Learning to Search Web Pages with Query-Level Loss
Functions

Tao QIN?, Tie-Yan LIUY, Ming-Feng Tsai®, Xu-Dong ZHANG?, Hang Li*
Microsoft Research Asia, N0.49 Zhichun Road, Haidian District, Beijing 100080, P.R. China
2Dept. Electronic Engineering, Tsinghua University, Beijing, 100084, P.R. China
3Dept. Computer Science and Information Engineering, National Taiwan University, Taiwan 106, ROC
Ytyliu, hangli}@microsoft.com
Ztsintao@gmail.com, zhangxd@tsinghua.edu.cn
*mftsai@nlg.csie.ntu.edu.tw

Abstract

Many machine learning technologies such as Support Vector Machines, Boosting, and Neural Networks have been
applied to the ranking problem in information retrieval. However, since originally the methods were not developed for
this task, their loss functions do not directly link to the criteria used in the evaluation of ranking. Specifically, the loss
functions are defined on the level of documents or document pairs, in contrast to the fact that the evaluation criteria are
defined on the level of queries. Therefore, minimizing the loss functions does not necessarily imply enhancing ranking
performances. To solve this problem, we propose using query-level loss functions in learning of ranking functions. We
discuss the basic properties that a query-level loss function should have, and propose a query-level loss function based
on the cosine similarity between a ranking list and the corresponding ground truth. We further design a coordinate
descent algorithm, referred to as RankCosine, which utilizes the proposed loss function to create a generalized additive
ranking model. We also discuss whether the loss functions of existing ranking algorithms can be extended to query
level. Experimental results on the datasets of TREC web track, OSHUMED, and a commercial web search engine show
that with the use of the proposed query-level loss function we can significantly improve ranking accuracies.

Furthermore, we found that it is difficult to extend the document-level loss functions to query level loss functions.

Keywords

Information Retrieval, Learning to Rank, Query-level Loss Function, RankCosine

1. INTRODUCTION

Web search engines are changing people’s life, and continuously enhancing the accuracy (relevance) of search also
becomes an endless endeavor for IR (information retrieval) researchers. The key issue in web search is to construct a
ranking function such that given a query the ranking function can rank the retrieved web pages in a way that can
maximally satisfy users’ search needs. Traditional approaches (Baeza-Yates & Ribeiro-Neto, 1999) resort to empirical
methods in ranking model construction. These include content based methods such as BM25 (Robertson, 1997) and
link based methods such as PageRank (Page, 1998). As more and more information (e.g., query log data) useful for
search becomes available, the limitation of empirical tuning also becomes clearer, that is, it becomes very difficult, if
not impossible, to tune the models with hundreds or thousands of features. The approach of employing machine
learning techniques to address the problem naturally emerges as an effective solution and several methods have been
proposed along the direction. Typical methods include RankBoost (Freund et al., 2003), Ranking SVM (Herbrich et al.,
2000; Joachims, 2002), and RankNet (Burges et al., 2005), which are based on Boosting, Support Vector Machines and
Neural Networks respectively. From the machine learning perspective, ranking, in which given a query and its
associated documents we are to rank the documents as correctly as possible, also becomes a new branch of supervised

learning, in addition to classification, regression, and density estimation (Vapnik, 1998).

However, it should be noted that the aforementioned machine learning methods were not proposed directly for IR,
and therefore their loss functions are only associated to some extent with the evaluation criteria in IR, such as mean
average precision (MAP) (Baeza-Yates & Ribeiro-Neto, 1999), mean precision at n (P@n) (Baeza-Yates & Ribeiro-
Neto, 1999), and normalized discounted cumulative gain (NDCG) (Jarvelin & Kekalainen, 2000; Jarvelin &
Kekalainen, 2002). All the IR criteria are on the query level; specifically, given two queries, no matter how different
the numbers of documents retrieved for the two queries are, they contribute equally to the final performance evaluation.
In contrast, the loss functions of the learning algorithms are defined on the level of documents (Nallapati, 2004) or
document pairs (Burges et al., 2005; Freund et al., 2003; Herbrich et al., 2000; Joachims, 2002). Therefore, minimizing

the loss functions does not necessarily lead to enhancing the accuracy in terms of the evaluation measures.

In order to solve this problem, we propose employing query-level loss functions in learning of ranking functions for

IR.

In this paper, we first discuss what kind of properties a good query-level loss function should have. Then we
propose a query-level loss function, cosine loss, as an example, which is based on the cosine similarity between a
ranking list and the corresponding ground truth with respect to a given query. With the new loss function, we further

derive a learning algorithm, RankCosine, which learns a generalized additive model as ranking function.

Next, we discuss whether it is possible to extend the document or document-pair level loss functions of the existing

methods (Ranking SVM, RankBoost, and RankNet) to the query level.

We used two public datasets and one web search dataset to evaluate the effectiveness of our method. Experimental
results show that the proposed query-level loss function is very effective for information retrieval. Furthermore, we

found that it is in general difficult to extend the loss functions in the existing methods to the query level.

The rest of this paper is organized as follows. In Section 2, we give a brief review on related work. In Section 3, we
justify the necessity of using query-level loss functions for IR and discuss the properties that a good query-level loss
function should have. We then give an example of query-level loss function, cosine loss, and derive an efficient
algorithm to minimize the loss function in Section 4. Experimental results are reported in Section 5. In Section 6, we
discuss the possibility of extending the loss functions of the existing methods to the query level. Conclusions and future

work are given in Section 7.

