Linear Functional Fixed-points

Nikolaj Bjgrner Joe Hendrix
Microsoft Research Microsoft Corporation
nbjorner@microsoft.com johendri@microsoft.com

January 30, 2009

Technical Report
MSR-TR-2009-8

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Linear Functional Fixed-points

Nikolaj Bjgrner Joe Hendrix
Microsoft Research Microsoft Corporation
nbjorner@microsoft.com johendri@microsoft.com

January 30, 2009

Abstract

We introduce a logic of functional fixed-points. It is suikalfor analyzing heap-manipulating
programs and can encode several logics used for prografita&adn with different ways of express-
ing reachability. While full fixed-point logic remains unzdable, several subsets admit decision
procedures. In particular, for the logic of linear funct@bfixed-points, we develop an abstraction
refinement integration of the SMT solver Z3 and a satisfigbilhecker for propositional linear-time
temporal logic. The integration refines the temporal abtitya by generating safety formulas until
the temporal abstraction is unsatisfiable or a model forgtse a model for the functional fixed-point
formula.

1 Introduction

Software often manipulates heap allocated data structir@site but potentially unbounded size, such
as linked lists, doubly linked lists, and trees. To reasasuébuch structures, invariants about teach-
able heap contents can be necessary. Logic capable of exprésgingsting heap properties often re-
quire some form of transitive closure, fixed-points, an@®t-order quantification. As is well known,
complete first-order axiomatization of transitive closigémpossible([[18], though approximations that
suffice for ground validity of some fragments have been fdatea. The approximations work directly
with theories supported in the same (first-order) setting ntust rely on the capabilities of the generic
first-order engine. A different approach is to directly usafirst order logics and rely on specialized
decision procedures for these logics. Such specializetidacprocedures do not suffice in practice
when the invariants also require reasoning in the theofiasithmetic and arrays.

1.1 Contributions

This paper analyzes several different fixed-point logigfnants to identify expressive logics that still
have good decidability and complexity results. On the jcatside, we outline an integration procedure
between propositional temporal logic checking and theotyess.

e We formulate a logic called thEquational Linear Functional Fixed Point Logior FFP(E) for
short). FFP(E) encodes several fixed point logics presented in recenatitex on program verifi-
cation.

e We establish thaEFP(E) is PSPACEcomplete modulo background theories that areSRACEby
using a reduction fronfrFP(E) into propositional linear-time temporal logic. We showtth&o
different extensions amEXPTIME-hard and undecidable respectively.

e We provide a decision procedure f6FP(E) that combines the SMT solver Z3 with a (symbolic)
satisfiability checking of propositional linear time temngloformulas. The proposed integration
generalizes the standard abstraction/refinement frankavged in SMT solvers. Instead of relying
on refining a propositional model, we here refine a proposlitinear time model. An early stage
prototype of the procedure is available.

FFP

The resulting approach can therefore be viewed as a marbietgesen the flexible axiomatization
approach to fixed-points and specialized decision proesduOur abstraction/refinement framework
admits all axiomatizations allowed by other approachesfusthermore provides a decision procedure
for formulas that fall intd=FP(E).

Examplel.1 (A simple example)We illustrate the use of reachability predicates using gkraxample

also used in[[25]. It exercises transitivity. We uge : [a ER bl.o(x) to say that therg™(a) ~ b for
somen, and for everyk < n itis the case thap(f*(a)).
procedure INIT-CYCLIC(head
d(head) := true; curr := f(head);

invariant d(head) AV : [f(head) ER curr].d(z)
while curr # head do

d(curr) := true

curr := f(curr)

ensured(head) A Va : [f(head) L head).d(z)
The invariant and post-condition can be established byyieg properties:

Va : [f(head) 4, curr|.d(x) Ad(curr) — Vx: [f(head) 4, f(eurr)].d(x)
head ~ curr AVz : [f(head) EN curr|.d(x) — Va :[f(head) EN head].d(x)

While these particular properties hardly require the fuigimh of transitive closure reasoning, we are
here interested in characterizing the limits of what candbeesl in a sufficiently general language with
fixed-points.

1.2 Related work

The literature on verification of heap manipulating progsasquite extensive. Greg Nelson formulated
a first-order axiomatization of a ternary reachability pratke in [23]. The paper proposes 8 axioms for
the ternary predicate. The axioms are sufficient for a vatifio example, but general completeness
with respect to ground validity was left as an open questiime work has inspired a number of more
recent extensions and variants. Ranise and Zarba [27]figantNP-complete fragment of acyclic singly
linked lists. McPeak and Necula [21] provide a decision pchre for heap properties that do not use
pointer disequalities. It is designed focal heap properties; these are properties that use only a bdunde
fragment of the heap around distinguished elements. Bimgtiakamaric and Hu_[4, 25] develop a
calculus and a set of inference rules for the binary reathabredicate and a ternary predicate that
expresses reachability subject to visiting an auxiliarganoTheir logic is closed under taking weakest
pre-conditions, and the rules are amenable to integratitimn SMT solvers [[26], but completeness of
the inference rules was left as an open problem. Lahiri amde@d[15] use two auxiliary predicates to
obtain a similar effect for well-founded lists. Their apach is extended with a set of practical axioms
and proof rules for the case where linked data-structuresposter-arithmetic[]6]. Later Lahiri and
Qadeer[[16] provide a complete set of axioms for a quite gerieeory of linked list verification. They
rely on the pattern-based quantifier instantiation eng®iesplify [12] and Z3 [10] for implementing
their procedure as a set of inference rules and axioms. Theseeof inference rules also shows better
performance than the ones proposed in earlier work. Sevktiaé above extensions simulate subsets of
the theory of linked data-structures using (incompleta}-farder axioms and inference rules. They rely
on support from first-order theorem proving heuristics fosw@ing that their encodings also provide a
decision procedure. The approach is of course quite extensis one can throw in useful axioms at will

2

FFP

without requiring an encoding into a fixed limited formalis@n the other hand, the approach is only as
viable as the strength of the quantifier instantiation rstigs.

A different line of work in the context of reasoning aboutkki data-structures takes as starting
point decidable logics that can be mapped into automateebdscision procedures. The Pointer As-
serting Logic Engine, PALE [22], can reason about heapzatld data structures using weak monadic
second-order logic of graph types. The tool reduces this lmgweak monadic second-order logic over
trees and uses the MONA theorem provVer [14] to verify coness$ properties. The logic of reachable
patterns[[35] is a decidable and quite expressive logicdbatbines local reasoning with an extended
form of regular expressions. Decidability is also showndyucing the logic to equisatisfiable formulas
in monadic second-order logic over ranked trees. Both addHegics are quite expressive, but their
decision procedure have the high complexity associatddminadic second-order logic. The boundary
between decidable and undecidable versions of first-omtgcd with transitive closure is investigated
in [13].

A wide body of the related work combines predicate abstwagctiith the verification of heap proper-
ties, This includes work around the TVLA tool in [17], whiclhgposes a set of axioms for acyclic lists,
and a method based on predicate abstraction for singlyditikes [19]. Balaban et all [2] use a small
model theorem to derive a decision procedure.

Finally, the correctness of many heap-manipulating allgor$ depends on the fact that different
pointers refer to distinct memory structures. Separatigicl [28] extends Hoare logic with an addi-
tional conjunction operator where A x B indicates that propertied andB hold in separate sections of
the heap. Separation logic has been used in many differéoitnated reasoning techniques, including
inductive theorem proving (e.d. [32]) and predicate alstiva (e.g.[34]). Recent work by Sins [29] ex-
tends separation logic with fixed-point operators to expresursive properties, albeit without presenting
decidability results.

1.3 Paper structure

The rest of this paper is structured as follows. In Sedfiowe formally define functional fixed-point
logic (FFP), and briefly review results from temporal logic used latethe paper. In Sectidd 3, we
study different fragments d¥FP to obtain decidability and complexity results. Our mainusadn this
section is to define linear functional fixed-point logic wéuality, FFP(E). We also show thaEFP(E)

is closed under updates, subsumes several different lfagicsasoning about heap invariants, and has a
PSPACEcomplete satisfiability problem. In Sectibh 4, we descobe reference satisfiability solver for
FFP(E) which works by integrating the SMT-based theorem prover 2B & decision procedure for
propositional LTL. Finally, in Sectiohl5, we summarize oasults and discuss ways our results can be
extended in future research.

