustrates in particular the use of
factoring and splitting:

Example 4 (Factoring). Assume we have the clauses:

F :







C1 : p(x) ∨ q(y) ∨ r(z) · {(a, a, a)},
C2 : p(x) ∨ s(y) ∨ t(z) · {(b, b, b)},
C3 : q(x) ∨ s(y) · {(a, b)}

A possible derivation may start with the empty assignment and take the
shape shown in Fig 3. We end up with a conflict clause with two occurrences

||F
=⇒ Decide

�, r(x){a, b, c} ||F
=⇒ Decide

�, r(x){a, b, c}, �, t(x){b, c} ||F
=⇒ Decide

�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b} ||F
=⇒ UnitPropagate using C1

�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b}, q(x){a} ||F
=⇒ UnitPropagate using C2

�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){a, b}, q(x){a}, s(x){b}
︸ ︷︷ ︸

Γ

||F

=⇒ Conflict using C3

Γ ||F || q(x) ∨ s(y) · {(a, b)}
=⇒ Resolve using C2

Γ ||F || p(x) ∨ q(y) ∨ t(z) · {(b, a, b)}
=⇒ Resolve using C1

Γ ||F || p(x) ∨ p(x′) ∨ r(y) ∨ t(z) · {(b, a, a, b)}

Fig. 3. Example derivation steps

of p. Factoring does not apply, because the bindings for x and x′ are different.
Instead, we can choose one of the bindings as the new assignment for p. For
example, we could take the subset {b}, in which case the new stack is:

=⇒ Refine
�, r(x){a, b, c}, �, t(x){b, c}, �, p(x){b} ||F

2.3 Soundness, Completeness and Complexity

It can be verified by inspecting each rule that all clauses added by conflict
resolution are resolvents of the original set of clauses F . Thus,

Theorem 1 (Soundness). DPLL(SX) is sound.

The use of premises and the auxiliary substitution Θr have been delicately for-
mulated to ensure that conflict resolution is finite and stuck-free, that is, Resolve
and Factoring always produce a conflict clause that admits either Backjump or
Refine.

Lemma 1 (Preserving Invariant). Each rule of DPLL(SX) preserves In-
variant 1.

Proof. Literals annotated with explanations can only be added to a context
using the Backjump or UnitPropagate rules. Since a rule can only be applied only
if its preconditions are enabled, whenever a literal annotated with explanations
is added to a context, preconditions for Backjump or UnitPropagate hold. They
directly ensure that the invariant is preserved.

Theorem 2 (Stuck-freeness). For every derivation starting with rule Conflict
there is a state Γ ||F ||C ·Θ,Θr, such that Backjump or Refine is enabled.

Proof. Our goal is to show that the proof derivation cannot be stuck in a conflict
mode. We aim to prove that if a derivation is in a conflict resolution mode, then
there is a state where the preconditions for Backjump or Refine are enabled and
a derivation can transition to a search mode. Note that Refine is always enabled
when there is a non-singleton set attached to a decision literal, so for the rest
of the proof we assume that associated to every decision literal has a singleton
binding set. We prove the theorem by induction on the number of constrained
literals annotated with explanations.

Let us assume that a context Γ contains no literals with explanations, i.e.
all literals are decision literals. If a proof derivation starts with the Conflict rule
and C is a conflicting clause, Backjump rule is enabled immediately in the next
step because all its preconditions hold. It can easily be verified using the fact
that C is a conflicting clause. If a clause C causes a conflict, then it satisfies
certain properties (preconditions of Conflict), which directly imply preconditions
for Backjump. However, this way we obtain one constrained literal with an ex-
planation in a context Γ .

In induction step we consider the case when a context Γ contains n con-
strained literals with explanations and remaining literals in Γ are decision lit-
erals. Let C1Θ be a conflicting clause and let Θr be a set of instantiations
that falsify C1. If C1Θ is falsified only by decision literals from Γ , then we ap-
ply the same reasoning as above and conclude that Backjump is enabled. Let

us now assume that a literal `
ClΘ

′

Θl is used for falsifying C1. Then, C1Θ =
(C′(z) ∨ `(x)) · Θ and Θr 1 Θl 6= ∅. Our goal is to show that the precondi-

tions of the Resolve rules are enabled. Using Invariant 1 for a literal `
ClΘ

′

Θl, we
obtain that ClΘ

′ = (`1 ∨ . . . ∨ `k ∨ `(x)) and there are assignments `iΘi ∈ Γ

such that ∅ 6= Θl ⊆ πx(Θ′
1 Θ1 1 . . . 1 Θk). Let us introduce the shorthand

C(y) = `1 ∨ . . . ∨ `k.