2. RELATED WORK

In recent years many machine learning technologies (Burges, et al., 2005; Crammer & Singer, 2002; Dekel et al.,
2004; Freund et al., 2003; Herbrich et al., 2000; Joachims, 2002; Nallapati, 2004) were applied to the problem of
ranking for information retrieval. Some early work simply tackled this problem as a binary classification problem
(Nallapati, 2004), in which the assumption is made that a document is either relevant or irrelevant to the query , and the
goal of learning is to classify relevant documents from irrelevant documents. However, in real-world applications, the
degree of relevance of a document to a query can be discretized to multiple levels. For example, we can consider the
use of three categories: highly relevant, partially relevant, and highly irrelevant. And so, ranking is a problem different
from classification. To solve the problems, many other methods were proposed including Ranking SVM, RankBoost,

and RankNet.

Herbrich et al. (2000) and Joachims (2002) took an SVM approach to learn a ranking function and proposed the
Ranking SVM algorithm. The basic idea of Ranking SVM is the same as the conventional SVM: minimizing the sum
of empirical loss and regularizer. The difference is that the constraints in Ranking SVM are defined on partial order

relationships within document pairs. The optimization formulation of Ranking SVM is shown as follows":

minV(w,e) =10"w+CYjq €4

s.t.: V(di,dj) eEr: wp(q,d;) = axp(ql,dj) +1—¢;1
1)
v(di'dj) En : wp(qy,d;) = wQD(Qn: d}) +1—-¢)n

where C is a parameter which controls the trade-off between empirical loss and regularizer, ¢(q,d;) is the feature vector
calculated from document d; and query g, and the constraint we(q,d;)> we(q,d;) means that document d; is more
relevant than document d; with respect to query g. Theoretically, Ranking SVM is well-formed in the framework of
structural risk minimization, and empirically the effectiveness of Ranking SVM has been verified in various
experiments. Modifications of Ranking SVM for information retrieval (Cao et al., 2006; Qin et al., 2007) have also

been proposed.

Freund et al (2003) adopted the Boosting approach to ranking and proposed the RankBoost algorithm. Similarly to

Ranking SVM, RankBoost operates on document pairs. Suppose d; >, d; denotes that document d; should be ranked

higher than d; for query g. Consider the use of model f, where f(p(q,d;))>f(¢(q,d;)) means that the model asserts

d; >4 d;. Then the loss for a document pair in RankBoost is defined as

L(d; >, d) = e—(f(w(q.di))—f(w(q,dj))) @)

Consequently, the total loss on training data in RankBoost is defined as the sum of losses from all document pairs:
L=%q%d>,4 L(d; >4 d;) 3)

The advantages of RankBoost include that it is easy to implement the algorithm and it is possible to run the

algorithm in parallel. The effectiveness of RankBoost has also been verified.

* For details, please refer to Joachims (2002).

Neural networks have also been applied to ranking recently. Burges et al (2005) proposed the RankNet algorithm, in
which relative entropy is used as loss function and neural network is used as the underlying ranking function. Similarly
to Ranking SVM and RankBoost, training samples of RankNet are also document pairs. Let us denote the modeled
posterior P(d; >, d;) as Py, and let us denote F-jbe the true value of the posterior, and® 0q,i=f(¢(0,d:))-f(¢(q,d;)). Then

the loss for a document pair in RankNet is defined as follows.
Lyi; = L(0g:;) = —P;logP; — (1 — Pj)log(1 — P;;)
= —Pjog;; +log(1 + e%ii) 4)
Similarly, the total loss in RankNet is defined as the sum of all document pairs
L=%qYijLq, ®)

RankNet has been successfully applied to web search. Further improvements on RankNet can be found in

(Matveeva et al. 2006, Tsai et al. 2007, and Cao et al. 2007).

One major problem Ranking SVM, RankBoost, and RankNet have is that the loss functions used are not in

accordance with the IR evaluation measures. We will elaborate on this in more details in the next section.

3. QUERY-LEVEL LOSS FUNCTIONS FOR INFORMATION RETRIEVAL

Let us first use Table 1 to summarize the loss functions in the existing algorithms described in Section 2. In the
classification approach (Nallapati, 2004), the loss function is defined on the document level. The loss functions of
Ranking SVM, RankBoost, and RankNet are defined on the document-pair level. These loss functions can model the
partial order relationship within a pair of documents, but not the total order relationship between all the documents. In
this regard, these loss functions are not in accordance with the evaluation criteria for IR such as MAP and NDCG
which are defined on the query level. This motivates us to propose the use of query-level loss functions, as will be

discussed below.

Table 1 Loss functions for web search

Loss Function Algorithms

Document-level Binary classification (Nallapati, 2004)

2 The definitions of f and ¢ can be found in the conventional studies on Ranking SVM and RankBoost.

Pairwise Ranking SVM (Cao et al., 2006; Herbrich et al., 2000; Joachims,
2002)

RankBoost(Freund et al., 2003)

RankNet(Burges et al., 2005)

Query-level Our work

3.1 Why Is Query-Level Loss Function Needed

As mentioned above, the loss functions in Ranking SVM, RankBoost, and RankNet are not in accordance with the

evaluation criteria in IR. This may penalize the accuracies of the learning algorithms.

