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Abstract

We introduce a logic of functional fixed-points. It is suitable for analyzing heap-manipulating
programs and can encode several logics used for program verification with different ways of express-
ing reachability. While full fixed-point logic remains undecidable, several subsets admit decision
procedures. In particular, for the logic of linear functional fixed-points, we develop an abstraction
refinement integration of the SMT solver Z3 and a satisfiability checker for propositional linear-time
temporal logic. The integration refines the temporal abstraction by generating safety formulas until
the temporal abstraction is unsatisfiable or a model for it isalso a model for the functional fixed-point
formula.

1 Introduction

Software often manipulates heap allocated data structuresof finite but potentially unbounded size, such
as linked lists, doubly linked lists, and trees. To reason about such structures, invariants about thereach-
able heap contents can be necessary. Logic capable of expressinginteresting heap properties often re-
quire some form of transitive closure, fixed-points, and/or2nd-order quantification. As is well known,
complete first-order axiomatization of transitive closureis impossible [18], though approximations that
suffice for ground validity of some fragments have been formulated. The approximations work directly
with theories supported in the same (first-order) setting, but must rely on the capabilities of the generic
first-order engine. A different approach is to directly use non-first order logics and rely on specialized
decision procedures for these logics. Such specialized decision procedures do not suffice in practice
when the invariants also require reasoning in the theories of arithmetic and arrays.

1.1 Contributions

This paper analyzes several different fixed-point logic fragments to identify expressive logics that still
have good decidability and complexity results. On the practical side, we outline an integration procedure
between propositional temporal logic checking and theory solvers.

• We formulate a logic called theEquational Linear Functional Fixed Point Logic(or FFP(E) for
short).FFP(E) encodes several fixed point logics presented in recent literature on program verifi-
cation.

• We establish thatFFP(E) is PSPACE-complete modulo background theories that are inPSPACEby
using a reduction fromFFP(E) into propositional linear-time temporal logic. We show that two
different extensions areNEXPTIME-hard and undecidable respectively.

• We provide a decision procedure forFFP(E) that combines the SMT solver Z3 with a (symbolic)
satisfiability checking of propositional linear time temporal formulas. The proposed integration
generalizes the standard abstraction/refinement framework used in SMT solvers. Instead of relying
on refining a propositional model, we here refine a propositional linear time model. An early stage
prototype of the procedure is available.
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The resulting approach can therefore be viewed as a marriagebetween the flexible axiomatization
approach to fixed-points and specialized decision procedures. Our abstraction/refinement framework
admits all axiomatizations allowed by other approaches, but furthermore provides a decision procedure
for formulas that fall intoFFP(E).

Example1.1 (A simple example). We illustrate the use of reachability predicates using a simple example

also used in [25]. It exercises transitivity. We use∀x : [a
f
→ b].ϕ(x) to say that therefn(a) ' b for

somen, and for everyk < n it is the case thatϕ(fk(a)).
procedure INIT-CYCLIC(head)

d(head ) := true; curr := f(head);

invariant d(head) ∧ ∀x : [f(head)
f
→ curr ].d(x)

while curr 6= head do
d(curr) := true
curr := f(curr)

ensured(head) ∧ ∀x : [f(head)
f
→ head ].d(x)

The invariant and post-condition can be established by verifying properties:

∀x : [f(head)
f
→ curr ].d(x) ∧ d(curr) → ∀x : [f(head)

f
→ f(curr)].d(x)

head ' curr ∧ ∀x : [f(head)
f
→ curr ].d(x) → ∀x : [f(head)

f
→ head ].d(x)

While these particular properties hardly require the full might of transitive closure reasoning, we are
here interested in characterizing the limits of what can be solved in a sufficiently general language with
fixed-points.

1.2 Related work

The literature on verification of heap manipulating programs is quite extensive. Greg Nelson formulated
a first-order axiomatization of a ternary reachability predicate in [23]. The paper proposes 8 axioms for
the ternary predicate. The axioms are sufficient for a verification example, but general completeness
with respect to ground validity was left as an open question.The work has inspired a number of more
recent extensions and variants. Ranise and Zarba [27] identify an NP-complete fragment of acyclic singly
linked lists. McPeak and Necula [21] provide a decision procedure for heap properties that do not use
pointer disequalities. It is designed forlocal heap properties; these are properties that use only a bounded
fragment of the heap around distinguished elements. Bingham, Rakamarić and Hu [4, 25] develop a
calculus and a set of inference rules for the binary reachability predicate and a ternary predicate that
expresses reachability subject to visiting an auxiliary node. Their logic is closed under taking weakest
pre-conditions, and the rules are amenable to integration with SMT solvers [26], but completeness of
the inference rules was left as an open problem. Lahiri and Qadeer [15] use two auxiliary predicates to
obtain a similar effect for well-founded lists. Their approach is extended with a set of practical axioms
and proof rules for the case where linked data-structures use pointer-arithmetic [6]. Later Lahiri and
Qadeer [16] provide a complete set of axioms for a quite general theory of linked list verification. They
rely on the pattern-based quantifier instantiation enginesSimplify [12] and Z3 [10] for implementing
their procedure as a set of inference rules and axioms. The new set of inference rules also shows better
performance than the ones proposed in earlier work. Severalof the above extensions simulate subsets of
the theory of linked data-structures using (incomplete) first-order axioms and inference rules. They rely
on support from first-order theorem proving heuristics for ensuring that their encodings also provide a
decision procedure. The approach is of course quite extensible, as one can throw in useful axioms at will
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without requiring an encoding into a fixed limited formalism. On the other hand, the approach is only as
viable as the strength of the quantifier instantiation heuristics.