One also needs to check whether there exists a literal `(y) ∈ C′ such that
δy→xπyΘr 1 Θ` 6= ∅. If such a literal exists, preconditions of the Factoring rule
are enabled and using the Factoring rule we eliminate that literal from C′. We
repeat the procedure until there are no more such literals, which ensures that
δy→xπyΘr 1 Θ` = ∅, for every `(y) ∈ C′. During those transformations, only
clause C′ was changing; the context Γ stayed unchanged and we remained in
the conflict mode.

After eliminating all redundant literals from C′, it remains to check whether
π̂x(Θr 1 Θ` 1 premises(`Θ`)) 6= ∅. This holds as well, because Θr 1 Θl 6= ∅
and Θl ⊆ πxpremises(`Θ`) and x is the only common variable that occurs in
Θr, Θ` and premises(`Θ`). Let Θ′

r = π̂x(Θr 1 Θ` 1 premises(`Θ`)). Note that
if C(y) = C′(z) = 2 then Θ′

r = {[]}.
To summarize, if some constrained literal with annotated explanation falsifies

the clause C1, then in a finite number of steps all preconditions of the Resolve
rule can become enabled. After applying it, we remain in the conflict mode.

However, the context Γ has changed and now it contains n − 1 constrained
literals annotated with explanations. On this new context, we apply induction
hypothesis.

This concludes the proof for stuck-freeness of DPLL(SX).

The DPLL(SX) calculus can directly simulate propositional grounding and this
way we obtain completeness:

Theorem 3 (Completeness). DPLL(SX) is complete for EPR.

The calculus admits the expected asymptotic complexity of EPR. Suppose the
maximal arity of any relation is a, the number of constants is n = |Σ|, and the
number of relations is m, set K ← m× (na), then:

Theorem 4 (Complexity). The rules of DPLL(SX) terminate with at most
O(K · 2K) applications, and with maximal space usage O(K2).

Proof. First note that a context can enumerate each literal assignment explicitly
using at most O(K) space, since each of the m literals should be evaluated at up
to na instances. Literals that are tagged by explanations require up to additional
O(K) space, each.

For the number of rule applications, consider the ordering ≺ on contexts
defined as the transitive closure of:

Γ, `′Θ′, Γ ′ ≺ Γ, �, `Θ, Γ ′′ (1)

Γ, �, `Θ′, Γ ′ ≺ Γ, �, `Θ, Γ ′′ when Θ′ ⊂ Θ (2)

The two rules for ≺ correspond to the inference rules Backjump and Refine
that generate contexts of decreased measure with respect to ≺. Furthermore,
we may restrict our attention to contexts Γ where for every literal `, such that
Γ = Γ ′, `Θ, Γ ′′ if ∃Θ′ . `Θ′ ∈ Γ ′, Γ ′′, then Θ′

1 Θ = ∅. There are at most K!
such contexts, but we claim the longest ≺ chain is at most K · 2K . First, if all
sets are singletons, then the derivation is isomorphic to a system with K atoms,
which requires at most 2K applications of the rule (1). Derivations that use
non-singleton sets embed directly into a derivation with singletons using more
steps. Finally, rule (2) may be applied at most K times between each step that
corresponds to a step of the first kind.

Note that the number of rule applications does not include the cost of ma-
nipulating substitution sets. This cost depends on the set representations. While
the asymptotic time complexity is (of course) no better than what a brute force
grounding provides, DPLL(SX) only really requires space for representing the
logical context Γ . While the size of Γ may be in the order K, there is no require-
ment for increasing F from its original size. As we will see, the use of substitution
sets may furthermore compress the size of Γ well below the bound of K. One
may worry that in an implementation, the overhead of using substitution sets
may be prohibitive compared to an approach based on substitutions alone. Sec-
tion 3.3 describes a data-structure that compresses substitution sets when they
can be represented as substitutions directly.

3 Refinements of DPLL(SX)

The calculus presented in Section 2 is a general framework for using substitu-
tion sets in the context of DPLL. We first discuss a refinement of the calculus
that allows to apply unit propagation for several assignments simultaneously.
Second, we examine data-structures and algorithms for representing, indexing
and manipulating substitution sets efficiently during search.