Let us consider a simple example. Suppose there are two queries ¢; and g, with 40 and 5 documents respectively. In
the extreme case of using complete partial-order document pairs for training, we can get 40>39/2=780 pairs for g; and
only 5>4/2=10 pairs for g,. If a learning algorithm can rank all document pairs correctly, then there will be no problem.
However, if this is not the case, for example, we can only rank 780 out of the 790 pairs correctly, then a problem will
arise. With the pairwise loss function, the losses will be the same if the learning algorithm correctly ranks all pairs of g,
but only 770 pairs of gy, or correctly ranks all pairs of q; but no pairs of g,. However, for these two cases, the
performances based on a query-level evaluation criterion will be completely different. As shown in Table 2, case 1 is
much better than case 2. This example indicates that using a document-level loss function is not suitable for IR.
Actually only when all the queries have the same number of document pairs for training, the document-level loss
function and the query-level loss can lead to the same result. However, this assumption does not hold in real-world

scenarios. Therefore it is better to define loss function on the query level when training ranking functions.

Table 2 Document-pair level loss v.s. query-level loss

Case 1 Case 2
correctly ranked 770 780
Document pairs of g wrongly ranked 10 0
Accuracy 98.72% 100%
correctly ranked 10 0
Document pairs of gy wrongly ranked 0 10
Accuracy 100% 0%
overall accuracy Document-pair level 98.73% 98.73%

query level 99.36% 50%

3.2 What Is a Good Loss Function
One may ask what properties a good query-level loss function should have. Here we list some properties, and

discuss the necessities.

We first give explanations on the notations. Suppose n(q) denote the number of documents for a query q to be
ranked. There are in total n(q)! possible ranking lists for query g in total. Suppose Q is the space of queries, and F is
the space of ranking functions. We denote the ground truth ranking list of query q as 7,(q), and the ranking list
generated by a ranking function f € F as 77 (q). Then a query level loss function is a function of two ranking lists to a

non-negative real number. That is,
L(zg(@) 77 (@)) 2 0
1) Insensitive to number of document pairs

This has been made clear through the example in Table 2. In this regard, the loss functions of Ranking SVM,

RankBoost and RankNet are not good loss functions.

This property can be expressed formally as:

Property 1:

Define Ly, = suprer qeq and n(q)=k L(rg (q),‘rf(q)) for a query level loss function L, for any k1 >

1,k2 > 1, if L1 > 0 and Ly, > 0, then there should exist a constant C, which makes the loss function L

satisfy

L L
—51-< C,and —53-< C

Ly, k1

2) Important to rank top results correctly

In contemporary IR, precision is often considered more important than recall, because information to be searched is

usually abundant . Many IR evaluation criteria embody the requirement of conducting accurate ranking on the top of

lists. For example, a ranking error at the 5" position is more harmful than a ranking error at the 95™ position. A good

loss function should also reflect this property.

We give a formal definition of this property:

Property 2:

Suppose the ground truth rank list of query q is

1,(q) = d® > ... > dfi_;j) > d®D > > dfi:;j) > > dr(:é‘;))}

where dl.(") means document d; is ranked at position j

7r1(q) and 7, (q) are two ranking lists generated by ranking functions f1 and f2

71(@) = (@dP > = d > o > di(i_)j e dl.(i;j) > d&g))}

712(q) = @ > . > di(i_;j) s gd® o s di(i+j) o s d(n(q))}

i+] n(q)

Then a good query level loss function L should satisfy

L(ty (@), 171(q)) = L(t4(q), 772(q))

The loss functions of Ranking SVM, RankBoost and RankNet have a similar tendency. The reason is that if a
definitely irrelevant document is ranked high, it will violate many constraints regarding to ranking of document pairs,

while if it is ranked at the middle of the list, the number of constraints violated will be reduced.
3) Upper bound

Query-level loss function should not be easily biased by difficult queries. For this purpose, a natural requirement is
that the loss for each query should have an upper bound. Otherwise, queries with extremely large losses will dominate

the training process.

The formal definition of this property is

Property 3:

Forany f € F,q € Q, there should exist a constant C, such that

0< L(Tg(q),rf(q)) <cC

We can see that the document-pair level loss functions of RankBoost, Ranking SVM, and RankNet do not have an
upper bound. For RankBoost, because the exponential loss is used, the value of the loss function can be extremely large.
We can make a similar conclusion for the hinge loss of Ranking SVM. For RankNet, the loss function does not have an

upper bound either, according to the analysis in (Burges et al. 2005).

4. RANKCOSINE

In this section, we propose a new loss function which retains all the aforementioned properties.
4.1 Cosine Loss
We first give explanations on the notations.

Suppose there are n(q) documents for query q, and the ground-truth ranking list for this query is g(q), where g(q) is
a n(q)-dimension vector, and the k-th element in this vector is the rating (level of relevance) of the k-th document, given

by humans. The absolute value of a score is not very important, it is really the difference between scores that matters.

Let us denote the output of a learning machine for query g as H(q). Similarly to g(g), H(q) is also an n(qg)-dimension

vector, and the k-th element in it is the output of the k-th document given by the learning machine.

Let ¢(x) and ¥ (x) be two order preserving mapping functions. That is, if x > y, then we have ¢(x) > ¢(y) and
PY(x) > Y(y). Y(x) is used to mapping the ground truth score to a real number, and ¢(x) is used to mapping ranking
score outputted by a ranking model to a real number. These two functions play a role of generalizing the feasibility of

Cosine loss. Note that we can have many choices for the mapping functions, such as linear function
¢(x) =ax+b,Va>0
exponential function

¢(x) = exp(ax),Va >0

or sigmoid function

$00) = exp(ax)

=————,Va>0.
1 + exp(ax) ¢

Next, we define the ranking loss for query g as follows

L(g(q), H(q)) = 2(1 — cos((g(q)), p(H(q))))

- 1(1 _ 9(9@) @))
2\ T @@ e@EH@)]

(6)

where ||.|| is L-2 norm of a vector. Since we use cosine similarity in (6), this loss function is referred to as cosine loss.