2 Preliminaries

Functional Fixed-point LogicKFP) extends quantifier-free first-order logic with the fixedfimpera-
tors 1 andv to define least and greatest fixed-points of monadic preslicat To be more specific, we
let = range over bound variableX, ranges over bound monadic predicatésndg range over distin-
guished unary uninterpreted function symbalg, ¢, ¢’ range over constant termB,ranges over unary
predicates,R over predicates containing neither bound variables, r@fuihction symbolsf, g. Then

3

FFP

the set of formulasg in FFP are given by the rules:

t = ft)[g@)|clz
atom == t~t|P(t) |R
o, n= X(t) | atom | matom | oV o | oA
| (X Az o[X)) | (v X . Az [X])(D)

The semantics dfFP follows the standard rules for evaluating fixed-point esgrens. For example,
a modelM over a domainA satisfies(uX Az . ¢[X])(t)if M(t) e ({BC A| M,[X — B]
Vx . o[X] — X(z)}. FFP allows multiple different unary function symbols to be apglto the same
bound variables, and allows multiple bound second-ordedipates to appear in the same scope. We
will here restrict ourselves to a more modest fragment mespby Linear Time Temporal Logic (LTL).
In this fragment each fixed point expression has the form:

uX A x. (B V [ANX(f(x))]), vXXx.(B V [AANX(f(z))])

whereA and B are formulas that do not contai, but may contain:. The greatest fixed-point operator
is expressible using the least fixed-point operator by ugiagle-Morgan dual formulation:

vX X x. (B V [ANX(f(2))]) = —-puXAx.(=B A [FAV X(f(x))])
= —uX x.((-BA-A)V[-BAX(f(x))])

Convention 2.1. The following shorthands will be used throughout the paper:

(AU B = WXAwBV[AAX(F@)] ()
(AW B (@) = ~(-BUsm=AR-B)(
(<>f,a: B) (C) = (true u frx B) (C)
atlin = (Ofzxb)(a)
@OreB) (@) = =((Cra—B)(c))
Vm:[aib].A = AUpgx>Db)(a)
gw:[aib].A = (AWgjsr2>D)(a)

Convention 2.2. The set of subformulas of a formulais denotedSF (). The set of atomic subformulas
of ¢ is denotedASF ().

We will later establish that formulas in this more modesgim&nt are in general undecidable, and
so we will study various subsets of it. Of particular utilisyrestricting the number of free variables that
a formula may refer to. We say that a formuytas linear if each subformula) € SF(p) refers to at
most one free variable. As an example, the formula statiag-tteaches an infinite number of elements,
(Ot @fryy 2 2)(f(2))) (c), is not a linear formula, becauget = has two free variables.

The form(A U ¢, B) (a) restricts somewhat, but not completely, the types of fixemkpgformulas
that can be created. Distributivity of conjunction and uligtion can be used to combine multiple oc-
currences ofX' (f(x)) into a single one, and separate out disjuncts not contaiRirigto a formulaB.
The format does restrict handling fixed-point expressioith subterms of the fornX (f fz). This is
not always an essential restriction on the properties taatbe formulated usingFP. The fragment
is for instance closed under the weakest precondition gaéglitransformer (see Proposition]3.6). Our
restriction does in principle limit the expressivenesstanimre than really required for our results. We
elaborate omsing extended temporal logic the conclusion.

4

FFP

2.1 Normal forms

We first discuss how formulas can be normalized to simplifgrlaxposition. We rename bound variables
so that variables occurring in different contexts haveed#ht names while giving the same name to vari-
ables in nested quantifiers when possible. Furthermoreaoin top-level application dfp U/ ;.) (t)

we can introduce a fresh variabtethat has the same name as the bound variapleplacet by the
variable, and add the constraint that- ¢t. Thus, for instance

[rEalfe Pa)A(y#bUpy—Py)) (@)] () A(Ogez =) ()

is converted into

Ealds, Ple) N(x2bUsp—-P(x))(x)] () No~c
AN(Ogyy=b)(y) Ny =c

This transformation allows us to distinguish variablesurdag in unrelated fixed-point expressions
while identifying variables occurring in related lineardtkpoint expressions.

We will from hereon refer to the variablesy, = asflexible variables Atomic formulas containing
unbound flexible variables are call@dxible otherwise, they are callatyid atoms. For example ~ ¢
andf f(x) ~ x are flexible atoms, while ~ f(¢’) and P(f(c)) are rigid atomic formulas.

It will be convenient to use a shorthand for distributing adiion applicationf over all free occur-
rences of flexible variables in a formula. We therefore usentbtation(sx as shorthand for the formula,
where every free occurrence of a flexible variablen v/ is replaced byf(z). In more detail, we can
define(» recursively on the structure of formulas and terms:

@ VYY) = Qbvey
QW AY) = @AY
@O =
QWU)t) = (VU))@))
@P(t) = PG
At =t) = (@) = (@)
@f(t) = f(@)
@r = f(x)
e = ¢

2.2 Propositional Linear-time Temporal Logic

Our results are mainly based on a reductio-BP fragments into propositional linear-time temporal
logic (LTL); and we rely on decision procedures for LTL. Wdlwherefore recall some basic definitions
of LTL. A minimalistic formulation of future) LTL takes the form:

p =

Pl-ploAploVe|Opl|(pUp)

We usep to range over propositional atoms and the oper@ias the next-state operator, whil is
the temporalntil connective. Just as in convention]2.1, other connectivedealefined using/ . For

example(>) = trueld ¢, Oy = O, andyp = ¢ = Oy — ¥, (Y < ¢') = 0@ <).

5

FFP

FFP(PL) | psPACEcomplete| Sectior 3.11
FFP(E) PSPACEcomplete| Sectior 3.2
W2FFP(E) | PsPACEcomplete| Sectior 3.B
FFP(NL) | NEXPTIME hard | Sectior 3.4
2FFP(E) | Undecidable Sectior 3.b

Table 1:FFP variants and their complexity
2FEP(E)
FFP(NL) W2FFP(E)
FFP(E)

FFP(PL)

Figure 1: Relative expressiveness of EeP fragments

Propositional models for linear-time temporal formulagisiet of an infinite sequence of states:
S0, S1, 82, - - -, Such that each state supplies an assignment to the propositional atoms. Th&aetion
relation is extended to formulas in LTL for a modelnd position:

oiE=P iff Pes;
oiE=yY Ay iff o,i = ando,i =
o=y vy iff oikEYorei =y
o, i = iff o0 Y
oil=Ov iff oyit 1=
oi =yUY iff forsomej >i, 0,5 =, andforalli <k<j: okE1y

Finally, a formulay holds in modeb, if it holds at position 0. That is, 0 = ¢.

3 Complexity results for FFP logics

We will here introduce various variants BFP and summarize complexity results for these. Table 1
summarizes the variants BFP that we will be examining and associated complexity results

Figurell summarizes how the examined fragments relate ls@éer in terms of generalitFFP(E)
is the fragment of lineaFFP allowing at most two functiong andg to be nested inside fixed-point op-
erators.FFP(NL) does not allow nesting of functions inside fixpoint operattut does allow non-linear
subformulas. We will show that satisfiability 2FFP(E) is undecidable while satisfiability &fFP(NL)
is NEXPTIME-hard.FFP(E) is the linear fragment dfFFP(NL), andFFP(PL) is the purely propositional
fragment ofFFP(E).

FFP

3.1 FFP(PL)

In this section, we study the propositional fragmenfEBP, calledFFP(PL). It corresponds very closely
to linear time temporal logic, the only real difference iattthe temporal sub-formulas refer to an explicit
anchor, as a constant.

Formulas inFFP(PL) have the form:

¢ u= PH)IRIoNe|-p| (pUsa?) ()
tou= M=)] f"(c)

wherez is a flexible variable,f™(z) is the n-time application off to x, ¢ is an arbitraryrigid term
(without variables) P is a unary predicate, and is a relation using only rigid terms.

FFP(PL) is formulated to be very similar to propositional LTL. It isdeed very straight-forward to
translate formulas from LTL t&-FP(PL) and to translate formulas frofFP(PL) into equisatisfiable
formulas in LTL. The correspondence can be used to establish

Theorem 3.1. FFP(PL) is PSPACECOMplete.

Proof. In one direction, every propositional LTL formula can belaged by a formula ir-FP(PL) by
using the transformation®™ P — P(f™(x)), andO™ (¢ U) — (@' U . ') (f"(z)), wherey' is the
translation ofp and+)’ is the translation of).

In the other direction, we reduce a grouRBP(PL) formula ¢ to an equisatisfiable LTL formula
o by eliminating the constants. This requires moving coristantside of fixed-point expressions,
and decorating predicaté3with a constant determined by the context th& appears.