3.1 Simultaneous propagation and FUIP-based conflict resolution

In general, literals are assigned substitutions at different levels in the search. Unit
propagation and conflict detection can therefore potentially be identified based
on several different instances of the same literals. For example, given the clause
(p(x)∨q(x)) and the context p(a), p(b), unit propagation may be applied on p(a)
to imply q(a), but also on p(b) to imply q(b). We can factor such operations into
simultaneous versions of the UnitPropagate and Conflict rules. The simultaneous
version of the propagation and conflict rules take the form shown in Fig 4.

C = (`1 ∨ . . . ∨ `k ∨ `(x)),

Θ′

i = ∪{Θi | `iΘi ∈ Γ}, Θ′

` =
⋃
{Θ` | `Θ` ∈ Γ},

Θ′ = πx(Θ 1 Θ′

1 1 . . . 1 Θ′

k) \ Θ′

` 6= ∅
Θ′

1
⋃
{Θ

`
| `Θ

`
∈ Γ} = ∅

S-UnitPropagate
Γ ||F, C · Θ =⇒ Γ, `C·Θ · Θ′ ||F, C · Θ

C = (`1 ∨ . . . ∨ `k), Θ′

i = ∪{Θi | `iΘi ∈ Γ},
Θ′ = Θ 1 Θ′

1 1 . . . 1 Θ′

k 6= ∅
S-Conflict

Γ ||F, C · Θ =⇒ Γ ||F, C · Θ ||C · Θ, Θ′

Fig. 4. S-UnitPropagate and S-Conflict

Correctness of these simultaneous versions rely on the basic the property that
1 distributes over unions:

(R ∪R′) 1 Q = (R 1 Q) ∪ (R′
1 Q) for every R,R′, Q (3)

Thus, every instance of S-UnitPropagate corresponds to a set of instances of
UnitPropagate, and for every S-Conflict there is a selection of literals in Γ that
produces a Conflict. The rules suggest to maintain accumulated sets of substi-
tutions per literal, and apply propagation and conflict detection rules once per
literal, as opposed to once per literal occurrence in Γ . A trade-off is that we
break invariant 1 when using these rules. Instead we have:

Invariant 2. For every derived context of the form Γ, `C·ΘΘ′, Γ ′ where C =
(`1 ∨ . . . ∨ `k ∨ `), it is the case that ∅ 6= Θ′ ⊆ πx(Θ 1 Θ′

1 1 . . . 1 Θ′
k) where

Θ′
i =

⋃
{Θi | `iΘi ∈ Γ}.

Invariant (2) still suffices to establish the theorems from Section 2.3, even though
it is weaker, as the set (Θ 1 Θ′

1 1 . . . 1 Θ′
k) contains the joins of substitutions

from individual literals in Γ . The function premises is still admissible, thanks
to (3).

Succinctness Note the asymmetry between the use of simultaneous unit propa-
gation and the conflict resolution strategy: while the simultaneous rules allow to
use literal assignments from several levels at once, conflict resolution traces back
the origins of the propagations that closed the branches. The net effect may be
a conflict clause that is exponentially larger than the depth of the branch. As an
illustration of this situation consider the clauses where p is an n-ary predicate:

¬p(0, . . . , 0) ∧ shape(?) ∧ shape(4) (4)

∧i [p(x, ?, 0, .., 0) ∧ p(x,4, 0, .., 0) → p(x, 0, 0.., 0)]where x = x0, . . . , xi−1

∧0≤j<nshape(xj) → p(x0, . . . , xn−1)

Claim. The clauses are contradictory, and any resolution proof requires 2n steps.

Justification. Backchaining from p(0, . . . , 0), we observe that all possible deriva-
tions are of the form:

p(0, . . . , 0)← p(?, 0, . . . , 0), p(4, 0, . . . , 0)
← p(?,4, 0, .., 0), p(?, ?, 0, .., 0), p(4,4, 0, .., 0), p(4, ?, 0, .., 0)
← . . .

← p(?, ?, . . .), . . . , p(4,4, . . .) all 2n combinations
← shape(?) . . . shape(4)

Claim. DPLL(SX) with simultaneous unit propagation requires O(n) steps to
complete the derivation.

Justification. The two assertions shape(?) and shape(4) may be combined into
shape(x){?,4} and then used to infer p(x){?,4} × . . . × {?,4} in one propa-
gation. Each consecutive propagation may be used to produce p(x)Θ, where Θ
contains a suffix with k consecutive 0’s and the rest being all combinations of ?
and 4.