The goal of learning then turns out to minimize the total loss function over all training queries
L(H) = Y40 L(g(0), H(@)) (7)
where the loss function is defined in (6).

Now we show that the cosine loss has all the three properties defined above.

Firstly, since

T
o W@ @) _

~ v g@nlillgH@NIl —

we have 0 < L(g(p),H(q)) < 1, which is independent from the number of documents for query g. The upper bound

of cosine loss is

Ly = sup L(zg(@),tu(@)) =1
HEF,qeQ and n(q)=k

For any k1>0 and k2>0, we get

Lia _ Liz _

= 1
L, Ly

Therefore, Property 1 is satisfied with VC > 1 for the cosine loss.

Secondly, we can put more emphasis on training of top results by setting an appropriate ground truth label. For
example, we can set the scores of ground truth using an exponential function. Specifically we set the ground truth score

of top 1 document as e, and the ground truth score of the document at position i as e™.

Thirdly, the cosine loss function has an explicit lower bound and upper bound:

0<L(gp)H(@) <1 (8)

4.2 Learning Algorithm

In this subsection, we explain how to optimize the cosine loss function. Here we consider a simple case for the two

mapping functions:

Px) = x,¢(x) = x.

We choose to employ a generalized additive model as the final ranking function:

H(q) = ¥io ach(@) ©)

where oy is a combination coefficient, hy(q) is a weak learner which maps an input matrix (a row of this matrix is the
feature vector of a document) to an output vector (an element of this vector is the score of a document) and d is the

dimension of feature vector:
ht(q): Rn(q)Xd - Rn(q)

With the use of the additive model and the cosine loss function, we can derive the learning process as follows. For

simplicity, we assume the ground truth for each query has already been normalized:

_ 9@
9@ = {5
Since Y (x) = x, ¢p(x) = x, we can re-write (6) as
L(g@), H(g) = (1 - K EW) (10)

We employ a stage-wise greedy search strategy, used in the Boosting algorithms (Friedman et al., 1998), to train the

parameters in the ranking function. Let us denote Hy(q) as
Hy(q) = 21;21 ach.(q)

where hy(q) is a weak learner® at the t-th step. Then the total loss of Hy(q) over all queries becomes

vy 1(1_9@"Hq)
L(Hy) = Zqi(l IH (@)l) o

3 Here one can choose different ways to define the weak learners. For example, we can take the same approach as in RankBoost.

Given Hy.1(q) and hy(q), (11) can be re-written as

T(Hy—1(q)+ahy (q))
L(H — 1(1 _ 9(Q) (k—1) 12
(Hy) Zq z VH_1(@)+ayhy (@)T Hy—1(q)+ayhy (9)) (12)

Setting the derivative of L(Hy) with respect to o to zero, with some relaxation, we can get the optimal value of ¢ as

follows,
Zq Wi (@hi (@)
a = : 13
S WE (@ (e @gT @hi () —g (@R (i () (13)
where Wy (q) and W, (q) are two n(qg)-dimension weight vectors with the following definitions.
_ 9" @Hy -1 @Hi1 (@—Hf_1(@H-1(0)9(0)
W@ = Hi1 @)I372 (14)
Hy_1(q)
Woi(q) = —=— (15)

Hy—1 (@372
With (13) and (12), we can calculate the optimal weight oy, evaluate the cosine loss for each weak learner candidate,

and select the one with the smallest loss as the k-th weak learner. In this way, we can get a sequence of weak learners

and their combination coefficients, and thus the final ranking function.

We summarize the details in Fig. 1. Note that ey is an n(q) dimensional vector with all elements being 1. The time
complexity of RankCosine is O(m-k-T-nyax), Where m denotes number of training queries, k denotes number of weak
learner candidates, T denotes number of iterations, and nns denotes maximum number of documents per query.
RankBoost also adopts a Boosting algorithm for learning of ranking function and the time complexity of RankBoost is

O(m-k-T:n%nay). It is easy to see that the complexity of RankCosine is much lower than that of RankBoost.

Algorithm: RankCosine

Given: ground truth g(q) over Q, and weak learner candidates hi(q), i=1,2, ...

- e,
Initialize: W1 1(q) = W51(q) = ?i;))

Fort=1,2,...,T
(a) For each weak learner candidate h;(q)

(a.1) Compute optimal a; with (13)

(a.2) Compute the cosine loss &; with (12)
(b) Choose weak learner hy;(g) having minimal loss as hy(q)
(c) Choose coefficient a;;as o
(d) Update query weight vectors W1 x(q) and W;(q) with (14) and (15)

Output the final ranking function H(q) = >.1_; a, h.(q)

Fig. 1 The RankCosine Algorithm

5. EXPERIMENTS

To verify the benefit of using query-level loss functions, we conducted experiments on three data sets. We describe

the details in this section.

5.1 Settings

We adopted three widely used evaluation criteria in our experiments: mean precision at n (P@n) (Baeza-Yates &
Ribeiro-Neto, 1999), mean average precision (MAP) (Baeza-Yates & Ribeiro-Neto, 1999), and normalized discount
cumulative gain (NDCG) (Borlund, 2003; Burges et al., 2005; Jarvelin & Kekalainen, 2002; Sormunen, 2002). All of

them are widely used in IR.