Our LTL formula is over predicates from two types of sourcék} For each ground subformula
p(f"(c)) of the form (¢ U ;. ") (f"(c)) or P(f"(c)) appearing inside a fixed-point operator, we in-
troduce a fresh rigid predicate, /- (.)). We call these ground subformulaen subformulasdenoted
AlienSF(y). We let R denote the set of fresh rigid predicates, and{et denote the formula obtained
by replacing ground predicates with the correspondingipagets inR. (2) For each uninterpreted pred-
icate P and constant, we introduce the LTL predicatE. which is used to the context whefeappears.
The set of decorated predicates is denote®by).

To convert a formula) appearing beneath a fixed-point formalay, ¢/ ¢, ¢2) (f"c), we define the
mappingLTL, as follows.

LTLo(4) A /) = LTLo (1) A LTL, ()
LTL.(~ zm—ﬁLTL ()
LTL.((¢ U 1.0 0) (f"()) <LTL<) ULTL(1))
) =
)

LTL.(P(f" (=
LTLc(p(f™(d))) = 7p(sn ()

This function uses the rigid predicatésto replace ground predicates appearing inside the forrmda a
decorates each uninterpreted predicate with the constant
To convert a ground formula, we define the formul&TL(y) structurally,

LTL(¢ A%') = LTL(s) A LTL(3) LTL(—%) = =LTL(¢))
LTL((¢ U 2 9) (f"(€))) = O"(LTL(p) ULTLe(4)) LTL(P(f"(c))) = O"Fe

TheFFP(PL) formulay is mapped to the LTL formula

CrLTL = LTL /\ D T < OT) /\ To(fn(c)) <~ LTL(p(fn(C)))
reR p(f™(c))eAlienSF (p)

7

FFP

EachFFP model M can be mapped to an LTL sequencg : sg, s1, S2, ... over rigid predicates? and
flexible predicates’(C') such that:

Pe€si <= M P(f'(c)) To(fe) € si == ME p(f77(c))

It follows that M modelsy iff o, modelsy 77, by a structural induction on subformulasof
Conversely, each LTL sequenee: sg, s1, S92, . . . satisfyingerr;, can be mapped toBFP model

M over the set of term&r e = { f*(c) | ¢ € C,n € N} whereM = p(fi(c)) <= P. € s;. One

can also show that modelsyp 1y, iff M, modelsy. Consequentlyy andyry, are equisatisfiable. [

The conversions betwedf=P(PL) and LTL formulas are straightforward and can be done in finea
time. Moreover, there are well-known fragments of lineanperal logic that have corresponding NP-
complete fragments d&¥FFP(PL). It is well-known that LTL using only the operators and<> is NP-
complete. Given arFP(PL) only containing the fixed-point operatogs ;, and[y ., our reduction
from FFP(PL) to LTL used in Theoreri 311 will result in a LTL formula only agi¢> andO

It is also the case that formulas only usiggin positive occurrences, ar@ on atomic sub-formulas
is also NP-completé [30]. We can strengthen this result irag that extendd [30] in a trivial way for
LTL, but it is useful forFFP(PL): if the operatorO never occurs in the scope [of or , the fragment
of LTL remains NP-complete. To sketch the argument: we casgjucheck and combine models for
the temporal subformulas usimg and<>. An occurrence ofD allows shifting an existing model by
introducing an arbitrary new initial state. Formula$-inP(PL) that do not use the distinguished function
f on flexible variables fall into this fragment.

Similarly, FFP(PL) over formulasy where> ;. is only used in positive occurrences afigs only
applied to constants is NP-complete. This is because weemrtey to the following equisatisfiable
LTL formula:

errr = LTL{p)A A rp(pe) = O"Fe
P(fn(c))€AlienSF (i)
" A o)y = O"OLTL®).
(O 1,2 ¥)(f™(c))EALienSF ()

The proof thatp andy 1, are equisatisfiable is similar to that used in Thedrerh 3.1.

3.2 FFP(E)

We will now consider an extension &FP(PL) by admitting equality predicates on terms containing
bound variables. The resulting logic is calle&P(E). In contrast toFFP(PL), the embedding into
LTL is less straight-forward, since the equalities intérimcan essential way with the models for the
propositional temporal abstraction. Formulas-FP(E) extendFFP(PL) by admitting atomic formulas
that are equalities between terms containing flexible fag& constants, and a distinguished function
I

The operato() will be convenient to limit the number possible equality giocates we need to con-
sider. We also admit terms where the distinguished funcfieapplied to a constant. Thus, formulas
of FFP(E) are of the form:

o w= fMo)xz|e~c|lex f(d)|exd |@p
| P@)|R|~¢levelene| (¢Uss¢) ()

such that the formulag and’ in (¢ U ;. ¢') (z) contain at most one free flexible variable, which is
x.

FFP

It is not hard to see that we can build all combinations of étyugredicates using one flexible
variablez, the functionf and up to two constanisand¢’ using the the base cas¢8(z) ~ x, = ~
¢, ¢~ f(), ¢ ~ ¢ and the operatapy. For examplep[f(c) ~ ff(d), f(x) ~] is equisatisfiable
to the formulac; ~ f(c) Aea ~ f(d) A pler = f(e2),@(z =~ ¢)]. We will use the operatdp in two
ways: in atemporal viewand aground view In the temporal view, we do not normalize the formula
with respect to the definition @b); the use ofy) is essential for bridgingFP(E) with LTL. In the ground
view, we distributey over the free flexible variables such thagets eliminated.

Even very small examples can show how the interaction betveggialities makes checking the
satisfiability ofFFP(E) more complex. For example, the following unsatisfiable falamllustrates how
distinct constants can not be as easily partitioned as waes ithd-FP(PL):

(Cfrzx~cAN@P(x)) (a) AN (Ofax = cN—OP(x)) (b).

The first conjunct implies thaP(f(c)), but the second requiredP(f(c)). This is despiteP(f(c)) not
directly appearing in the formula.
To illustrate how equalities and predicates may interamtsitler the formula:

(Craz = f2(2)) (a) A (Ofaz = f7(2)) (a) A (Ope@P(2) < ~P(x))(a)

The first two clauses require thit™(a) = f%(a) and f7*2(a) = f?(a) for somei and;j in N. Collec-
tively, this implies thatf (f*(a)) = f*(a) for k = min(i, j). Conversely, the third clause requires that
the value ofP changes at each dereference, and consequ¢iifiji(a)) cannot equaf*(a).

3.2.1 Expressivity ofFFP(E)

We make a case that tid-P(E) logic is quite general and expressive. It subsumes sevarahft all)
logics recently proposed for reasoning about heaps. We suimensome of the properties that can be
expressed ifrFP by encoding logics from the literature on verification of heaanipulating programs.

Example3.2 (Transitive Closure of). Suppose we lef*(a,b) mean that there is a sequence of 0 or
more applications of to a that produces an elemetThat is,f*(a,b) = In . f"(a) ~ b. This can be
easily represented:

fab) = (Oppr=b)(a) =abb
/

Example3.3 (Reachability Invariants [23])Nelson introduced a ternary predicate— v which in-
dicates that reachesy without going throughw. It can be used verify a program that computes the

union of two sets represented as doubly linked lists, andbeaaxpressed iRFP(E) as: u % v =
(xFwl s,z ~v)(u).

Example3.4 (Well-Founded Reachability [15]Lahiri and Qadeer define a logic for the context of lists
that are well-founded with respect to a distinguished wagéi Their observation is that even data-
structures, such as cyclic lists contain a distinguishethehtthe head elemento predicates that refer
to the transitive closure from some list element can be dutr@und such distinguished elements. the
head. We say that the list is well-founded with respect toespredicateB.S (blocking set), and they can
define the functiorB(u) that takes a list elementto the first element irB.S that is reachable from.
Another predicate that they found to be usefuRig., v) that holds, whemw is reachable from without
hitting the blocking seB.S. FFP(E) allows formulating these predicates directly:

Bu)~v = (=~BS(x)Ufzx~v)(u)NBS(v)
R(u,v) = (BS(f(x)) Uszx~v)(u)

FFP

Example3.5 btwn [25]). Bingham, Rakamari¢c and Hu use a predicate that is somewitiatedt
from Nelson’s reachability predicate. Insteadnaf visiting an auxiliary node, their main reachability
predicate requires that for nodesb, andc, there is a path from to ¢ following f, and thath occurs
beforec on such a path. The predicate has the following encoding:

btwny(a,b,c) = (:n;écb{f@a::b)(a)/\bic

FFP(E) is also closed under the weakest-precondition predicatesformer, when a pointwise up-
date is made to the functioft

Proposition 3.6. FFP(E) is closed under pointwise functional updates.