In this example, we did in fact not need to perform conflict resolution at all be-
cause the problem was purely Horn, and no decisions were required to derive the
empty clause. But it is simple to modify such instances to non-Horn problems,
and the general question remains how and whether to avoid an exponential cost
of conflict resolution as measured by the number of propagation steps used to
derive the conflict.

One crude approach for handling this situation is to abandon conflict reso-
lution if the size of the conflict clause exceeds a threshold. When abandoning
conflict resolution apply Refine, which is enabled as long as there is at least
one decision literal on the stack whose substitution set is a non-singleton. If
all decision literals use singletons, then Refine does not apply. In this case we

have to use a different way of backtracking. We can flip the last decision literal
under the context of the negation of all decision literals on the stack. The rule
corresponding to this approach is U(nit)-Refine:

c ∈ Σk � 6∈ Γ ′, `1Θ1, . . . , `mΘm are the decision literals in Γ

C′ = ` ∨ `1 ∨ . . . ∨ `m, Θ′ = {c} 1 Θ1 1 . . . 1 Θm is a singleton
U-Refine

Γ, �, `{c}, Γ ′ ||F ||C ·Θ,Θr =⇒ Γ, `{c}
C′·Θ′

||F

But with succinct substitution sets it is sometimes possible to match the
succinctness of unit propagation during conflict resolution. The approach we are
going to present will use ground clauses during resolution. The ground clauses
can have multiple occurrences of the same predicate symbol, but applied to dif-
ferent (ground) arguments. We then summarize the different arguments using a
substitution set, so that the representation of the ground clause only requires
each predicate symbol at most twice (positive and/or negated), but with a po-
tentially succinct representation of the arguments.

Suppose S-Conflict infers the conflict clause C · Θ and set Θr. Let θ0 be
an arbitrary instantiation in Θr. Initialize the map Ψ from the set of signed
predicate symbols to substitution sets as follows:

Ψ(`)←
⋃

{πxi
θ0 | `(xi) ∈ C}, for ` ∈ L. (5)

Note that a clause C may have multiple occurrences of a predicate symbol with
the same sign, but applied to different arguments. The definition ensures that if
` ∈ L is a signed predicate symbol that does not occur in C, then Ψ(`) = ∅.

Example 5. Assume C = p(x1) ∨ p(x2) ∨ q(x3) and θ = (a, b, c), then Ψ(p) =
{a, b}, Ψ(p) = ∅, Ψ(q) = {c}, Ψ(q) = ∅.

We can directly reconstruct a clause from Ψ by creating a disjunction of
Σ

`∈L|Ψ(`)| literals and a substitution that is the product of all elements in the
range of Ψ . This inverse mapping is called clause of(Ψ). Sets in the range of
Ψ may get large, but we can here rely on the same representation as used for
substitution sets. We can now define a (first-unique implication point) resolu-
tion strategy that works using Ψ . We formulate the strategy separately from
the already introduced rules, as we need to ensure that we can maintain the
representation of the conflict clause using Ψ .

resolve(Γ1, �, Γ2, Ψ) = Backjump with Γ1`
C·Θ{c} if

` ∈ Dom(Ψ), c ∈ Ψ(`), Ψ(`) \ {c} ⊆
⋃
{Θ′ | `Θ′ ∈ Γ1}

Ψ(`′) ⊆
⋃
{Θ′ | `′Θ′ ∈ Γ1} for ` 6= `′

C ·Θ = clause of(Ψ)

resolve(Γ, `Θ, Ψ) = resolve(Γ, Ψ) if Θ ∩ Ψ(`) = ∅

resolve(Γ, `C∨`·ΘΘ′, Ψ) = resolve(Γ, Ψ), if Θ′ ∩ Ψ(`) = {c}, and where
Ψ(`)← Ψ(`) \Θ′

for `′(x) ∈ C: Ψ(`′)← Ψ(`′) ∪ πx(premises(`C∨`·ΘΘ′))

resolve(Γ, �, `Θ, Ψ) = Refine if other rules don’t apply.

Besides the cost of performing the set operations, the strategy still suffers
from the potential of generating an exponentially large implied learned clause
C ·Θ′ during backjumping. An implementation can choose to resort to applying
Refine or U-Refine in these cases. We do not have experimental experience with
the representation in terms of Ψ . Instead our prototype implementation uses
Refine together with U-Refine, when the conflict resolution steps start generating
conflict clauses with more than 20 (an arbitrary default) literals.