A different line of work in the context of reasoning about linked data-structures takes as starting
point decidable logics that can be mapped into automata-based decision procedures. The Pointer As-
serting Logic Engine, PALE [22], can reason about heap-allocated data structures using weak monadic
second-order logic of graph types. The tool reduces this logic to weak monadic second-order logic over
trees and uses the MONA theorem prover [14] to verify correctness properties. The logic of reachable
patterns [35] is a decidable and quite expressive logic thatcombines local reasoning with an extended
form of regular expressions. Decidability is also shown by reducing the logic to equisatisfiable formulas
in monadic second-order logic over ranked trees. Both of these logics are quite expressive, but their
decision procedure have the high complexity associated with monadic second-order logic. The boundary
between decidable and undecidable versions of first-order logics with transitive closure is investigated
in [13].

A wide body of the related work combines predicate abstraction with the verification of heap proper-
ties, This includes work around the TVLA tool in [17], which proposes a set of axioms for acyclic lists,
and a method based on predicate abstraction for singly linked lists [19]. Balaban et al. [2] use a small
model theorem to derive a decision procedure.

Finally, the correctness of many heap-manipulating algorithms depends on the fact that different
pointers refer to distinct memory structures. Separation logic [28] extends Hoare logic with an addi-
tional conjunction operator∗ whereA ∗B indicates that propertiesA andB hold in separate sections of
the heap. Separation logic has been used in many different automated reasoning techniques, including
inductive theorem proving (e.g. [32]) and predicate abstraction (e.g. [34]). Recent work by Sims [29] ex-
tends separation logic with fixed-point operators to express recursive properties, albeit without presenting
decidability results.

1.3 Paper structure

The rest of this paper is structured as follows. In Section 2,we formally define functional fixed-point
logic (FFP), and briefly review results from temporal logic used later in the paper. In Section 3, we
study different fragments ofFFP to obtain decidability and complexity results. Our main focus in this
section is to define linear functional fixed-point logic withequality,FFP(E). We also show thatFFP(E)
is closed under updates, subsumes several different logicsfor reasoning about heap invariants, and has a
PSPACE-complete satisfiability problem. In Section 4, we describeour reference satisfiability solver for
FFP(E) which works by integrating the SMT-based theorem prover Z3 with a decision procedure for
propositional LTL. Finally, in Section 5, we summarize our results and discuss ways our results can be
extended in future research.

2 Preliminaries

Functional Fixed-point Logic (FFP) extends quantifier-free first-order logic with the fixed-point opera-
torsµ andν to define least and greatest fixed-points of monadic predicates. To be more specific, we
let x range over bound variables,X ranges over bound monadic predicates,f andg range over distin-
guished unary uninterpreted function symbols,a, b, c, c′ range over constant terms,P ranges over unary
predicates,R over predicates containing neither bound variables, nor the function symbolsf , g. Then
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the set of formulasϕ in FFP are given by the rules:

t ::= f(t) | g(t) | c | x

atom ::= t ' t′ | P (t) | R

ϕ,ψ ::= X(t) | atom | ¬atom | ϕ ∨ ϕ | ϕ ∧ ϕ

| (µX .λx . ϕ[X])(t) | (νX . λx . ϕ[X])(t)

The semantics ofFFP follows the standard rules for evaluating fixed-point expressions. For example,
a modelM over a domainA satisfies(µX .λx . ϕ[X])(t) if M(t) ∈

⋂
{B ⊆ A | M, [X 7→ B] |=

∀x . ϕ[X] → X(x)}. FFP allows multiple different unary function symbols to be applied to the same
bound variables, and allows multiple bound second-order predicates to appear in the same scope. We
will here restrict ourselves to a more modest fragment inspired by Linear Time Temporal Logic (LTL).
In this fragment each fixed point expression has the form:

µX.λx.(B ∨ [A ∧X(f(x))]), νX.λx.(B ∨ [A ∧X(f(x))])

whereA andB are formulas that do not containX, but may containx. The greatest fixed-point operator
is expressible using the least fixed-point operator by usingthe de-Morgan dual formulation:

νX.λx.(B ∨ [A ∧X(f(x))]) = ¬µX.λx.(¬B ∧ [¬A ∨X(f(x))])

= ¬µX.λx.((¬B ∧ ¬A) ∨ [¬B ∧X(f(x))])

Convention 2.1. The following shorthands will be used throughout the paper:

(A U f,xB) (c) = [µX.λx.B ∨ [A ∧X(f(x))]] (c)

(A W f,xB) (c) = ¬ (¬B U f,x ¬A ∧ ¬B) (c)

(f,xB) (c) = (true U f,xB) (c)

a
f
→ b = (f,x x ' b) (a)

(f,xB) (c) = ¬((f,x ¬B) (c))

∀x : [a
f
→ b].A = (A U f,x x ' b) (a)

∀̃x : [a
f
→ b].A = (A W f,x x ' b) (a)

Convention 2.2.The set of subformulas of a formulaϕ is denotedSF (ϕ). The set of atomic subformulas
of ϕ is denotedASF(ϕ).

We will later establish that formulas in this more modest fragment are in general undecidable, and
so we will study various subsets of it. Of particular utilityis restricting the number of free variables that
a formula may refer to. We say that a formulaϕ is linear if each subformulaψ ∈ SF (ϕ) refers to at
most one free variable. As an example, the formula stating thatc reaches an infinite number of elements,
(f,x (f,y y 6' x) (f(x))) (c), is not a linear formula, becausey 6' x has two free variables.

The form(A U f,xB) (a) restricts somewhat, but not completely, the types of fixed-point formulas
that can be created. Distributivity of conjunction and disjunction can be used to combine multiple oc-
currences ofX(f(x)) into a single one, and separate out disjuncts not containingX into a formulaB.
The format does restrict handling fixed-point expressions with subterms of the formX(ffx). This is
not always an essential restriction on the properties that can be formulated usingFFP. The fragment
is for instance closed under the weakest precondition predicate transformer (see Proposition 3.6). Our
restriction does in principle limit the expressiveness a bit more than really required for our results. We
elaborate onusing extended temporal logicin the conclusion.
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2.1 Normal forms

We first discuss how formulas can be normalized to simplify later exposition. We rename bound variables
so that variables occurring in different contexts have different names while giving the same name to vari-
ables in nested quantifiers when possible. Furthermore, foreach top-level application of(ϕ U f,x ψ) (t)
we can introduce a fresh variablex that has the same name as the bound variablex, replacet by the
variable, and add the constraint thatx ' t. Thus, for instance

[x 6' a U f,x P (x) ∧ (y 6' b U f,y ¬P (y)) (x)] (c) ∧ (g,x x ' b) (c)

is converted into

[x 6' a U f,x P (x) ∧ (x 6' b U f,x ¬P (x)) (x)] (x) ∧ x ' c

∧ (g,y y ' b) (y) ∧ y ' c.