Proof. Let f be a function that is updated at poiatto have valuev. Thus, letf’ := A\y.if y ~
u then v else f(y). Then

(AUsyB)(@)]f =[]
= { unfold definition of &/ }

pRAz.(B V (AN R(f(2))))(a) [f = f']
= {LetA' = A[f:= f',B'=B[f = f}
pR Az (B'V (A" A R(f'(x))))(a)
= { unfold definition of /" underR }

WR AT, (Bf v <A’ A [, g;zﬁg%)) D) (@)

= { R(v) must visit B’ before revisitingu }

B/
pRx. (Vo zxuA((zgunA) Uy sB)(v)) (a)
V oz 2uNA ANR(f(x))

= {fold back tol/ format}
(A// Z/{;E7f B//) (a)

where
A" rEtunA

B": (v f;uA((x¢uAA’)Ux7fB’)(U> >

3.2.2 Complexity results
Our main result in this section is the following:
Theorem 3.7. The satisfiability problem d¥fFP(E) is PSPACECOmMplete.

Proof. The theorem follows from Lemmas 3113, 3.14, 3.15, and thelffat LTL isPsPACEcomplete[[30].
The lemmas are established in this section. They are comhliing sequence of transformations illus-
trated below:

10

FFP

Def[3.9 Def[3.11 Def[3.12
Tab(p) ©PTL vprr UFFP(E)prL

¥

The transformations ensure that
@ is satisfiable mod=FP(E) iff ¢prr UFFP(E)pry is satisfiable mod. LTL.

The first transformation takes a formufaand produces an equisatisfiable formdleb(y), which re-
places/ and(subformulas by new propositional atoms. It also producesceptance condition
JF, which is a set of formulas. The second transformation ogsle> ; , and[J, and(by their LTL
siblings &, 0, andO. We have to add additional constraints to ensure that thdtireg formula is
equisatisfiable. This is done in the last transformation. O

Definition 3.8 (Temporal abstraction)We use the function¢| to convert a temporal formula into a
non-temporal formula. It replaces each sub-formula thas astemporal connective by a new predicate.
In more detail the formulay]| is defined by cases:

(AT = [PI ATy
[PVl = [V
[~ = =[Y]
[Usa) (@) = [(¥Ust))(@)
(@] = [@¥]

We let P,,s(p) denote the new predicates introduced for the temporal sulollas ofp. Specifically,
AbsP(y) contains a formulgp] for each formula € SF(yp) with the formp =@ andp = o U ;,¥'.

Definition 3.9 (Tableau normal fornab(y)). Given a formulap in FFP(E), we define the tableau
normal form ofy as the tuple[¢], Next, Inv, F). It corresponds to the formula

Tab(p) = [@] A Next A Inv A /\ OCF 1)
FeF

whereNezt is the conjunction of the formulas

[(@y] & @y] for@y € SF(p)
[(U s (@) & ([V ([P AD (¢ U o) () for (¥ U so0) (x) € SF ()
R < @R for each rigid predicaté?

R ranges over not just the rigid atoms ¢gnand ground equations ip, but also a predicaté(c) for
each flexible predicaté and constant. Additionally, note that’ ranges over not just the uninterpreted
predicates inp, but also the predicatesbsP () introduced by temporal abstraction.

The formulalnv is the conjunction of

[(Upa¥) (@) = ([¢ v [¥]) foreach(yy U ;.0)) (x) € SF(yp) (2)
[= [(¥ Usa')](x) foreach(y U s v') (z) € SF(p) ®3)

The acceptance conditiorss are partitioned into the setg(x), F(y), ... for each of the flexible
variablesr, y, . .. and the set$ (z) comprises of the formulas

[(Upa¥) () — [foreach(y U . 1) (z) € SF (). (4)

11

FFP

The tableau normal form separates the constraints on tleddimgs of f. These are captured in the
relations Next, while the acceptance conditions are enforced using th& sd@he tableau normal form
corresponds to the well-known propositional tableau caotibn for linear-time temporal logi¢ [3, 20].
The expansion preserves satisfiability.

Lemma 3.10. Lety be a formula inFFP(E), theny is equisatisfiable witiab ().

Definition 3.11 (Propositional linear-time temporal logic erasurer;). The purpose with definitidn 3.12
is to create a formula in LTL that is equisatisfiable to theesponding=FP(E) formula. The LTL era-
sure is defined over the structure of formulad-ifP(E) by replacing subformulas of the for@) by
O, by replacing subformulas of the for(w U/ ;.) () by v U+, (Oy.) (x) are replaced byly
and (O r .) (o) is replaced byO . Finally, atomic subformulas are treated as different psinal
atoms. In particular, the interpretation of the relatiens no longer defined by the theory of equality.
We say that the atoms have a propositional interpretation.

Definition 3.12(The propositional completiop pr;, U FFP(E)prr). Let us assume that contains the
atomic subformulag”(x) ~ z, ¢ ~ f(), ~ ¢, together with rigid atoms that we will refer to &%
and flexible literals that we will refer to &), wherez is the flexible variable that is used in Let
be the set of acceptance conditions from definitioh 3.9,abkau normal form of. The propositional
completion ofy is the formulappr;, U FFP(E) prr, Obtained by adding the conjunctions:

r~c = QO(zecWF) FeF(x) (5)

r~cANl(z) = {(c) (6)

[f(@) 2z = ({(z) < O"(x)) (7
fra) 2 a A ™) = = [() ~ o (8)
ffx)2axhe~c = O"(x #c) 9
ffa)#anff(z) =z = f"""(z)%z n>m (10)
f'(z) 2z = O(f"(z) ~x) (11)
cef()nz~cd = Ox ~c) (12)

r~c = (v~d « c~d) (13)

OF — taut (14)

The last set of invariant§ (1L4) are the set of tautologiesdhia be formed using the rigid predicates.
Since each invariant uses at most one pair of atomic subtaminip, we have

the order ofO(|p|?).

The additional conjunctions added as a result of the prtipnal embedding maintain satisfiability.
That is:

Lemma 3.14(Soundness)If ¢ is satisfiable inFFP(E), thenpprr, U FFP(E) prr is satisfiable in the
empty theory.

In fact, the reduction is not only equisatisfiable, but weehténe converse:
Lemma 3.15 (Propositional Completenesslf the propositional completion of the formulapr; U

FFP(E)prz Is satisfiable in the empty theory, thens satisfiable in the theory &fFP(E).

12

FFP

Proof. If the abstractionppr;, U FFP(E)pr;, is satisfiable, then there is a sequence of states
S0, S1, 82, 83, - - -, satisfyingpprr U FFP(E)prr,, Where each state assigns truth values to the propo-
sitional atoms inppr;, U FFP(E)prr,. We will examine the assignment to the atoms in each state fro
o and extract a modeM for the original formulap. We will then establish that the propositional model
is also a model when equalities are interpreted.

The model forp is built by processing each flexible variabteand creating an interpretation fgr
that is relevant for:. Notice that the truth assignments implied by each of thiestacan be partitioned
corresponding to each of the flexible variables. Let us asdiuat the flexible variables are y, z, then
the states are partitioned intg(z), s;(y), ands;(z) for each state; € o. The states;(x) contains all
the assignments to the atomic subformulas using the flexéiablex.

Consider the cases:

1. There are two states(z) ands;(z), that contain the atoma ~ c. Without loss of generality, we
can assume that(x) is the first state that contains the equality~ ¢, and thats;(z) is the next
state afters;(x) that contains the same equality. Furthermore, we can asoresthat there are
no repeated equalities betwelr) ands;(z). Invariant [$) entails that all acceptance conditions
related to the flexible variable are satisfied betwees(x) ands;(x). Also, every state between
si(x) ands;(x) either entails no equality atoms, or if it entails an eqyadtomz ~ ¢, there is no
other state betwees)(x) ands;(z) that entails the same atom. We can fix the interpretatiofi of
from c by introducing fresh distinct elements, a1, . .., a;, a;11, . .., aj—1, such thatM(c) = a;,
as well asM(f(ax)) = ary1 for k < j, and M(f(a;—1)) = a;. Furthermore, if some state
sy, betweens, ands; contains an equality ~ ¢, then setM(¢) = aj. The interpretationM
is extended to satisfy the propositional interpretationekg@mining the following cases for the
interpretation of the atomic subformulas in a stgte

e x ~ ¢ - by construction M(c) = ay.

e 1 % c - by construction, each state is consistent with respedtdgdheory of equality, and
the interpretation respects disequalities.

e +P(z)-whenevers(x) entailsP(x), then extend the interpretation by updatifg(P) :=
M(P) U {ay} if P(x) € s(x).

e f"(x) ~ x - invariant [T) implies that: ~ ¢ is a member of every states. In other words,
j — i dividesn. Thus, the constructed interpretation satisfidsa, = f"(z) ~ z for every
elementay,.

e ["(z) % x -invariant [I0) implies that the period lengjh— i does not dividen. Thus,
M, ay = [(z) £ zif (f(2) #2) € sp(2).