3.2 Selecting decision literals and substitution sets

Selecting literals and substitution sets blindly for Decide is possible, but not a
practical heuristic. As in the Model-evolution calculus [3], we take advantage of
the current assignment Γ to guide selection. Closure of substitution sets under
complementation streamlines the task a bit for the case of DPLL(SX). First
observe that Γ induces a default interpretation of the instances of every atom p

by taking:

[[p]] =
⋃

{Θ′ | pΘ′ ∈ Γ} and [[p]] = [[p]] (6)

Note that we can assume that Γ is consistent, so
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]]. Using

the current assignment for the positive literals and the complement thereof for
negative ones is an arbitrary choice in the context of DPLL(SX). One may fix
a default interpretation differently for each atom. But note that this particular
choice coincides with negation as failure for the case of Horn clauses.

We now say that `i is a candidate decision literal with instantiation Θ′
i if

there is a clause C ·Θ, such that C = (`1 ∨ . . . ∨ `k), 1 ≤ i ≤ k, and:

Θ′
i = (Θ 1 [[`1]] 1 . . . 1 [[`k]]) \

⋃

{Θ′ | `iΘ
′ ∈ Γ} 6= ∅ (7)

Our prototype uses a greedy approach for selecting decision literals and sub-
stitution sets: predicates with lower arity are preferred over predicates with
higher arities. In particular, propositional atoms are used first and they are as-
signed using standard SAT heuristics. Predicates with non-zero arity that are
not completely assigned are checked for condition (7) and we pick the first ap-
plicable candidate. The process either produces a decision literal, or determines
that the current set of clauses are satisfiable in the default interpretation, as the
following easy lemma summarizes:

Lemma 2. If for a state Γ ||F, (`1 ∨ . . . ∨ `k) ·Θ it is the case that neither Unit-
Propagate or Conflict are enabled and

Θ 1 [[`1]] 1 . . . 1 [[`k]] 6= ∅ (8)

then there is some i, such that 1 ≤ i ≤ k, that satisfies (7). Furthermore, the
identified substitution Θ′

i is disjoint from any Θ′, where `iΘ
′ ∈ Γ or `iΘ

′ ∈ Γ .
Conversely, if the current state is closed under propagation and conflict and there
is no clause that satisfies (8), then the default interpretation is a model for the
set of clauses F .

Proof. If the current state is closed under Conflict and UnitPropagate, then for
every clause (`1 ∨ . . . ∨ `k) · Θ: Θ 1 Θ′

1 1 . . . 1 Θ′
k = ∅ for Θ′

i =
⋃
{Θ′ | `iΘ′ ∈

Γ}. Suppose that (8) holds, then by
⋃
{Θ′ | pΘ′ ∈ Γ} ⊆ [[p]] and distributivity of

1 over ∪ there is some i where (7) holds. The converse direction is immediate.

3.3 Hybrid substitution sets

Substitution sets can be represented as BDDs. Here we briefly outline how to
do it. Let Σ be a signature. We encode each constant using log(|Σ|) bits. For
example, let Σ = {a, b, c, d}. Then we can encode those constants as follows: a =
00, b = 01, c = 10, d = 11. To represent a variable we also use log(|Σ|) bits. To
continue with the previous example, let V = {x, y} and let x = x0x1, y = y0y1.
For a given substitution set Θ we construct a BDD corresponding to Θ. We do
it as follows: nodes in BDD are labeled with variable bits. The edge labeled i

emanating from the node labeled x expresses that the bit x has value i. Each
path in the BDD encodes an assignment of variables. As an example, the path
x00x11y01y10 defines the assignment x 7→ b, y 7→ c. We use this encoding for the
representation of substitution sets. Every path ends in 0-sink or 1-sink. If the
path ends with the 1-sink, then the assignment that the path encodes belongs to
the substitution set. Figure 5 illustrates the described technique on two examples.

x0

x1

y0

y1

10

x0

x1

y0

10

Fig. 5. The left BDD represents the substitution set Θ1 = {[x 7→ a, y 7→ b]}, while the
right one represents Θ2 = {[x 7→ a, y 7→ a], [x 7→ a, y 7→ b]}. The dotted-line represents
an edge labeled with 0 and the continuous line corresponds to an edge labeled with 1.