In our experiments, we selected three machine learning algorithms for comparison: RankBoost, RankNet, and
Ranking SVM. For RankBoost, the weak learners had a binary output of 0 or 1. For RankNet, we used a linear neural
net and a two-layer net (Burges et al., 2005), which are referred to as Linear-RankNet and TwoLayer-RankNet
respectively. For Ranking SVM, we used the tool of SVMlight (Joachims, 1999; Joachims, 2002). For RankCosine,
each weaker learner was defined as a feature, taking continuous values from [0,1]. In order to make a comparison with

traditional IR approaches, we also chose BM25 (Robertson, 1997) as baseline.

5.2 Experiments with TREC Web Track Data

We tested the performance of RankCosine using the data set from the TREC web track (Voorhees & Harman, 2005).

5.2.1 Data set

The TREC Web Track (2003) data set contains web pages crawled from the .gov domain in early 2002. There are
totally 1,053,110 pages. The query set is from the topic distillation task (Craswell et al., 2003) and there are in total 50
queries. The ground truths of this task are provided by the TREC committee as binary judgments: relevant, or irrelevant.

The number of relevant pages per query ranges from 1 to 86.

We mentioned that usually the number of documents can vary largely according to queries and this phenomenon
can be verified with this dataset. For instance, from Figure 2, we can see that the number of relevant documents per
query has a non-uniform distribution: about two thirds queries have less than 10 relevant documents. If we use a
document-pair level loss function, two thirds of the queries will be penalized. In other words, two thirds of the queries

will not contribute to the learning process as much as they should.

Histogram

0 . 1 I |
10 20 30 More

relevant pages

Fig. 2 Histogram of number of relevant pages per query

We extracted 14 features from each document for the learning algorithms. These features include content based
features (BM25, MSRA1000), web structure based features (PageRank, HostRank), and their combinations (relevance
propagation features). Some of them are traditional features (BM25, PageRank) and some are new features (HostRank,

relevance propagation features). The details of the features are described in Table 3:

Table 3 Extracted features for TREC data

Name Number
BM25(Robertson, 1997) 1
MSRAZ1000 (Song et al., 2004) 1
PageRank (Page et al., 1998) 1

HostRank (Xue et al., 2005)
Sitemap based Score Propagation (Qin et al., 2005)

Sitemap based Term Propagation (Qin et al., 2005)

Hyperlink based Score Propagation (Qin et al., 2005)

W Wl N N -

Hyperlink based Term Propagation (Qin et al., 2005)

5.2.2 Results
We conducted 4-fold cross validations for the learning algorithms. We tuned the parameters of BM25 in one trial

and applied them to the other trials. The results reported in Figure 3 are those averaged over four trials.

From Figure 3(a), we can see that RankCosine outperforms all the other algorithms in terms of MAP, while the
other learning algorithms perform similarly. This may imply that the three state-of-the-art algorithms (Ranking SVM,
RankBoost, and RankNet) have similar learning abilities for information retrieval. Note all the learning algorithms
outperform BM25. The MAP value of BM25 is about 0.13, which is comparable to the value reported in (Qin et al.,
2005). RankBoost gets the lowest MAP value of 0.18 among all the learning algorithms, and this is still much higher
than BM25. RankCosine, which obtains an MAP value of 0.21, improves upon BM25 for about 70%. This suggests

that learning to rank is a promising approach for search, as it can leverage the information from various features.

From Figure 3(b), we can see that RankCosine outperforms all the other algorithms, from P@1 to P@7. From P@8
to P@10, RankCosine is still much better than most of the other algorithms, except TwoLayer-RankNet. An interesting
phenomenon is that RankCosine achieves more improvements at top when compared with the other algorithms, for
example, more than 4 precision point* improvement for P@1, about 2 precision point improvements for P@5. Since

correctly conducting ranking on the top is more important, this tendency is desirable anyway.

Figure 3(c) shows the result in terms of NDCG, and again RankCosine can work better than the other algorithms.

4 We define a precision point by the precision score of 0.01

0.25

RankCosine
2layer-RankNet
02 RakSVM | jncar RanknNet” RankBoost
015 BM25
o
<
=
0.1
0.05
0
(@)
035
03 r
—— RankSVM
025 —#-— Linear-RankNet
—A— 2layer-RankNet
—8— RankCosine
02 r —%— RankBoost
—o— BM25
0.15
0.1
1 2 3 4 5 6 7 8 9 10
Precision @
055 r
0.5
—— RankSVM
045 | —B-— Linear-RankNet
—A— 2layer-RankNet
—@— RankCosine
04 —*— RankBoost
—o— BM25
035 r
03 L L L L L L L L)
1 2 3 4 5 6 7 8 9 10
NDCG @

Fig. 3 Ranking accuracy on TREC web track data. (a) MAP, (b) P@n, (c) NDCG@n

(©)

5.3 Experiments with OHSUMED Data

We also conducted experiments with the OHSUMED data (Hersh et al., 1994), which has been used in many

experiments in IR (Cao et al., 2006; Herbrich et al., 2000; Robertson & Hull, 2000).

5.3.1 Data
OHSUMED is a data set of documents and queries on medicine, consisting of 348,566 references and 106 queries.
There are in total 16,140 query-document pairs upon which relevance judgments are made. Different from the TREC

data, this data set has three levels of relevance judgments: “definitely relevant”, “possibly relevant”,and “not relevant”.