2. There are no repeated states containing c, for anyc, but there is a state that contaiff§(z) ~ x
for somen. Invariant [11) implies that all states after the first ocence of f"(x) ~ x contain
this same equality. From invariaril (8), we can assumerthditiides every othern, such that
f™(x) ~ z is in the suffix. Invariant[{7) implies that everystates satisfies precisely the same
atomic formulas. So the acceptance conditiiis) are satisfied within the loop of length at most
n. Letus build an interpretation fgf by considering the prefix of states, . .., s;_,—1 leading up
to the looping suffix, followed by the states_,,, ..., s; used in the looping suffix. We introduce
the fresh elementsy, . . ., a; and constrain\(c) to beay, if the states; () contains the equality
x ~ c. By our assumptions, this can only be the casg ils among the states),...,s;_,_1 (in
other word9) < k < j — n). For the remaining cases we have:

e 1 % c - by construction.

13

FFP

3.

e +P(x) - by construction:M (P) := M(P) U {ay} if P(x) € si(x).
e f™(x) ~ x - by construction.

e [™(x) # x from invariant [ID) it follows that we can assume < n, butay # agin, iS
implied by the construction.

Neither case 1 or 2 apply, so every equality~ ¢ occurs in at most one state ér{z), and there
is no state containing™(z) ~ « for anyn. We build an interpretation fof by selecting an
infinite sequence, a1, ...,a;,... of fresh distinct elements and assignind(c) = a; if state
s;(x) contains the atom: ~ ¢ (there is at most one such state). As before, we extehdo
satisfy predicates by assigningl(P) := M(P) U {a} if P(x) € si(z). By the assumptions,
the suffix contains no state implying’(z) ~ « for any of the atomic predicates in Finally, the
construction ensures that every state impfiésr) # « for arbitraryn.

Notice that when the propositional modekontains a periodic suffix, we do not need an infinite
number of fresh distinct elements in the construction. gt guffices to select a period of length
greater tham for any subformula of the fornf™(z) ~ x. This ensures that the model satisfies
f"(x) # x in every state.

A structural induction over the formulas implies that thetiad interpretation built so far also satisfies
the non-atomic (temporal) formulas in the statgs:). More specifically, invarian{.(13) implies that the
interpretation ofr is consistent with congruences ovér

Suppose now that we have fixed the interpretatiolfi fafr the flexible variabler and wish to process
y. There are two cases to consider:

1.

2.

3.3

There is a state;(y) that contains an equality ~ ¢, but there was a statg(x) previously used
to constructM that contained: ~ c¢. There are two sub-cases:

(a) The states;(y) does not contain equalities of the forfi¥(y) ~ y ands;(y) is the first
state to contain a previously visited equality. We build adeldor f based on the states
s0(y), ..., si—1(y) by introducing fresh elements, . . . , a;—1 into M and fixing f as before
(f(ao) = a1, f(a1) = az, ..., flai—1) = M(c)).

(b) The states;(y) does contain an equality of the forfit(y) ~ y. In this case we look for the

first state amongo(v), s1(y), - . -, si(y) that contains the equalitf* (y) ~ y. This first state
gets aligned with the matching state far

The construction relies on invariari] (6). It implies thatifever enters a state that satisfies an
equalityy ~ c¢ previously satisfied by, then the interpretation fof on y henceforth can be
determined by the interpretation ¢fon c.

There is no state(y) that implies a previously encountered equality. In thiseaae build a model
just as we did for.

O

W2FFP(E)

W2FFP(E) is the fragment oFFP, that requires every bound variable to appear linearlyt, gissfor
FFP(E), but allows different flexible variables to use differenndtions. The same flexible variable is
still required to use just the same function symbol. We tloeeecall the fragment theveak2-function
extension oFFP(E). Thus,

(Craz=a)(c) N(Ogyy=b)(c)

14

FFP

is a legal formula iw2FFP(E), but
(Orar=a)(e) AN (Ogy f(y) =b)(c)

is not, because bothand f are used on the same flexible variaplé=or simplicity we will assume that
formulas inw2FFP(E) use just two functiong andg in the fixed-points. The generalization to multiple
functions is straight-forward.

Theorem 3.16. The satisfiability problem of2FFP(E) is PSPACECOmMplete.

Proof. Let us examine where we relied on the use of single functiombsy in the proof of lemmpa_3.15.
All auxiliary safety conditions reference a single flexibiriable. So the accessibility relatiogn was
unique determined by the flexible variable. The safety dooli() bridges the interpretation between
flexible variables. Their accessibility relations couldw2FFP(E) potentially be associated with two
different functions. For example; could be associated with accessibility functibnandy could be
associated witly. If = is associated witlf, then the atomic literad(z) is also associated witfi. Let us
for every constant and functionf introduce the flexible variable ., and for every literal of the form
¢(x) and constant introduce a fresh predicate constdti.. Then we can replace safety conditigh (6)
by the satisfiability preserving constraints:

x~cANl(r) = Ry (15)
Tre~cA(Rye — Lxye)) (16)

We say that the flexible variable; . ownsf at the constant.

Given a propositional model faspr;, UFFP(E) prr, we can now extract a model for the functiofis
andg by examining firstf and thery. For the functionf, we build an interpretation fof by examining
each variabler .

O

3.4 FFP(NL)
3.5 Extensions ta~FP(E)

In this section, we analyze the complexity of two extensiwrisFP (E).

FFP(NL) is the fragment ofFFP that admits only a single function symbglwith fixed-point ex-
pressions, but allows different bound variables to appegether in the same scope. We can reduce
FFP(NL) to monadic second order logic by translating each fixedtgipression(uR.\z.C[R])t into
an equivalent second-order expressig®) (Va.Z(z) <— C[Z|(z)) = Z(t).

Both weak and strong second-order monadic logic with a sifighction symbol is decidabléel[5]
(Corollary 7.2.11 and 7.2.12). FeFP(NL) logic is decidable. The second-order theory of one unary
function is on the other hand not elementary recursive. ésdwot necessarily follow th&FP(NL) is
non-elementary as well, but we establish thRP(NL) is at leasNEXPTIME-hard.

Theorem 3.17. The satisfiability problem dfFP(NL) is NEXPTIMEhard.

Proof. Our proof is inspired by a similar construction fiazp [35].

Given a tiling problen? = (T, R, D) with T' = {71, ..., T} and a natural number € N, it is an
NEXPTIME-complete problem to decide whether there is a tiling corbfgtvith 7 on a square grid of
size2™ x 2",

We can reduce the bounded tiling problem to the satisfiglplibblem of anFFP problem of size
O(n?). TheFFP signatureX: for our problem has constantsand¢ and unary predicates U X U Y

15

FFP

whereX = {Xy,...,X,—1} andY = {Yo,...,Y,_1}. Our intention is that every square tiling grid
can be mapped to 8-model. The predicateX andY are used to encode the horizontal and vertical
coordinates of a square in the grid, and the predic@tese used to encode the tile associated to the
grid. The constant denotes the top-left origin and the constanienotes the bottom-right corner. The
formula contains the following constraints:

p = Xs~0ANYsxO0ANXtxmAYt>mA ft~t
A gac:[si»t].Xf:U:Xx—l—l/\fo:ite(Xm:m,YaH—l,Ya:)

A gx:[sit]. \/ < /\ =Tz A Tix A /\ —|T]x>
1<i<k M1<j<i i<j<k
A %c:[si»t].szm\/ \/ Tix NTjfx
(i.)ER

A (Oy Xy~ XeAYy~Yoe+1A \/ TaAT, (y)> Ui Ye~m| (s)
(i,5)eD
AN T()(S) /\Tk(t)

FFP(NL) does not enjoy the finite model property. For example:

Proposition 3.18. The sentencé, (O, 2 % y) (f(2))) (c) is satisfiable by an infinite model, but
unsatisfiable for finite models.