This transformation allows us to distinguish variables occurring in unrelated fixed-point expressions
while identifying variables occurring in related linear fixed-point expressions.

We will from hereon refer to the variablesx, y, z asflexible variables. Atomic formulas containing
unbound flexible variables are calledflexible; otherwise, they are calledrigid atoms. For examplex ' c
andff(x) ' x are flexible atoms, whilec ' f(c′) andP (f(c)) are rigid atomic formulas.

It will be convenient to use a shorthand for distributing a function applicationf over all free occur-
rences of flexible variables in a formula. We therefore use the notation hf ψ as shorthand for the formula,
where every free occurrence of a flexible variablex in ψ is replaced byf(x). In more detail, we can
define hf recursively on the structure of formulas and terms:

hf (ψ ∨ ψ′) = hf ψ ∨ hf ψ′

hf (ψ ∧ ψ′) = hf ψ ∧ hf ψ′

hf ¬ψ = ¬ hf ψ
hf
(
ψ U f,x ψ

′
)
(t) =

(
ψ U f,x ψ

′
)
( hf (t))

hf P (t) = P ( hf t)
hf (t ' t′) = ( hf t) ' ( hf t′)

hf f(t) = f( hf t)
hf x = f(x)
hf c = c

2.2 Propositional Linear-time Temporal Logic

Our results are mainly based on a reduction ofFFP fragments into propositional linear-time temporal
logic (LTL); and we rely on decision procedures for LTL. We will therefore recall some basic definitions
of LTL. A minimalistic formulation of (future) LTL takes the form:

ϕ ::= P | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ | (ϕ U ϕ)

We usep to range over propositional atoms and the operator is the next-state operator, whileU is
the temporaluntil connective. Just as in convention 2.1, other connectives can be defined usingU . For
exampleψ := trueU ψ, ψ := ¬¬ψ, andψ ⇒ ψ′ := (ψ → ψ′), (ψ ⇔ ψ′) := (ψ ↔ ψ′).
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FFP(PL) PSPACEcomplete Section 3.1
FFP(E) PSPACEcomplete Section 3.2
w2FFP(E) PSPACEcomplete Section 3.3
FFP(NL) NEXPTIME hard Section 3.4
2FFP(E) Undecidable Section 3.6

Table 1:FFP variants and their complexity
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H

H
HY

FFP(E)
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FFP(PL)

Figure 1: Relative expressiveness of theFFP fragments

Propositional models for linear-time temporal formulas consist of an infinite sequence of statesσ :
s0, s1, s2, . . ., such that each statesi supplies an assignment to the propositional atoms. The satisfaction
relation is extended to formulas in LTL for a modelσ and positioni:

σ, i |= P iff P ∈ si

σ, i |= ψ ∧ ψ′ iff σ, i |= ψ andσ, i |= ψ′

σ, i |= ψ ∨ ψ′ iff σ, i |= ψ or σ, i |= ψ′

σ, i |= ¬ψ iff σ, i 6|= ψ

σ, i |= ψ iff σ, i+ 1 |= ψ

σ, i |= ψ U ψ′ iff for somej ≥ i, σ, j |= ψ′, and for alli ≤ k < j : σ, k |= ψ

Finally, a formulaϕ holds in modelσ, if it holds at position 0. That isσ, 0 |= ϕ.

3 Complexity results for FFP logics

We will here introduce various variants ofFFP and summarize complexity results for these. Table 1
summarizes the variants ofFFP that we will be examining and associated complexity results.

Figure 1 summarizes how the examined fragments relate to each-other in terms of generality.2FFP(E)
is the fragment of linearFFP allowing at most two functionsf andg to be nested inside fixed-point op-
erators.FFP(NL) does not allow nesting of functions inside fixpoint operators, but does allow non-linear
subformulas. We will show that satisfiability of2FFP(E) is undecidable while satisfiability ofFFP(NL)
is NEXPTIME-hard.FFP(E) is the linear fragment ofFFP(NL), andFFP(PL) is the purely propositional
fragment ofFFP(E).
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3.1 FFP(PL)

In this section, we study the propositional fragment ofFFP, calledFFP(PL). It corresponds very closely
to linear time temporal logic, the only real difference is that the temporal sub-formulas refer to an explicit
anchor, as a constant.

Formulas inFFP(PL) have the form:

ϕ ::= P (t) | R | ϕ ∧ ϕ | ¬ϕ | (ϕ U f,x ψ) (t)

t ::= fn(x) | fn(c)

wherex is a flexible variable,fn(x) is then-time application off to x, c is an arbitraryrigid term
(without variables),P is a unary predicate, andR is a relation using only rigid terms.

FFP(PL) is formulated to be very similar to propositional LTL. It is indeed very straight-forward to
translate formulas from LTL toFFP(PL) and to translate formulas fromFFP(PL) into equisatisfiable
formulas in LTL. The correspondence can be used to establish:

Theorem 3.1. FFP(PL) is PSPACEcomplete.

Proof. In one direction, every propositional LTL formula can be replaced by a formula inFFP(PL) by
using the transformationsnP 7→ P (fn(x)), andn(ϕ U ψ) 7→ (ϕ′ U f,x ψ

′) (fn(x)), whereϕ′ is the
translation ofϕ andψ′ is the translation ofψ.

In the other direction, we reduce a groundFFP(PL) formulaϕ to an equisatisfiable LTL formula
ϕLTL by eliminating the constants. This requires moving constants outside of fixed-point expressions,
and decorating predicatesP with a constantc determined by the context thatP appears.