We adopted 30 features, similar to those defined in (Nallapati, 2004). Table 4 shows some examples of the features.
They include tf (term frequency), idf (inverse document frequency), dl (document length), and their combinations.
BM25 score is another feature, as proposed in (Robertson, 1997). We took log on the feature values to re-scale them.
This does not change the tendencies of the results, according to our preliminary experiments. Stop words were removed
and stemming was conducted in indexing and retrieval. Note the features of this data set are different from those of the

TREC data, since OHSUMED is a text document collection without hyperlink.

When calculating MAP, we defined the category of “definitely relevant” as positive and the other two categories as

negative.

Table 4 Example features. c(w, d) represents frequency of word w in document d; C represents document collection;

n denotes number of terms in query; |.| denotes size of function; and idf(.) denotes inverse document frequency.

Features
T cona 08(c(qd) + 1) Sqicqnalog (1% +1)
Yg.eqnd log(c(fj]d)idf (@) + 1) Lgieqnd log(g(faﬁd) + 1)
Yq.eqnalog (C(f;]d)'c(tlfi!c) + 1) Yq.eqnalog(idf (q)
log(BM25 score)

5.3.2 Results

In this experiment, we also conducted 4-fold cross validation for learning algorithms, and tuned the parameters for
BMZ25 in one trial and applied them to the other trials. The results reported in Figure 4 are those averaged over four
trials. From the figure, we can see that RankCosine outperforms all the other algorithms, from NDCG@1 to
NDCG@10. On the other hand, the performances of the three learning methods (RankNet, Ranking SVM, and

RankBoost) are similar. Therefore, we can draw the same conclusion as in the previous experiment.

Comparing Fig 3(b) with 3(c), Fig 4(b) with 4(c), we may observe the differences between the corresponding
evaluation criteria. P@n only considers the number of relevant documents at top n positions, and ignores the
distribution of relevant documents. For example, the following two rank lists get the same P@4 value. Different from

P@n, NDCG@n is sensitive to the ranked positions of relevant documents. For example, the NDCG@4 value of list B

is much higher than that of list A.

A: {irrelevant, irrelevant, relevant, relevant, ...}

B: {relevant, relevant, irrelevant, irrelevant, ...}

0.315

0.31

0.305

0.3

0.295

MAP

0.29

0.285

0.28

0.275

0.27

0.265

RankSVM

|

RankCosine

Linear-RankNet
I 2layer-RankNet RankBoost

BM25

|

@)

045 r

04 r

—&— RankSVM
—8— Linear-RankNet
—A— 2layer-RankNet

035 r

—@— RankCosine
03 —%— RankBoost
—o— BM25
025 r
0.2
1 2 3 4 5 6 7 8 9 10
Precision @
0.66
0.64
0.62 —o— RankSVM
06 —B-— Linear-RankNet
’ —A— 2layer-RankNet
058 - —@— RankCosine
—%— RankBoost
056 - -o— BM25
054 | K@_’@_‘g/@\@/@/g/g/@
0.52
1 2 3 4 5 6 7 8 9 10
NDCG @
(©)

Fig. 4 Ranking accuracy on OHSUMED data. (a) MAP, (b) P@n, (c) NDCG@n

5.4 Experiments with Web Search Data

To verify the effectiveness of our algorithm, we also conducted experiments with a dataset from a commercial web

search engine.

54.1 Data
This dataset contains over 2000 queries, with human-labeled judgments. The queries were randomly sampled from
the query log of the search engine. Human labelers were asked to assign ratings (from 1 which means ‘irrelevant’ to 5

which means ‘definitely relevant’) to those top-ranked pages for each query. Each top-ranked page was rated by five

labelers, and the final rating was obtained by majority voting. If the voting failed, a meta labeler was asked to give a

final judgment. Not all the documents were labeled due to resource limitation.

We randomly divided the dataset into a subset for training and a subset for testing. There were more than 1,300
queries in the training set, and about 1000 queries in the test set. Figure 5 shows the distribution of document pairs in
the training set: about one third queries have less than 200 pairs; more than half of the queries have less than 400 pairs;
and the remaining queries have from 400 to over 1400 pairs. If we use document pair level loss function, the majority

of the queries with less pairs will be overwhelmed by the minority of the queries with more pairs.

The features are also from the search engine, which mainly consists of two types: query-dependent features and
query-independent features. Query-dependent features include term frequencies in anchor text, URL, title, and body
text, while query-independent features include page quality, number of hyperlinks and so on. In total, there are 334

features.

Histogram

450

400 —
g 350
‘5 300
&
2 250
5 200
i)
£ 150
E
Z 100

50

0 L L L L L L L .
200 400 600 800 1000 1200 1400 More
Number of Pairs

Fig. 5 Distribution of document pairs per query

Since there are five levels of judgment for this data set, only NDCG is suitable for the evaluation.

5.4.2 Result
The accuracies of the learning algorithms are shown in Fig. 6. From the figure, we can see that RankCosine

achieves the best result in terms of all NDCG scores, beating the other algorithms by 2~6 NDCG?® points (which

® Similarly, we define a NDCG point by the NDCG score of 0.01.

corresponds to about 4% to 13% relative improvements). TwolLayer-RankNet achieved the second best result, followed
by the group of Ranking SVM, RankBoost and linear-RankNet. The results indicate that RankCosine (and using query-

level loss function) is the approach one should take for search.

—— RankSVM
—#— Linear-RankNet
—A— 2layer-RankNet
—%— RankBoost
—@— RankCosine

Score

NDCG@

Fig. 6 Performance comparison on testing set

We conducted t-tests on the results of RankCosine and TwolLayer-RankNet. The p-values from NDCG@1 to
NDCG@10 with respect to the confidence level of 98% are shown in Table 5. As can be seen, all the p-values are small,

indicating that the improvements of RankCosine over TwolLayer-RankNet are statistically significant.