We will use this result to establish thBEP(NL) is incomparable théogic of Reachable Patterns
(LrP) [B5]. LRP allows specifying properties that require traveling bathwfards and backwards along
an edge whereas our logic only allows reasoning forwards.inSmr logic one can always extend
models with additional nodes that can reach other elemardari model, while this is not true farp.

For example, theRP sentenceﬂc[i]L implies that no node can reachvia f. This sentence is not
expressible ifFFFP. On the other hand,RP has a finite model property whereas by Ptaop.13.18, our logic
does not. SentenceskirP such ag§y, (O, = % y) (f(x))) (¢) which are only satisfiable by infinite
models are not expressible irP. These observations imply the following:

Corollary 3.19. The expressiveness P andLRPis incomparable.

We are not aware of any matching lower and upper bounds orotin@lexity of FFP(NL), neither
do we know if the weak theory (that only admits finite model§)F&P(NL) is any easier than full
FFP(NL).

3.6 2FFP(E)

We also consider the fragment BFP where multiple function symbols are allowed to be assodiate
with the temporal connectives and we are allowed to nestraifit functions over the flexible variables.
We call this fragmen2FFP(E). Among other things, this logic allows us to encode arhiyrdarge
grids. For example, we can express that functigrend g commute over all nodes reachable from a
given constant

Qg2 [Ogy fl9) = g(fW)]z) (c)
We show that the satisfiability problem for this logic is uodiable.

16

FFP

{ randd commute.}

Vo : [s 5 null].Vy : [@ < null].rdy ~ dry
A { right-most edge is straigh}.

Vo : [s 5 null].Vy : [@ <, null].ry ~ null < rdy ~ null
A { bottom edge is straight.

Vo i [s 5 null].Vy : [z 4, null].dy ~ null < dry ~ null
A { null loops on self.}

r(null) ~ null A d(null) ~ null
A { each node has one typg.

Vo i [s 5 null].Vy : [z -, null]. \/ T;(y) A /\ =T;(y)

i€[1,k] FE[LEN\{i}

A { types are right compatiblg.

((Qy ;[< null]. \/ T;(y) A Tj(ry)) Uppre >~ null) (s)

(4,5)€ER
A { Types are down compatiblé.

Va : [s 5 null]. (\/ T AT, dy)udydynull)()

(i,5)eD
A { Top-left node has typ&j. }

To(s)
A { Bottom right node has typ€&;. }
(Cra (Cayy Znull Ary ~dy ~null ATy (y)) (x)) (s)

Figure 2: Tiling problem encoding

Theorem 3.20. The satisfiability o2FFP(E) is undecidable.

Proof. We will create a tiling problem with functions (down) andr- (right), and use two points (start)
andnull. Figure[2 shows the encoding.

O

4 Integration with the SMT solver Z3

This section describes a decision procedureHBP(E). It uses an integration of a LTL checker and
a solver for a background theoff). The structure of the integration is similar to how SAT sodve

may be combined with decision procedures. A reference im@igation of the integration is available
fromhttp://research. mcrosoft. com en-us/ peopl e/ nbj orner/ffpsrc.zipl

17

http://research.microsoft.com/en-us/people/nbjorner/ffpsrc.zip

FFP

4.1 FFP and theories

Our formulation ofFFP uses auxiliary constants b, ¢, ¢ but does not say whether there are any addi-
tional constraints on the constants. The constants aranstedd of adding to the signaturerd#P alien,
composite, terms from other theories thi&eP. Other theories that could be of interest in the context of
program analysis and verification are for instance the thebarithmetic, term algebras, bit-vectors and
arrays. We usé to refer to “other theories” thaRFP.

The Nelson-Oppen combination resiltl[24] applie§EP, becauséFP is stably infinite. It allows
for us to use this abstraction because the only informatatRFP requires from the interface terms is
that there is & -consistent partition that is also consistent with & portion of the formula we wish
to check. Thenterfaceterms here comprises of all alien terms and subterms of the f¢t), wheret is
a interface term.

Proposition 4.1. Let 7 be a stably infinite theory. Let be a formula, with the set of rigid, interface
termsTerms = t4,...,t, over7, and setRy, ..., R,, of rigid alien predicates. Thew is satisfiable
over FFP + 7 if and only if there is a partitionPartition(Terms) of the set of termderms and an
assignmenty; of the predicates?; to trueor false such that

olai/R;] A Partition(Terms) A /\(Oéi = R)

2

is consistent ovefFFP + 7 if and only if

Partition(Terms) A /\(ai — R;) is consistent withy”

2

and
olai /R;] A Partition(Terms) is consistent withrFP(E).

Note that we require that the alien terms and predicateglk it is for example not allowed to nest
alien function symbols over flexible variables. On the otieand, it is allowed to nest the functions used
by FFP within rigid terms, since terms can be purified by introdgcaéxtra constants and equalities. For
examplep[f(c) + 3] is equisatisfiable witl' ~ f(c) A p[c + 3], whered' is a fresh constant symbol.

4.2 Abstraction/refinement solver combinations

Most modern SMT solvers, including Z3 [10], integrate thesolvers with a propositional SAT solver,
based on state-of-the-art techniques for SAT solving. Tibegration of theory solvers and the SAT
solver can be described using a simple exchange:

The SAT solver treats each atom in a formula as propositiatains. It provides propositional
models that assign each atomtioe or false We will uses to refer to a propositional model, and it will
be represented as a the set of atomic formulas that are tthe jpropositional model. A propositional
models of a formulap corresponds to a conjunction of literals:

L= /\ a N /\ —a

a€ASF(¢),a€s a€ASF (p),aés

The theory solvers check the propositional modelgfa@onsistency. If the conjunction B-unsatisfiable,
then there is a minimal (not necessarily unique) sulbéef L such thatZ A L' is inconsistent and for
every subsef,” C L/, itis the case thaf” A L” is consistent. The SAT solver can in exchange learn
the clause~L’ and has to search for a propositional model that avéidsThe basic integration can be
described using the figure below:

18

FFP

SAT T

-1

We will here describe an analogous abstraction/refinemasedon LTL. Instead of adding proposi-
tional clauses, we rely on adding propositional temportdtggroperties. Thus, given a formulg we
create an initial propositional abstraction. When a LTlis$wtbility checker returns a temporal model
o for ¢ it is checked for7 -consistency (we assume this includes consistency witieatgo the theory
of ground equations), as well as consistency with respetttesafety properties from definition_3]12.
If the propositional modet violates any of thel +safety property checks, the integration produces a
temporal safety property that is conjoined to the initiadgaysitional abstraction. Conversely, the BDD-
based satisfiability checker we use for LTL is also able ofatirizing the set of feasible initial states
using a predicaténit. The combination of these assignments can be used to dorfsiare checks for
7 consistency. The combination approach is illustratedvelo

Init, o
LTL T

Safety blockers

4.3 Checking Satisfiability of LTL formulas

There are to date a variety of methods for checking satisfialof LTL formulas. Some are based
on buildingw-automata, or alternating-automatal[3[1]. Any method can in principle be used for our
approach; the important feature is that the satisfiabiligoker produces a propositional temporal model
o. We will here describe a method based on a more traditionadtoaction that is based on creating
tableaux. It is simple to implement using a symbolic BDD gk

Our approach is to build a-calculus formula that can be evaluated using symbolic trdakecking
techniques. The technique is analogous to reducing LTLkihgdo fair CTL model checking [7]. The
starting point for the construction is a temporal tabldai (). For this purpose associate propositional
variablesu with each of the atomic formulas used #ub(y). This includes subformulas of the form
(¥ U f0")](x) and[@e)]. If u is an atomic subformula, we associatevith the subformulau.

Thus, the temporal tableau induces relatipps (i), Inv(@), Next(i,d’), and the set of relations
F(u) e F.

Let us introduce the following shorthands:

(pre)P = Xa.3u . Inv(@) A Inv(@') A Next(@, @) N P(id'),
(post)P := Au.3uy . Inv(tp) A Inv(@) A P(dp) A Next(ty, @),
(pre*)P = pX .\i.P(u)V (pre) X (u),

(post*)P = pX .\ .P(u)V (post) X (u).