Our LTL formula is over predicates from two types of sources:(1) For each ground subformula
ρ(fn(c)) of the form(ψ U f,x ψ

′) (fn(c)) or P (fn(c)) appearing inside a fixed-point operator, we in-
troduce a fresh rigid predicaterρ(fn(c)). We call these ground subformulasalien subformulas, denoted
AlienSF(ϕ). We letR denote the set of fresh rigid predicates, and letdϕe denote the formula obtained
by replacing ground predicates with the corresponding predicates inR. (2) For each uninterpreted pred-
icateP and constantc, we introduce the LTL predicatePc which is used to the context whereP appears.
The set of decorated predicates is denoted byP (C).

To convert a formulaψ appearing beneath a fixed-point formula(ϕ1 U f,x ϕ2) (fnc), we define the
mappingLTLc as follows.

LTLc(ψ ∧ ψ
′) = LTLc(ψ) ∧ LTLc(ψ)

LTLc(¬ψ) = ¬LTLc(ψ)

LTLc((ϕ U f,x ψ) (fn(x))) =n(LTLc(ϕ) U LTLc(ψ))

LTLc(P (fn(x))) =nPc

LTLc(ρ(f
n(d))) = rρ(fn(d))

This function uses the rigid predicatesR to replace ground predicates appearing inside the formula and
decorates each uninterpreted predicate with the constantc.

To convert a ground formulaϕ, we define the formulaLTL(ϕ) structurally,

LTL(ψ ∧ ψ′) = LTL(ψ) ∧ LTL(ψ) LTL(¬ψ) = ¬LTL(ψ)

LTL((ϕ U f,x ψ) (fn(c))) =n(LTLc(ϕ) U LTLc(ψ)) LTL(P (fn(c))) =nPc

TheFFP(PL) formulaϕ is mapped to the LTL formula

ϕLTL = LTL(ϕ) ∧
∧

r∈R

(r ⇐⇒ r) ∧
∧

ρ(fn(c))∈AlienSF(ϕ)

rρ(fn(c)) ⇐⇒ LTL(ρ(fn(c)))
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EachFFP modelM can be mapped to an LTL sequenceσM : s0, s1, s2, . . . over rigid predicatesR and
flexible predicatesP (C) such that:

Pc ∈ si ⇐⇒ M |= P (f i(c)) rρ(fn(c)) ∈ si ⇐⇒ M |= ρ(f i+n(c))

It follows thatMmodelsϕ iff σM modelsϕLTL by a structural induction on subformulas ofϕ.
Conversely, each LTL sequenceσ : s0, s1, s2, . . . satisfyingϕLTL can be mapped to aFFP model

M over the set of termsTF∪C = { fn(c) | c ∈ C,n ∈ N } whereM |= p(f i(c)) ⇐⇒ Pc ∈ si. One
can also show thatσ modelsϕLTL iff Mσ modelsϕ. Consequently,ϕ andϕLTL are equisatisfiable.

The conversions betweenFFP(PL) and LTL formulas are straightforward and can be done in linear
time. Moreover, there are well-known fragments of linear temporal logic that have corresponding NP-
complete fragments ofFFP(PL). It is well-known that LTL using only the operators and is NP-
complete. Given anFFP(PL) only containing the fixed-point operatorsf,x andf,x, our reduction
from FFP(PL) to LTL used in Theorem 3.1 will result in a LTL formula only using and

It is also the case that formulas only using in positive occurrences, and on atomic sub-formulas
is also NP-complete [30]. We can strengthen this result in a way that extends [30] in a trivial way for
LTL, but it is useful forFFP(PL): if the operator never occurs in the scope of or, the fragment
of LTL remains NP-complete. To sketch the argument: we can guess, check and combine models for
the temporal subformulas using and. An occurrence of allows shifting an existing model by
introducing an arbitrary new initial state. Formulas inFFP(PL) that do not use the distinguished function
f on flexible variables fall into this fragment.

Similarly, FFP(PL) over formulasϕ wheref,x is only used in positive occurrences andf is only
applied to constants is NP-complete. This is because we can reduceϕ to the following equisatisfiable
LTL formula:

ϕLTL = LTL(ϕ) ∧
∧

P (fn(c))∈AlienSF(ϕ)

rP (fn(c)) ⇐⇒ nPc

∧
∧

(f,x ψ)(fn(c))∈AlienSF(ϕ)

r(f,x ψ)(fn(c)) =⇒ nLTLc(ψ).

The proof thatϕ andϕLTL are equisatisfiable is similar to that used in Theorem 3.1.

3.2 FFP(E)

We will now consider an extension ofFFP(PL) by admitting equality predicates on terms containing
bound variables. The resulting logic is calledFFP(E). In contrast toFFP(PL), the embedding into
LTL is less straight-forward, since the equalities interact in an essential way with the models for the
propositional temporal abstraction. Formulas inFFP(E) extendFFP(PL) by admitting atomic formulas
that are equalities between terms containing flexible variables, constants, and a distinguished function
f .

The operatorhf will be convenient to limit the number possible equality predicates we need to con-
sider. We also admit terms where the distinguished functionf is applied to a constant. Thus, formulas
of FFP(E) are of the form:

ϕ ::= fn(x) ' x | x ' c | c ' f(c′) | c ' c′ | hf ϕ

| P (x) | R | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |
(
ϕ U f,x ϕ

′
)
(x)

such that the formulasϕ andϕ′ in (ϕ U f,x ϕ
′) (x) contain at most one free flexible variable, which is

x.
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It is not hard to see that we can build all combinations of equality predicates using one flexible
variablex, the functionf and up to two constantsc andc′ using the the base casesfn(x) ' x, x '
c, c ' f(c′), c ' c′ and the operatorhf ψ. For exampleϕ[f(c) ' ff(c′), f(x) ' c] is equisatisfiable
to the formulac1 ' f(c) ∧ c2 ' f(c′) ∧ ϕ[c1 ' f(c2), hf (x ' c)]. We will use the operatorhf in two
ways: in atemporal viewand aground view. In the temporal view, we do not normalize the formula
with respect to the definition ofhf ; the use of hf is essential for bridgingFFP(E) with LTL. In the ground
view, we distribute hf over the free flexible variables such thathf gets eliminated.