Table 5 P-value of t-tests

NDCG@n p-value
1 7.51E-03
2 6.16E-03
3 2.02E-04
4 6.58E-06
5 4.36E-06
6 2.04E-06
7 2.43E-06
8 1.14E-06
9 4.19E-06
10 8.27E-08

5.4.3 Robustness to query variance
As indicated above, the number of document pairs can vary largely according to queries. We investigated the impact
of this variance on the performances of ranking algorithms. For this purpose, we randomly sampled five datasets each

with 500 queries from the original training set, trained five ranking models, and then tested the ranking performances

on the test in the same way as before. Since the five training sets were generated by random sampling, we can observe
variances in number of documents across queries. Taking dataset 1 and 2 as example (see Fig. 7(a)), we can see that
distributions of pair numbers in the two datasets are very different. Therefore, the new training sets can be used to test

whether a ranking algorithm is robust to the variances of queries.

The performances of each algorithm with respect to the five training sets are shown in Fig. 7(b). As can be seen
from the figure, the results of RankBoost on the five datasets have a large variance. It obtains the highest accuracy of
0.576 on the third dataset and the lowest accuracy of 0.557 on the fifth. The results of Ranking SVM also change
dramatically over different training sets. The results indicate that both RankBoost and Ranking SVM are not very
robust to query variances. The results of Two-layer RankNet are more stable. In contrast, RankCosine achieves the
highest ranking accuracy of 0.597 and its performance varies only a little over different training sets. This shows that

query-level loss functions is more robust to query variances than document-pair level loss functions.

O Dataset] B Dataset2

— —) I3
=) 3 S G
=3 S S S

Number of Queries

%3
S

=3

200 400 600 800 1000 1200 1400 More
Number of Pairs
@)
O dataset] B dataset2 O dataset3 O dataset4 B dataset5
0.6
0.59
0.58
0.57
3
®
Q 0.56
Q
a
“ 055
0.54
0.53
0.52
RankBoost RankCosine RankSVM Linear-RankNet TwoLayer-
RankNet

(b)

Fig. 7 (a) Query variances in different training sets, (b) Comparison of NDCG @ 10 with respect to different

training sets

6. Query Normalization

As shown in the experimental section, the query-level loss function performs better than the document-pair level
loss functions. One may argue that employing a document-pair level loss function while conducting normalization on
queries is another possible approach to deal with the query variance problem. In this section, we discuss this problem in
details. Specifically, we introduce query normalization to loss functions of Ranking SVM, RankBoost, and RankNet,

and look at the corresponding ranking performances.

For Ranking SVM, we can modify its loss function (Eqg. (1)) as below,

RankSVM : V(w, &) = 10" w + Cqu#quZi,j Eijq (16)

where #q denotes number of document pairs for query g. Similarly, we can modify the loss function of RankBoost as
follows

1
RankBoost : L = Zq|#_q|2di>qdj L(dl- >4 d]-) (17)

and modify the loss function of RankNet (Eqg. (5)) as follows:

1
RankNet : L =Yg =i Lo (18)

With the above modifications, we can still find suitable optimization procedures for performing the learning tasks.

We have conducted experiments on the methods and Fig. 8 shows the results using the same setting as above.

[dataset] @ dataset2 O dataset3 O datasetd B datasets |

0.59

0.58

0.57

NDCG@10
o
R

0.55

0.54

0.53

| . | e | | .,

052

RankBoost RankBoost-Query RankSVM RankSVM -Query RankCosine

@)

O dataset] B dataset2 O dataset3 O dataset4 W datasetS

0.6

0.59

0.58

0.57

NDCG@10
P
S

0.55

0.54

0.53

0.52

Linear-RankNet ~ Linear-RankNet- TwoLayer- TwoLayer- RankCosine
Query RankNet RankNet-Query

Fig. 8 Comparison of ranking algorithms with query and pair level loss functions
From Fig. 8, we find that

(1) When compared with their original algorithms, normalized RankBoost and normalized Linear-RankNet obtain
higher performance on some datasets while lower performance on the other datasets. Therefore, it is difficult to judge
whether the two normalized algorithms are better or worse. However, we can at least say that normalized RankBoost

and normalized Linear-RankNet are sensitive to query variance.

(2) The results of normalized TwolLayer-RankNet are worse than those of the original TwoLayer-RankNet for all

the five datasets, indicating that the normalized version of TwoLayer-RankNet is not successful.

(3) Query-level Ranking SVM achieves better results on all the five datasets than its original version. This is
consistent with the results obtained in (Cao et al. 2006), in which they show that modifying Ranking SVM with query
normalization can improve ranking performances. However, in our experiment, the performance of normalized

Ranking SVM is still not as good as that of RankCosine.

From the above experiments, we can come to the conclusion that it is non-trivial how to improve the existing
ranking algorithms by query normalization. Note that both RankCosine and RankBoost employ Boosting techniques in

learning, therefore the difference between the two should be mainly from the loss functions.

7. CONCLUSIONS AND FUTURE WORK
Applying machine learning techniques to ranking in information retrieval has become an important research
problem. In this paper, we have investigated how to improve ranking accuracies of machine learning methods by

employing suitable loss functions. Our contributions include:

1) We have pointed out that query-level loss functions are more suitable for information retrieval, when
compared with document (pair) level loss functions, and have discussed the necessary properties of a good query-level
loss function;

2) We have defined the cosine loss function as an example of query-level loss functions, and derived the
RankCosine algorithm to minimize the loss function in creation of a generalized additive model;

3) Through empirical study, we have showed that it is difficult to extend the loss functions of the existing

methods (e.g. Ranking SVM, RankBoost, RankNet) to the query level.