The set of initial states that contain an accepting path lvam be defined aBuit, where:

Rec = wR.({post)(\ii. J\ (F(i) A (post*)(R)())) (17)
FeF
Init = [p](@) A (pre*)Rec(@) (18)

We can build the relation fofnit by evaluating the propositional-calculus fixed-point expressions
using a BDD package. The resulting relation farit summarizes the set of propositional evaluations

19

FFP

that admit accepting models. Solifit is empty, the propositional formula is unsatisfiable; otlise,
one can extract a model consisting of gorefix sg, s1,...,s;, and a periodisuffixs; 1, ..., s; that is
repeated. In other words, is of the forms, s1, ..., si, (si+1,-..,s;)*. Each state in the propositional
model evaluates the atomic sub-formulas in the originahfda ¢ to eithertrue or false

We will now describe the steps taken for checking and refin@pgsitional modet.

4.4 Refining the LTL abstraction

As described above, models produced by the LTL abstract®refined using checks far consistency,
as well as the auxiliary safety constraints from definifioh23 The refinement steps are described in the
following.

4.4.1 State consistency

Every states in a propositional modet assigns the atomic formulas ¢nto eithertrue or false We can
check whether the assignmentZfisconsistent for arbitrary stably infinite theorigs So given a state,
let L' be a minimal7Z -inconsistent subset of the literals associated witt\e add the invariatj—L’ to
o and re-check the formula for satisfiability modulo propiosial linear-time temporal logic.

Checking state consistency in the theory of equality allmvsadding some of the auxiliary invari-
ants from definition 3.12 as a side-effect. In particulag thvariant [IB) is checked and added as a
conseguence of checking state consistency.

We should notice that the invariants that are produced needanrespond to a well-formed formula
in FFP(E).

Example4.2 (State consistencyuppose a statecontains the following assignment:
Plx) Nz~c ANy~c N —-P(y)
The theory of equality is required in order to detect the i@adittion. So thel solver is expected to

produce the invarian—(P(z) A x ~¢ AN y~c A —P(y)). Notice that it does not correspond to a
formula formFFP(E) because it uses two flexible variableandy.

4.4.2 Cross state consistency

Cross-state consistency generalizes state consistemstgad of checking consistency of a single state
s, we check the joint consistency of the statgss, ..., s; in the propositional modet. This is done

by checking the consistency of the literdlg(Zy) A Li(Z1) A ... A L;j(Z;), where the set of literals
associated with each state is instantiated by a set of eliftefiexible variablesi, 71, ...,7;). If a
cross-state constraint B-unsatisfiable, then add the safety condition:

O-LyV...vO-Lg For 7 -unsatisfiable states,, ..., L

Cross-state consistency allows blocking states that dreatually consistent.

Example4.3 (Cross-state consistencylhe two states; andss are contradictory ifs; entails the as-
signmentP(xz) A z ~ c and states, entails the assignmentP(y) A y ~ c¢ for potentially different
flexible variablesr andy. Such a situation is ruled out if we apply safety conditionf(8 every pair of
flexible variablesr, y, and every literal(x), but cross-state consistency checking will also captuee th
case. The resulting safety condition is in this case

O-(P(z) ANz ~c) V O-(=P(y) ANy ~c¢)

20

FFP

4.4.3 Neighbor consistency

Example4.4 (Neighbor consistency)Suppose the model contains the sequence of statgssi, . . .,
and suppose thaty contains the state assignment f(¢') A x ~ ¢/ A =P(c), ands; contains the state
assignmenf(z). The states cannot be neighbors because the conjunction

c f(YANx = AN=P(c) \@P(z) = c~ f(d) ANz~ AN=P(c) A P(f(x))
is contradictory. To rule out this case, it suffices to addsthiety formula
c~ f(d)Nx~d AN=P(c) = -OP(x)

The safety condition (11) uses only one atom. It can theeelf@ compiled directly into thé/ext
relation. On the other hand, to maintain the safety comtlifi@)c ~ f(d) Az ~ ¢ = O(z ~ ¢,
we may potentially need to introduce the new ateny c. The number of such atoms can be quadratic
in the the number of constants and variables. We therefdier daposing this safety condition, and
instead check propositional modeigor neighbor consistency. This is achieved by checking gedh
of neighboring state&sy,, si11), fork =0, ..., j—1, and(s;, s;) for consistency by checking; A®Ls.

O-(L1 A OLs) For T-unsatisfiable successafs, Lo

4.4.4 Interface terms

Definition[3.12 requires potentially producing equalitietals corresponding to all pairs of interface
terms, to ensure that the safety conditions are enforcecapMy a model-based approach for introduc-
ing such equality literalg [9]: an equality~ ¢’ between two interface terms is added only if the states in
o are cross-state consistent with a model that evaluatethe same value a4

4.45 Embedding consistency

Example4.5 (Embedding consistencypuppose we have the formula

(Ora ffr=anP(@)) (@) ANOfa (Ope ~P(2)) (2)) () Az ~a.

It says that fromu, there is a sequence pfapplications that reacR(z) andf fx ~ z, but also eventually
—P(z) holds for every sequence gfapplications. The (uncluttered) LTL version:

oprr : O(ffr~x A P(z) AN(OO-P(x) Az ~a

is satisfiable if~ is left un-interpreted. But after adding an instance of axid and_1lL, we obtain the
prepositionally unsatisfiable formula:

opre N (ffr~z= (P(x) < OOP(x)) A (ffr~z= Offr~ux)

The additional safety conditions from definitibn 3.12 aredted by a custom solver f&FP(E).
The solver checks that each of the invariants holds for tbpgsitional path.

The condition[(b) requires one of the more interesting ceeBlecall, that we assunaes of the form
50,81, -5 Si, (Sit1,-..,85)%. The pathsg, s1,...,s;,...,5;,8i,...,s; is checked for an occurrence of
the first repeated equality ~ c. The test succeeds if there is no state containing an egjadlibhe form
x =~ ¢, otherwise, it suffices checking the state sequence camegpg to the first repeated equality.
Each of the acceptance conditioAse F(z) is checked with the sub-sequence. If some condifion
does not evaluate tiue in the sub-sequence, we add the conditions correspondif).to

21

FFP

4.5 Constraining theFFP(E) abstraction

A formula is obviously unsatisfiable moduk=P(E)+7 if [¢] is already unsatisfiable modulb. Any
partial axiomatization foFFP(E) can be used for checkirigo|. So in principle we can add any set of ad-
hoc axioms used in [16, 21, 25] to further constrain propmsil models. By using Z3's trigger-based
guantifier instantiation mechanism, these axioms can laritiated on demand based on the current
ground subformulas. To see how how this facility can be usetie context oFFP(E), consider the
following unfolding axiom fori/ :

Vo [(¢ U) (@) = & Vv @AT(% U)](f(2)).

If we instantiate the quantifier whenever there is a groudfetmula of the form{ (¢ U 7., ¥")](t),
it will produce another ground subterm of the fofitn> U ;. ¢')](f(t)), triggering an indefinite set of
instantiations. Z3 allows controlling instantiations @a®npatterns known from the Simplify theorem
prover [12]. Z3 uses efficient term indexing techniques foplementing E-matching based quantifier
instantiation [8]. Universally quantified axioms are imgtated only when the current state of the
search contains one or more ground terms matching a settefimathat use the bound variables. The
pattern{[(¢ U 7, ¢')](f(x))} allows instantiating the quantifier if there is a ground terfithe form
[(v U 59¢")](f(t)). Aninstantiation based on this pattern is expected to beolgmatic as it unfolds
subformulas ofp andy)’ in (v U ¢, ') (f(t)). The multi-pattern{[(v) U ¢, ¢')](x), f(z)} consists of
two terms usinge. A multi-pattern is instantiated when there are ground sebmth of the formf (x)
as well as[(¢ U 7, ¢')](z). Again, an instantiation based on this pattern is expectawt introduce
recurrent opportunities for matching. The resulting patennotated formula can be written:

Vo {{[(U ro ') 1(@), F@) 1 AT(Y U 50 ¥)1(f(2))}}
[Upa) (@) = &'V @AT(U) 1(f(2)

5 Conclusions and Future Work

In this paper, we have introduced several ground first-olaigics with fixed-points, and shown how
satisfiability for the functional fixed-point logic with eglity FFP(E) can be reduced to checking satis-
fiability of linear-time temporal formulas. Furthermoreg Wwave developed and implemented an abstrac-
tion/refinement framework that integrates a LTL solver wit&MT solver to efficiently solv&FP(E)
satisfiability problems directly.