Even very small examples can show how the interaction between equalities makes checking the
satisfiability ofFFP(E) more complex. For example, the following unsatisfiable formula illustrates how
distinct constants can not be as easily partitioned as was done inFFP(PL):

(f,x x ' c ∧ hf P (x)) (a) ∧ (f,x x ' c ∧ ¬ hf P (x)) (b).

The first conjunct implies thatP (f(c)), but the second required¬P (f(c)). This is despiteP (f(c)) not
directly appearing in the formula.

To illustrate how equalities and predicates may interact, consider the formula:
(
f,x x ' f

3(x)
)
(a) ∧

(
f,x x ' f

2(x)
)
(a) ∧ (f,x hf P (x) ⇐⇒ ¬P (x)) (a)

The first two clauses require thatf i+3(a) = f i(a) andf j+2(a) = f i(a) for somei andj in N. Collec-
tively, this implies thatf(fk(a)) = fk(a) for k = min(i, j). Conversely, the third clause requires that
the value ofP changes at each dereference, and consequently,f(fk(a)) cannot equalfk(a).

3.2.1 Expressivity ofFFP(E)

We make a case that theFFP(E) logic is quite general and expressive. It subsumes several (but not all)
logics recently proposed for reasoning about heaps. We summarize some of the properties that can be
expressed inFFP by encoding logics from the literature on verification of heap manipulating programs.

Example3.2 (Transitive Closure off ). Suppose we letf∗(a, b) mean that there is a sequence of 0 or
more applications off to a that produces an elementb. That is,f∗(a, b) ≡ ∃n . fn(a) ' b. This can be
easily represented:

f∗(a, b) ≡ (f,x x ' b) (a) ≡ a
f
→ b

Example3.3 (Reachability Invariants [23]). Nelson introduced a ternary predicateu
f
−→
w

v which in-

dicates thatu reachesv without going throughw. It can be used verify a program that computes the

union of two sets represented as doubly linked lists, and canbe expressed inFFP(E) as: u
f
−→
w

v ≡

(x 6' w U f,x x ' v) (u).

Example3.4 (Well-Founded Reachability [15]). Lahiri and Qadeer define a logic for the context of lists
that are well-founded with respect to a distinguished predicate. Their observation is that even data-
structures, such as cyclic lists contain a distinguished element,the head element. So predicates that refer
to the transitive closure from some list element can be cut off around such distinguished elements. the
head. We say that the list is well-founded with respect to some predicateBS (blocking set), and they can
define the functionB(u) that takes a list elementu to the first element inBS that is reachable fromu.
Another predicate that they found to be useful isR(u, v) that holds, whenv is reachable fromu without
hitting the blocking setBS. FFP(E) allows formulating these predicates directly:

B(u) ' v ≡ (¬BS(x) U f,x x ' v) (u) ∧BS(v)

R(u, v) ≡ (¬BS(f(x)) U f,x x ' v) (u)

9



FFP

Example3.5 (btwnf [25]). Bingham, Rakamarić and Hu use a predicate that is somewhat different
from Nelson’s reachability predicate. Instead ofnot visiting an auxiliary node, their main reachability
predicate requires that for nodesa, b, andc, there is a path froma to c following f , and thatb occurs
beforec on such a path. The predicate has the following encoding:

btwnf (a, b, c) ≡ (x 6' c U f,x x ' b) (a) ∧ b
f
→ c

FFP(E) is also closed under the weakest-precondition predicate transformer, when a pointwise up-
date is made to the functionf :

Proposition 3.6. FFP(E) is closed under pointwise functional updates.

Proof. Let f be a function that is updated at pointu to have valuev. Thus, letf ′ := λy.if y '
u then v else f(y). Then

(A U x,f B) (a)[f := f ′]

= { unfold definition of U }

µR.λx.(B ∨ (A ∧R(f(x))))(a)
[
f := f ′

]

= { LetA′ = A[f := f ′], B′ = B[f := f ′] }

µR.λx.(B′ ∨ (A′ ∧R(f ′(x))))(a)

= { unfold definition off ′ underR }

µR.λx.

(
B′ ∨

(
A′ ∧

[
x ' u ∧R(v)

∨ x 6' u ∧R(f(x))

]))
(a)

= { R(v) must visitB′ before revisitingu }

µR.λx.




B′

∨ x ' u ∧ ((x 6' u ∧A′) U x,f B
′) (v)

∨ x 6' u ∧A′ ∧R(f(x))


 (a)

= { fold back toU format}(
A′′ U x,f B

′′
)
(a)

where

A′′ : x 6' u ∧A′

B′′ :

(
B′

∨ x ' u ∧ ((x 6' u ∧A′) U x,f B
′) (v)

)

3.2.2 Complexity results

Our main result in this section is the following:

Theorem 3.7. The satisfiability problem ofFFP(E) is PSPACE-complete.

Proof. The theorem follows from Lemmas 3.13, 3.14, 3.15, and the fact that LTL isPSPACE-complete [30].
The lemmas are established in this section. They are combined in a sequence of transformations illus-
trated below:

10
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ϕ -
Def 3.9

Tab(ϕ) -
Def 3.11

ϕPTL -
Def 3.12

ϕPTL ∪ FFP(E)PTL

The transformations ensure that

ϕ is satisfiable mod.FFP(E) iff ϕPTL ∪ FFP(E)PTL is satisfiable mod. LTL.

The first transformation takes a formulaϕ and produces an equisatisfiable formulaTab(ϕ), which re-
places U and hf subformulas by new propositional atoms. It also produces anacceptance condition
F , which is a set of formulas. The second transformation replacesf,x andf,x and hf by their LTL
siblings,, and. We have to add additional constraints to ensure that the resulting formula is
equisatisfiable. This is done in the last transformation.