Representing all substitution sets directly as BDDs is not practical. In par-
ticular, computing Θ 1 Θ′

1 1 . . . 1 Θ′
k by directly applying the definitions of 1

as conjunction and δ→ as BDD renaming does not work in practice for clauses
with several literals: simply building a BDD for Θ (where Θ is the substitution
set associated with a clause) can be prohibitively expensive. We here investi-
gate a representation of substitution sets called hybrid substitution sets that

admit pre-compiling and factoring several of the operations used during con-
straint propagation. The format is furthermore amenable to a two-literal watch
strategy for the propositional case.

Definition 1 (Hybrid substitution sets). A hybrid substitution set is a pair
(θ,Θ), where θ is a substitution, and Θ is a relation (substitution set). Further-
more, the domain of Θ consists of the variables where θ is idempotent. That is,
Dom(Θ) = {x ∈ Dom(θ) | θ(x) = x}. The substitution set associated with a
hybrid substitution is the set of instances: Θ 1 {θ}.

In one extreme, a standard substitution θ is equivalent to the hybrid substitu-
tion set (θ,>). We are using the terminology standard substitution for a mapping
from variables to constants or variables. Our prototype compiles clauses into such
substitution sets. In the other extreme, every substitution set Θ can be repre-
sented as (id, Θ), where id is the identity substitution over the domain of Θ. Our
prototype uses such substitution sets to constrain literals. We will henceforth
take the liberty to abuse notation and treat substitutions θ and substitution
sets Θ also as hybrid substitution sets.

Hybrid substitution sets are attractive because common operations are cheap
(linear time) when the substitutions are proper. They also enjoy closure prop-
erties under the main relational algebraic operations that are used in conflict
resolution.

Lemma 3. Standard substitutions are closed under the operations: 1, πx, π̂x,

σx=y, and δx→y, but not under union nor complementation.

For example, given the alphabet Σ = {a, b, c}, the standard substitution [x 7→ a]
has the complement {[x 7→ b], [x 7→ c]}, but this is a substitution set, and not a
standard substitution.

Even if the hybrid substitution sets are not proper, the complexity of the
common operations is reduced by using the substitution component when it
is not the identity. For example, representing each variable in a BDD requires
log(|Σ|) bits, and if the bits of two variables are spaced apart by k other bits,
the operation that restricts a BDD equating the two variables may cause a
size increase of up to 2k. The problem can be partially addressed using static
or dynamic variable reordering techniques, but variable orderings have to be
managed carefully when variables are shared among several substitution sets.

Constraint propagation Consider a clause C ·(θ,Θ) ∈ F and a substitution Θ′
i

(associated with literal `i(x) in Γ , where `i occurs C). The main operation during
constraint propagation is computing (θ,Θ) 1 δx→xi

Θ′
i, which is equivalent to

(θ,Θ 1 (Θ′
i o ri)) where ri = [x 7→ θ(δx→xi

x) | x ∈ x]. (9)

The equivalence suggests to pre-compute and store the substitution ri, for every
clause C and literal in C. Each renaming may be associated with several clauses;
and we can generalize the two-literal watch heuristic for a clause C by using
watch literals `i and `j from C as guards if the current assignments Θ′

i and Θ′
j

satisfy Θ′
i o ri = Θ′

j o rj = ∅.

Resolution In general, when taking the join of two hybrid substitution sets
we have the equivalence: (θ,Θ) 1 (θ′, Θ′) = (m,m(Θ) 1 m(Θ′)), where m =
mgu(θ, θ′), if the most general unifier exists, otherwise the join is (id,⊥). Res-
olution requires computing π̂x((θ,Θ) 1 (θ′, Θ′)) or in general π̂x(δy→z(θ,Θ) 1

δu→v(θ′, Θ′)) where x, y, z, u, v are suitable vectors of variables. Again, we can
compose the re-namings first with the substitutions, compute the most gen-
eral unifier m = mgu(δy→zθ, δu→vθ

′), in such a way that if m(y) = m(x), for
x ∈ x, y 6∈ x, then m(y) is a constant or maps to some variable also not in x;
and returning (m \ x, ∃x(m(Θ) ∧m(Θ′))). It is common for BDD packages to
supply a single operation for ∃x(ϕ ∧ ψ).