Experimental results on the datasets of TREC web track, OSHUMED, and a commercial web search engine all

show that our proposed query-level loss function can significantly improve the search accuracy.

Future work includes investigation on the relationship between query level loss functions and information retrieval
evaluation criteria, further analysis on the properties of a good query level loss function, and study on the

generalization ability of the RankCosine algorithm.

ACKNOWLEDGEMENT

We would like to thank Xiu-Bo Geng for her discussion and comments for this work.

REFERENCES

Baeza-Yates, R., Ribeiro-Neto, B. (1999). Modern Information Retrieval, Addison Wesley..

Borlund, P. (2003). The Concept of Relevance in IR, Journal of the American Society for Information Science and

Technology 54(10): 913-925

Burges, C.J.C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G. (2005). Learning to Rank

using Gradient Descent, 22nd International Conference on Machine Learning, Bonn.

Cao, Y., Xu, J., Liu, T.Y,, Li, H., Huang, Y., Hon, H.W. (2006). Adapting ranking SVM to document retrieval. In
SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in

information retrieval, Seattle, Washington, USA.

Cao, Z., Qin, T., Liu, T. =Y., Tsai, M.-F., & Li, H. (2007). Learning to Rank: From Pairwise Approach to Listwise

Approach, In Proc. Of the 17th Annual International Conference on Machine Learning (ICML2007), Oregon, US, 2007.
Crammer, K., & Singer, Y. (2002). Pranking with ranking. NIPS 14.

Craswell, N., Hawking, D., Wilkinson, R., and Wu, M. (2003). Overview of the TREC 2003 Web Track. In NIST

Special Publication 500-255: The Twelfth Text REtrieval Conference (TREC 2003), pages 78-92, 2003.
Dekel, O., Manning, C., & Singer, Y. (2004). Loglinear models for label-ranking. NIPS 16.

Freund, Y., lyer, R., Schapire, R., & Singer, Y. (2003). An efficient boosting algorithm for combining preferences.

Journal of Machine Learning Research, 2003 (4).

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. Dept. of

Statistics, Stanford University Technical Report.

Hersh, W. R., Buckley, C., Leone, T. J., and Hickam, D. H. (1994). OHSUMED: An interactive retrieval evaluation

and new large test collection for research. Proceedings of the 17th Annual ACM SIGIR Conference, pages 192-201.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. Advances in

Large Margin Classiers, MIT Press, Pages: 115-132.

Jarvelin, K., & Kekalainen, J. (2000). IR evaluation methods for retrieving highly relevant documents. Proc. 23rd ACM

SIGIR.

Jarvelin, K., & Kekalainen, J. (2002). Cumulated Gain-Based Evaluation of IR Techniques, ACM Transactions on

Information Systems.

Joachims, T. (1999). Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector

Learning, B. Schdkopf and C. Burges and A. Smola (ed.), MIT-Press.

Joachims, T. (2002). Optimizing Search Engines Using Clickthrough Data, Proceedings of the ACM Conference on

Knowledge Discovery and Data Mining (KDD), ACM.

Matveeva, |., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple
nested ranker. Proceeings of SIGIR 2006 (pp. 437-444).

Nallapati, R. (2004). Discriminative models for information retrieval. In SIGIR 2004, Pages: 64-71.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation Ranking: Bringing Order to the Web,

Technical report, Stanford University, Stanford, CA.

Qin, T., Liu, T.Y., Zhang, X.D., Chen, Z., and Ma, W.Y. (2005). A study of relevance propagation for web search. In
SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 408--415, New York, NY, USA. ACM Press.

Qin, T., Liu, T.-Y., Lai, W., Zhang, X.-D., Wang, D.-S., & Li, H. (2007). Ranking with multiple hyperplanes.
Proceeings of SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval.

Robertson, S. E. (1997). Overview of the okapi projects, Journal of Documentation, Vol. 53, No. 1, pp. 3-7.

Robertson, S. and Hull, D. A. (2000). The TREC-9 Filtering Track Final Report. Proceedings of the 9th Text Retrieval
Conference, pages 25-40.
Song, R., Wen, J. R., Shi, S. M., Xin, G. M., Liu, T. Y., Qin, T., Zheng, X., Zhang, J. Y., Xue, G. R., and Ma, W. Y.

(2004). Microsoft Research Asia at Web Track and Terabyte Track of TREC 2004, in the 13th TREC

Sormunen, E. (2002). Liberal relevance criteria of TREC—Counting on negligible documents? In Proceedings of the

25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

Tsai, M.-F., Liu, T.-Y., Qin, T., Chen, H.-H., & Ma, W.-Y. (2007). Frank: A ranking method with fidelity loss.
Proceeings of SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval.
Vapnik, V. (1998). Statistical learning theory. Wiley.

Voorhees, E.M. and Harman, D.K. (2005). TREC: Experiment and Evaluation in Information Retrieval. MIT Press.

Xue, G.R., Yang, Q., Zeng, H.J., Yu, Y., and Chen, Z. (2005). Exploiting the hierarchical structure for link analysis. In
Proc. of the 28th annual international ACM SIGIR conference on Research and development in information retrieval

Salvador, Brazil.