Definition 3.8 (Temporal abstraction). We use the functiondϕe to convert a temporal formula into a
non-temporal formula. It replaces each sub-formula that uses a temporal connective by a new predicate.
In more detail the formuladϕe is defined by cases:

dψ ∧ ψ′e = dψe ∧ dψ′e

dψ ∨ ψ′e = dψe ∨ dψ′e

d¬ψe = ¬dψe

d
(
ψ U f,x ψ

′
)
(x)e = d

(
ψ U f,x ψ

′
)
e(x)

d hf ψe = d hf ψe

We letPabs(ϕ) denote the new predicates introduced for the temporal subformulas ofϕ. Specifically,
AbsP(ϕ) contains a formuladρe for each formulaρ ∈ SF (ϕ) with the formρ = hf ψ andρ = ψ U f,x ψ

′.

Definition 3.9 (Tableau normal formTab(ϕ)). Given a formulaϕ in FFP(E), we define the tableau
normal form ofϕ as the tuple〈dϕe,Next , Inv ,F〉. It corresponds to the formula

Tab(ϕ) : dϕe ∧ Next ∧ Inv ∧
∧

F∈F

F (1)

whereNext is the conjunction of the formulas

d hf ψe ⇔ hf dψe for hf ψ ∈ SF (ϕ)

d
(
ψ U f,x ψ

′
)
e(x)⇔

(
dψ′e ∨ (dψe ∧ hf d

(
ψ U f,x ψ

′
)
e(x))

)
for (ψ U f,x ψ

′) (x) ∈ SF (ϕ)

R⇔ hf R for each rigid predicateR

R ranges over not just the rigid atoms inϕ and ground equations inϕ, but also a predicatè(c) for
each flexible predicatèand constantc. Additionally, note that̀ ranges over not just the uninterpreted
predicates inϕ, but also the predicatesAbsP(ϕ) introduced by temporal abstraction.

The formulaInv is the conjunction of

d
(
ψ U f,x ψ

′
)
e(x) ⇒ (dψ′e ∨ dψe) for each(ψ U f,x ψ

′) (x) ∈ SF (ϕ) (2)

dψ′e ⇒ d
(
ψ U f,x ψ

′
)
e(x) for each(ψ U f,x ψ

′) (x) ∈ SF (ϕ) (3)

The acceptance conditionsF are partitioned into the setsF(x),F(y), . . . for each of the flexible
variablesx, y, . . . and the setsF(x) comprises of the formulas

d
(
ψ U f,x ψ

′
)
e(x) → dψ′e for each(ψ U f,x ψ

′) (x) ∈ SF (ϕ). (4)
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The tableau normal form separates the constraints on the unfoldings off . These are captured in the
relationsNext , while the acceptance conditions are enforced using the setF . The tableau normal form
corresponds to the well-known propositional tableau construction for linear-time temporal logic [3, 20].
The expansion preserves satisfiability.

Lemma 3.10. Letϕ be a formula inFFP(E), thenϕ is equisatisfiable withTab(ϕ).

Definition 3.11(Propositional linear-time temporal logic erasureϕPTL). The purpose with definition 3.12
is to create a formula in LTL that is equisatisfiable to the correspondingFFP(E) formula. The LTL era-
sure is defined over the structure of formulas inFFP(E) by replacing subformulas of the formhf ψ by
ψ, by replacing subformulas of the form(ψ U f,c ψ

′) (x) byψ U ψ′, (f,x ϕ) (x) are replaced byϕ
and(f,x ϕ) (x) is replaced byϕ. Finally, atomic subformulas are treated as different propositional
atoms. In particular, the interpretation of the relation' is no longer defined by the theory of equality.
We say that the atoms have a propositional interpretation.

Definition 3.12 (The propositional completionϕPTL ∪ FFP(E)PTL). Let us assume thatϕ contains the
atomic subformulasfn(x) ' x, c ' f(c′), x ' c, together with rigid atoms that we will refer to asR,
and flexible literals that we will refer to as̀(x), wherex is the flexible variable that is used in`. LetF
be the set of acceptance conditions from definition 3.9, the tableau normal form ofϕ. The propositional
completion ofϕ is the formulaϕPTL ∪ FFP(E)PTL obtained by adding the conjunctions:

x ' c ⇒  (x 6' c W F ) F ∈ F(x) (5)

x ' c ∧ `(x) ⇒ `(c) (6)

fn(x) ' x⇒ (`(x)↔ n`(x)) (7)

fn(x) ' x ∧ fm(x) ' x ⇒ fgcd(m,n)(x) ' x (8)

fn(x) 6' x ∧ x ' c ⇒ n(x 6' c) (9)

fn(x) 6' x ∧ fm(x) ' x ⇒ fn−m(x) 6' x n > m (10)

fn(x) ' x⇒ (fn(x) ' x) (11)

c ' f(c′) ∧ x ' c′ ⇒ (x ' c) (12)

x ' c ⇒ (x ' c′ ↔ c ' c′) (13)

E − taut (14)

The last set of invariants (14) are the set of tautologies that can be formed using the rigid predicates.
Since each invariant uses at most one pair of atomic subformulas inϕ, we have

Lemma 3.13(Size). The size of the resulting formulaϕPTL ∪FFP(E)PTL, |ϕPTL ∪FFP(E)PTL|, is in
the order ofO(|ϕ|2).

The additional conjunctions added as a result of the propositional embedding maintain satisfiability.
That is:

Lemma 3.14(Soundness). If ϕ is satisfiable inFFP(E), thenϕPTL ∪ FFP(E)PTL is satisfiable in the
empty theory.

In fact, the reduction is not only equisatisfiable, but we have the converse:

Lemma 3.15 (Propositional Completeness). If the propositional completion of the formulaϕPTL ∪
FFP(E)PTL is satisfiable in the empty theory, thenϕ is satisfiable in the theory ofFFP(E).
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Proof. If the abstractionϕPTL ∪ FFP(E)PTL is satisfiable, then there is a sequence of statesσ :
s0, s1, s2, s3, . . ., satisfyingϕPTL ∪ FFP(E)PTL, where each statesi assigns truth values to the propo-
sitional atoms inϕPTL ∪ FFP(E)PTL. We will examine the assignment to the atoms in each state from
σ and extract a modelM for the original formulaϕ. We will then establish that the propositional model
is also a model when equalities are interpreted.