4 Implementation and evaluation

We implemented DPLL(SX) as a modification of the propositional SAT solver
used in the SMT solver Z3. The implementation associates with each clause a hy-
brid substitution set and pre-compiles the set of substitutions ri used in (9). This
allows the BDD package, we use BuDDy1, to cache results from repeated substi-
tutions of the same BDDs (the corresponding operation is called vec compose

in BuDDy). BDD caching was more generally useful in obliterating special pur-
pose memoization in the SAT solver. For instance, we attempted to memoize
the default interpretations of clauses as they could potentially be re-used after
back-tracking, but we found so far no benefits of this added memoization over
relying on the BDD cache. BuDDy supports finite domains directly making it
easier to map a problem with a set of constants Σ = c1, . . . , ck into a finite
domain of size 2dlog(k)e. Rounding the domain size up to the nearest power of
2 does not change satisfiability of the problem, but has a significant impact on
the performance of BDD operations. Unfortunately, we have not been able to
get dynamic variable re-ordering to work with finite domains in BuDDy, so all
our results are based on a fixed default variable order.

As expected, our prototype scales reasonably well on formula (4). It requires
n propagations to solve an instance where p has arity n. With n = 10 takes
0.01s., n = 20 takes 0.2s., and n = 200 takes 18s. (and caches 1.5M BDD nodes,
on a 32bit, 2GHz, 2GB, TS2500). Darwin [2] handles n = 10 in 0.4 seconds and
2049 propagations, while increasing n to 20 is already too overwhelming.

Example 6. Suppose p is an n-ary predicate, and that we have n unary predicates
a0, . . . , an−1, then consider the (non-Horn) formula:

∧0≤i<n∀x . [p(x)→ p(.., xi−1, 1, xi+1, ..)] (10)

∧ p(0, . . . , 0) ∧ ∧0≤i<n(ai(0) ∨ ai(1)) ∧ ∀x . [(∧iai(xi))→ ¬p(x)]

DPLL(SX) uses n simultaneous propagations to learn the assignment p(x)>.
In contrast, standard unit propagation requires 2n steps. Since no splitting was
required to learn this assignment, it can be used to eliminate p from conflict

1 http://buddy.wiki.sourceforge.net

clauses during lemma learning. The resulting conflict clauses during backjumping
are then ∀x .

∨

0≤i<m ¬ai(xi) for m = n − 1, . . . 1. Accordingly, the prototype
uses 0.06 seconds for n = 30, 0.9s for n = 80, and 26s. for n = 200, while even a
very good instantiation based prover Darwin requires O(2n−1) branches, which
is reflected in the timings: for n = 11, 12, 13, 14, 15, 16, take 1, 4, 16, 60, 180, 477
seconds respectively.

We also ran our prototype on the CASC-21 benchmarks from the EPS and
EPT divisions. In the EPT division fails to prove PUZ037-3.p, with a timeout
of 120 seconds, as the BDDs built during propagation blow upIt solves the other
49 problems, using less than 1 second for all but SYN439-1.p, which requires
894 conflicts and 9.8 seconds. In the EPS division our prototype solves 46 out
of 50 problems within the given 120s. timeout.

5 Conclusions

Related work DPLL(SX) is a so called instance-based method [1] and it shares
several features with instance-based implementations derived from DPLL, such
as the Model Evolution Calculus (ME) calculus [3], the iProver [9], and the ear-
lier work on a primal-dual approach for satisfiability of EPR [8]. These methods
are also decision procedures for EPR that go well beyond direct propositional
grounding (as do resolution methods [7]). Lemma learning inME [2] comprises of
two rules GRegress and a non-ground lifting Regress. In a somewhat rough anal-
ogy to Regress, the resolution rules used in DPLL(SX) uses the set Θr to guide
a more general lifting for the produced conflict clause. Connections between re-
lational technology and theorem proving were made in [17], as well as [16]. The
use of BDDs for compactly representing relations is wide-spread. Of high rele-
vance to DPLL(SX) is the system BDDBDDB, which is a Datalog engine based
on BDDs [18]. Semantics of negation in Datalog aside, DPLL(SX) essentially
reduces to BDDBDDB for Horn problems. Simultaneous unit propagation is
for instance implicit in the way clauses get compiled to predicate transformers,
but on the other hand, apparatus for handling non-Horn problems is obviously
absent from BDDBDDB.