Our choice of LTL as the target is a matter of convenience wed useful for identifying NP-
complete subsets dFFP(PL) in Section[3.l. We suspect that one can extend those te@wmimgu
identify fragments ofFFP(E) with a NP-complete decision problem. Our reductiorF&P(E) satis-
fiability checking was reduced to checking satisfiabilitytaifleau normal forms. It is well-known that
the tableau construction captures more than LTL; it alsowadlfor handling formulas in the extended
temporal logic, ETL[[38]. In ETL, we can for instance expréiss formulavn > 0.P(f?"(a)). Itis
expressible asv X \z. X (f f(x)) A P(x))(a), but does not correspond to a formulaRRP(E). Nev-
ertheless, the satisfiability of such formulas can be chieclsing the same apparatus developed in this
paper.

While simple extensions d¢fFP(E) are undecidable, there are decidable classes of formwasah
be formulated using functional fixed-points, yet they caroeformulated iFFFP(E). For examplel[16]

studies a fragment based on the preditate [a EN b]. that allows multiple functions and variables to

22

FFP

interact. Among other things, their predicate allows ongpecify the formula
Vo :[a ER nil]. (:U =nil VVy : [f(z) EN nil].y # x)

which states that the elements in the list frarto nil are distinct. The formula refers simultaneously to
multiple dereference functions. Theorem 3.17 implies thatmore general logic with until operators is
alreadyNEXPTIME-hard with a single function symbol, and simple versionshwito function symbols
are not decidable (Theordm 3120). The reduction to LTL dagsmork when there are multiple bound
variables: The LTL reduction requires that at most one flexilariable is affected in the tableau state
transitions. We are investigating whethezezequantifiers, which were developed in the context of
real-time temporal logid [1] and hybrid logic [11], can bepéed.

There are ad-hoc ways to extend our methodology to handle-figéts in the context of analyzing
low-level software([6]. In this context, one seeks tramsitilosures of functions that interact with pointer
arithmetic with mostly constant offsets. For example, we/ mvant to compute the transitive closure of
head, f(head +12), f(f(head +12)+12), f(f(f(head +12) +12)+12),.... There is a direct way to
simulatef (z + 12), using a separate function symb@gk(x). The approach is complete when other uses
of f are limited, but would like to understand more preciselylitmis of how arithmetic (of offsets) can
be mixed with fixed-points in a systematic way.

References

[1] R. Alurand T. A. Henzinger. A really temporal logidACM, 41(1):181-204, 1994.

[2] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis nffg-parent heaps. MMCAI, LNCS 4349, pages
91-105. Springer, 2007.

[3] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logiclofinching time Acta Inf, 20:207—-226, 1983.

[4] J. D. Bingham and Z. Rakamaric. A logic and decision pthme for predicate abstraction of heap-
manipulating programs. In E. Allen Emerson and K. S. Namijostlitors, VMCAI, LNCS 3855, pages
207-221. Springer, 2006.

[5] E. Borger, Gradel, and Gurevicithe Classical Decision Problenspringer 96.

[6] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaficeachability predicate for analyzing low-level
software. In O. Grumberg and M. Huth, editofF&CAS volume 4424 of NCS pages 19-33. Springer, 2007.

[7]1 E. M. Clarke, O. Grumberg, and Kiyoharu Hamaguchi. Arestlook at Itl model checking. In D. L. Dill,
editor,CAV, LNCS 818, pages 415-427. Springer, 1994.

[8] L. de Moura and N. Bjagrner. Efficient E-matching for SMTI@rs. INCADE’07. Springer, 2007.
[9] L. de Moura and N. Bjgrner. Model-based Theory Comburatin SMT'07, 2007.

[10] L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. TACAS LNCS 4963. Springer, 2008.

[11] S. Demri and R. Lazic. Ltl with the freeze quantifier amgjister automata. |hICS, pages 17-26. IEEE
Computer Society, 2006.

[12] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theogrover for program checking. ACM 52(3):365—
473, 2005.

[13] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andvGrsh. The boundary between decidability
and undecidability for transitive-closure logics. @$L, LNCS 3210, pages 160-174, 2004.

[14] N. Klarlund and A. Mgller., MONA Version 1.4 User Manual BRICS, Department of
Computer Science, Aarhus University, January 2001. Notesie§S NS-01-1. Available from
http://ww. bri cs. dk/ nona/ . Revision of BRICS NS-98-3.

[15] S. K. Lahiriand S. Qadeer. Verifying properties of willnded linked lists. IfPrinciples of Programming
Languages (POPL '06pages 115-126, 2006.

[16] S. K. Lahiri and S. Qadeer. Back to the future: revigjtprecise program verification using smt solvers. In
POPL, pages 171-182. ACM, 2008.

23

FFP

[17] T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srigast, and G. Yorsh. Simulating reachability using
first-order logic with applications to verification of linledata structures. ICADE LNCS 3632, pages
99-115, 2005.

[18] L. Libkin. Elements of Finite Model Theargpringer, 2004.

[19] R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. iPatel abstraction and canonical abstraction for
singly-linked lists. In R. Cousot, editovMCAI, LNCS 3385, pages 181-198. Springer, 2005.

[20] z. Manna and A. PnueliTemporal Verification of Reactive Systems: Saf8pringer, 1995.

[21] S. McPeak and G. C. Necula. Data structure specificatioa local equality axioms. Iin CAV, pages
476—490. Springer, 2005.

[22] A. Mgller and M. I. Schwartzbach. The pointer asserfiogic engine. InProgramming Language Design
and Implementation (PLDI '01pages 221-231, 2001.

[23] G. Nelson. Verifying Reachability Invariants of Lintt&tructures. IiPrinciples of Programming Languages
(POPL '83), pages 38-47, 1983.

[24] G. Nelson and D. C. Oppen. Simplification by cooperatiegision proceduresACM Transactions on
Programming Languages and Systefi(®):245-257,1979.

[25] Z. Rakamarit, J. Bingham, and A. J. Hu. An inferenckelbased decision procedure for verification of
heap-manipulating programs with mutable data and cyclig stauctures. INMCAI '06, LNCS 4349, pages
106-121. Springer, 2007.

[26] Z. Rakamaric, R. Bruttomesso, A. J. Hu, and A. Cimatterifying heap-manipulating programs in an smt
framework. In K. S. Namjoshi, T. Yoneda, T. Higashino, an@DXamura, editorsATVA LNCS 4762, pages
237-252. Springer, 2007.

[27] S. Ranise and C. G. Zarba. A theory of singly-linkedsliahd its extensible decision procedure.SEBEFM
‘06, pages 206-215, 2006.

[28] J. C. Reynolds. Separation logic: A logic for shared atlg data structures. hrth LICS pages 55-74.
IEEE Computer Society, 2002.

[29] E. Sims. Extending separation logic with fixpoints and posgrl substitutionTheoretical Computer Sci-
ence 351(2):258-275, 2006.

[30] A.P.SistlaandE. M. Clarke. The complexity of propasitl linear temporal logicsl. ACM, 32(3):733-749,
1985.

[31] M. Y. Vardi and P. Wolper. An automata-theoretic apmioéo automatic program verification (preliminary
report). INLICS, pages 332—344. IEEE Computer Society, 1986.

[32] C. Varming and L. Birkedal. Higher-order separatiogitin isabelle/holcf.Electr. Notes Theor. Comput.
Sci, 218:371-389, 2008.

[33] P. Wolper. Specification and synthesis of communigafirocesses using an extended temporal logic. In
POPL, pages 20-33, 1982.

[34] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. &&ho, and P. W. O’Hearn. Scalable shape analysis
for systems code. In Aarti Gupta and Sharad Malik, edit@&y, LNCS 5123, pages 385-398. Springer,
2008.

[35] G. Yorsh, A. M. Rabinovich, S. Sagiv, A. Meyer, and A. Bgjani. A logic of reachable patterns in linked
data-structures. LNCS 3921. Springer.

24

	Introduction
	Contributions
	Related work
	Paper structure

	Preliminaries
	Normal forms
	Propositional Linear-time Temporal Logic

	Complexity results for FFP logics
	FFP(PL)
	FFP(E)
	Expressivity of FFP(E)
	Complexity results

	w2FFP(E)
	FFP(NL)
	Extensions to FFP(E)
	2FFP(E)

	Integration with the SMT solver Z3
	FFP and theories
	Abstraction/refinement solver combinations
	Checking Satisfiability of LTL formulas
	Refining the LTL abstraction
	State consistency
	Cross state consistency
	Neighbor consistency
	Interface terms
	Embedding consistency

	Constraining the FFP(E) abstraction

	Conclusions and Future Work