The model forϕ is built by processing each flexible variablex and creating an interpretation forf
that is relevant forx. Notice that the truth assignments implied by each of the statessi can be partitioned
corresponding to each of the flexible variables. Let us assume that the flexible variables arex, y, z, then
the states are partitioned intosi(x), si(y), andsi(z) for each statesi ∈ σ. The statesi(x) contains all
the assignments to the atomic subformulas using the flexiblevariablex.

Consider the cases:

1. There are two statessi(x) andsj(x), that contain the atomx ' c. Without loss of generality, we
can assume thatsi(x) is the first state that contains the equalityx ' c, and thatsj(x) is the next
state aftersi(x) that contains the same equality. Furthermore, we can also assume that there are
no repeated equalities betweensi(x) andsj(x). Invariant (5) entails that all acceptance conditions
related to the flexible variablex are satisfied betweensi(x) andsj(x). Also, every state between
si(x) andsj(x) either entails no equality atoms, or if it entails an equality atomx ' c′, there is no
other state betweensi(x) andsj(x) that entails the same atom. We can fix the interpretation off
from c by introducing fresh distinct elementsa0, a1, . . . , ai, ai+1, . . . , aj−1, such thatM(c) = ai,
as well asM(f(ak)) = ak+1 for k < j, andM(f(aj−1)) = ai. Furthermore, if some state
sk betweens0 andsj contains an equalityx ' c′, then setM(c′) = ak. The interpretationM
is extended to satisfy the propositional interpretation byexamining the following cases for the
interpretation of the atomic subformulas in a statesk:

• x ' c - by construction,M(c) = ak.

• x 6' c - by construction, each state is consistent with respect to the theory of equality, and
the interpretation respects disequalities.

• ±P (x) - wheneversk(x) entailsP (x), then extend the interpretation by updatingM(P ) :=
M(P ) ∪ {ak} if P (x) ∈ sk(x).

• fn(x) ' x - invariant (7) implies thatx ' c is a member of everyn states. In other words,
j − i dividesn. Thus, the constructed interpretation satisfiesM, ak |= fn(x) ' x for every
elementak.

• fn(x) 6' x - invariant (10) implies that the period lengthj − i does not dividen. Thus,
M, ak |= fn(x) 6' x if (fn(x) 6' x) ∈ sk(x).

2. There are no repeated states containingx ' c, for anyc, but there is a state that containsfn(x) ' x
for somen. Invariant (11) implies that all states after the first occurrence offn(x) ' x contain
this same equality. From invariant (8), we can assume thatn divides every otherm, such that
fm(x) ' x is in the suffix. Invariant (7) implies that everyn states satisfies precisely the same
atomic formulas. So the acceptance conditionsF(x) are satisfied within the loop of length at most
n. Let us build an interpretation forf by considering the prefix of statess0, . . . , sj−n−1 leading up
to the looping suffix, followed by the statessj−n, . . . , sj used in the looping suffix. We introduce
the fresh elementsa0, . . . , aj and constrainM(c) to beak, if the statesk(x) contains the equality
x ' c. By our assumptions, this can only be the case ifsk is among the statess0, . . . , sj−n−1 (in
other words0 ≤ k < j − n). For the remaining cases we have:

• x 6' c - by construction.
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• ±P (x) - by construction:M(P ) :=M(P ) ∪ {ak} if P (x) ∈ sk(x).

• fm(x) ' x - by construction.

• fm(x) 6' x from invariant (10) it follows that we can assumem < n, but ak 6= ak+m is
implied by the construction.

3. Neither case 1 or 2 apply, so every equalityx ' c occurs in at most one state inσ(x), and there
is no state containingfn(x) ' x for any n. We build an interpretation forf by selecting an
infinite sequencea0, a1, . . . , ai, . . . of fresh distinct elements and assigningM(c) = ai if state
si(x) contains the atomx ' c (there is at most one such state). As before, we extendM to
satisfy predicates by assigningM(P ) := M(P ) ∪ {ak} if P (x) ∈ sk(x). By the assumptions,
the suffix contains no state implyingfn(x) ' x for any of the atomic predicates inϕ. Finally, the
construction ensures that every state impliesfn(x) 6' x for arbitraryn.

Notice that when the propositional modelσ contains a periodic suffix, we do not need an infinite
number of fresh distinct elements in the construction. It just suffices to select a period of length
greater thann for any subformula of the formfn(x) ' x. This ensures that the model satisfies
fn(x) 6' x in every state.

A structural induction over the formulas implies that the partial interpretation built so far also satisfies
the non-atomic (temporal) formulas in the statessi(x). More specifically, invariant (13) implies that the
interpretation ofx is consistent with congruences overf .

Suppose now that we have fixed the interpretation off for the flexible variablex and wish to process
y. There are two cases to consider:

1. There is a statesi(y) that contains an equalityy ' c, but there was a statesj(x) previously used
to constructM that containedx ' c. There are two sub-cases:

(a) The statesi(y) does not contain equalities of the formfn(y) ' y and si(y) is the first
state to contain a previously visited equality. We build a model for f based on the states
s0(y), . . . , si−1(y) by introducing fresh elementsa1, . . . , ai−1 intoM and fixingf as before
(f(a0) = a1, f(a1) = a2, . . . , f(ai−1) =M(c)).

(b) The statesi(y) does contain an equality of the formfn(y) ' y. In this case we look for the
first state amongs0(y), s1(y), . . . , si(y) that contains the equalityfn(y) ' y. This first state
gets aligned with the matching state forx.

The construction relies on invariant (6). It implies that ify ever enters a state that satisfies an
equality y ' c previously satisfied byx, then the interpretation forf on y henceforth can be
determined by the interpretation off on c.