Extensions A number of compelling extensions to DPLL(SX) remain to be
investigated. For example, we may merge two clauses C·Θ and C·Θ′ by taking the
union of the substitution sets. The clause C ·Θ′ could for instance be obtained by
resolving binary clauses, so this feature could simulate iterative squaring known
from symbolic model checking. Examples where iterative squaring pays of are
provided in [14]. We currently handle equality in our prototype by supplying
explicit equality axioms (reflexivity, symmetry, transitivity, and congruence) for
the binary equality relation ', but supporting equality as an intrinsic theory is
possible and the benefits would be interesting to study. We have also to work
out efficient ways of building in subsumption. Supporting other theories is also
possible by propagating all instances from substitution sets, but it would be

appealing to identify cases where an explicit enumeration of substitution sets can
be avoided. We used reduced ordered BDDs in our evaluation of the calculus,
but this is by no means the only possible representation. We may for instance
delay forming canonical decision diagrams until it is required for evaluating
(non-emptiness) queries (a technique used for Boolean Expression Diagrams). It
would also be illustrative to investigate how DPLL(SX) applies to finite model
finding and general first-order problems. Darwin(FM) already addressed using
EPR for finite model finding, and as GEO [5] exemplifies, one can extend finite
model finders to the general first-order setting.

Another avenue to pursue is relating our procedure with methods used for
QBF. While there is a more or less direct embedding of QBF into EPR (obtained
by Skolemization) the decision problem for QBF is only PSPACE complete, while
the procedure we outlined requires up to exponential space.
Thanks to the referees for their very detailed and constructive feedback on the
submitted version of this paper.

References

1. Peter Baumgartner. Logical engineering with instance-based methods. In Pfenning
[15], pages 404–409.

2. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning in the
model evolution calculus. In Miki Hermann and Andrei Voronkov, editors, LPAR,
volume 4246 of Lecture Notes in Computer Science, pages 572–586. Springer, 2006.

3. Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a first-
order DPLL method. Artif. Intell., 172(4-5):591–632, 2008.

4. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677–691, August 1986.

5. Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on
finite model search. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR,
volume 4130 of Lecture Notes in Computer Science, pages 303–317. Springer, 2006.

6. Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. Bounded Model Checking
with QBF. In Fahiem Bacchus and Toby Walsh, editors, SAT, volume 3569 of
Lecture Notes in Computer Science, pages 408–414. Springer, 2005.

7. Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet.
Resolution decision procedures. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 1791–1849. Elsevier and MIT
Press, 2001.

8. G. Gallo and G. Rago. The satisfiability problem for the Schönfinkel-Bernays
fragment: partial instantiation and hypergraph algorithms. Technical Report 4/94,
Dip. Informatica, Universit‘a di Pisa, 1994.

9. Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based
theorem proving. In LICS, pages 55–64. IEEE Computer Society, 2003.

10. Sava Krstic and Amit Goel. Architecting Solvers for SAT Modulo Theories: Nelson-
Oppen with DPLL. In Boris Konev and Frank Wolter, editors, FroCos, volume
4720 of Lecture Notes in Computer Science, pages 1–27. Springer, 2007.

11. Harry R. Lewis. Complexity results for classes of quantificational formulas. J.

Comput. Syst. Sci., 21(3):317–353, 1980.

12. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). J. ACM, 53(6):937–977, 2006.

13. Juan Antonio Navarro Pérez and Andrei Voronkov. Encodings of Bounded LTL
Model Checking in Effectively Propositional Logic. In Pfenning [15], pages 346–
361.

14. Juan Antonio Navarro Pérez and Andrei Voronkov. Proof systems for effectively
propositional logic. In Allesandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, IJCAR 2008, 2008.

15. Frank Pfenning, editor. Automated Deduction - CADE-21, 21st International Con-

ference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceed-

ings, volume 4603 of Lecture Notes in Computer Science. Springer, 2007.
16. Tanel Tammet and Vello Kadarpik. Combining an inference engine with database:

A rule server. In Michael Schroeder and Gerd Wagner, editors, RuleML, volume
2876 of Lecture Notes in Computer Science, pages 136–149. Springer, 2003.

17. Andrei Voronkov. Merging relational database technology with constraint tech-
nology. In Dines Bjørner, Manfred Broy, and Igor V. Pottosin, editors, Ershov

Memorial Conference, volume 1181 of Lecture Notes in Computer Science, pages
409–419. Springer, 1996.

18. John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using dat-
alog with binary decision diagrams for program analysis. In Kwangkeun Yi, ed-
itor, APLAS, volume 3780 of Lecture Notes in Computer Science, pages 97–118.
Springer, 2005.