2. There is no states(y) that implies a previously encountered equality. In this case we build a model
just as we did forx.

3.3 w2FFP(E)

w2FFP(E) is the fragment ofFFP, that requires every bound variable to appear linearly, just as for
FFP(E), but allows different flexible variables to use different functions. The same flexible variable is
still required to use just the same function symbol. We therefore call the fragment theweak2-function
extension ofFFP(E). Thus,

(f,x x ' a) (c) ∧ (g,y y ' b) (c)
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is a legal formula inw2FFP(E), but

(f,x x ' a) (c) ∧ (g,y f(y) ' b) (c)

is not, because bothg andf are used on the same flexible variabley. For simplicity we will assume that
formulas inw2FFP(E) use just two functionsf andg in the fixed-points. The generalization to multiple
functions is straight-forward.

Theorem 3.16.The satisfiability problem ofw2FFP(E) is PSPACE-complete.

Proof. Let us examine where we relied on the use of single function symbol in the proof of lemma 3.15.
All auxiliary safety conditions reference a single flexiblevariable. So the accessibility relationhf was
unique determined by the flexible variable. The safety condition (6) bridges the interpretation between
flexible variables. Their accessibility relations could inw2FFP(E) potentially be associated with two
different functions. For example,x could be associated with accessibility functionf , andy could be
associated withg. If x is associated withf , then the atomic literal̀(x) is also associated withf . Let us
for every constantc and functionf introduce the flexible variablexf,c, and for every literal of the form
`(x) and constantc introduce a fresh predicate constantR`c. Then we can replace safety condition (6)
by the satisfiability preserving constraints:

x ' c ∧ `(x) ⇒ R`c (15)

xf,c ' c ∧ (R`c → `(xf,c)) (16)

We say that the flexible variablexf,c ownsf at the constantc.
Given a propositional model forϕPTL∪FFP(E)PTL we can now extract a model for the functionsf

andg by examining firstf and theng. For the functionf , we build an interpretation forf by examining
each variablexf,c.

3.4 FFP(NL)

3.5 Extensions toFFP(E)

In this section, we analyze the complexity of two extensionsto FFP(E).
FFP(NL) is the fragment ofFFP that admits only a single function symbolf with fixed-point ex-

pressions, but allows different bound variables to appear together in the same scope. We can reduce
FFP(NL) to monadic second order logic by translating each fixed-point expression(µR.λx.C[R])t into
an equivalent second-order expression(∀Z) (∀x.Z(x) ⇐⇒ C[Z](x)) =⇒ Z(t).

Both weak and strong second-order monadic logic with a single function symbol is decidable [5]
(Corollary 7.2.11 and 7.2.12). SoFFP(NL) logic is decidable. The second-order theory of one unary
function is on the other hand not elementary recursive. It does not necessarily follow thatFFP(NL) is
non-elementary as well, but we establish thatFFP(NL) is at leastNEXPTIME-hard.

Theorem 3.17.The satisfiability problem ofFFP(NL) is NEXPTIME-hard.

Proof. Our proof is inspired by a similar construction forLRP [35].
Given a tiling problemT = (T,R,D) with T = {T1, . . . , Tk} and a natural numbern ∈ N, it is an

NEXPTIME-complete problem to decide whether there is a tiling compatible with T on a square grid of
size2n × 2n.

We can reduce the bounded tiling problem to the satisfiability problem of anFFP problem of size
O(n2). TheFFP signatureΣ for our problem has constantss andt and unary predicatesT ∪ X ∪ Y
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whereX = {X0, . . . ,Xn−1} andY = {Y0, . . . , Yn−1}. Our intention is that every square tiling grid
can be mapped to aΣ-model. The predicatesX andY are used to encode the horizontal and vertical
coordinates of a square in the grid, and the predicatesT are used to encode the tile associated to the
grid. The constants denotes the top-left origin and the constantt denotes the bottom-right corner. The
formulaϕ contains the following constraints:

ϕ = Xs ' 0 ∧ Y s ' 0 ∧Xt ' m ∧ Y t ' m ∧ ft ' t

∧ ∀̃x : [s
f
→ t].Xfx ' Xx+ 1 ∧ Y fx ' ite(Xx ' m,Y x+ 1, Y x)

∧ ∀̃x : [s
f
→ t].




∨

1≤i≤k

( ∧

1≤j<i

¬Tjx ∧ Tix ∧
∧

i<j≤k

¬Tjx

)


∧ ∀̃x : [s
f
→ t].Xx ' m ∨

∨

(i,j)∈R

Tix ∧ Tjfx

∧




(
yXy ' Xx ∧ Y y ' Y x+ 1 ∧

∨

(i,j)∈D

Tix ∧ Tj


 (y)

)
U f,x Y x ' m


 (s)

∧ T0(s) ∧ Tk(t)

FFP(NL) does not enjoy the finite model property. For example:

Proposition 3.18. The sentence(f,x (f,y x 6' y) (f(x))) (c) is satisfiable by an infinite model, but
unsatisfiable for finite models.

We will use this result to establish thatFFP(NL) is incomparable theLogic of Reachable Patterns
(LRP) [35]. LRP allows specifying properties that require traveling both forwards and backwards along
an edge whereas our logic only allows reasoning forwards. Soin our logic one can always extend
models with additional nodes that can reach other elements in our model, while this is not true forLRP.

For example, theLRP sentence¬c[
f
←−]⊥ implies that no node can reachc via f . This sentence is not

expressible inFFP. On the other hand,LRP has a finite model property whereas by Prop. 3.18, our logic
does not. Sentences inFFP such as(f,x (f,y x 6' y) (f(x))) (c) which are only satisfiable by infinite
models are not expressible inLRP. These observations imply the following:

Corollary 3.19. The expressiveness ofFFP andLRP is incomparable.

We are not aware of any matching lower and upper bounds on the complexity ofFFP(NL), neither
do we know if the weak theory (that only admits finite models) of FFP(NL) is any easier than full
FFP(NL).

3.6 2FFP(E)

We also consider the fragment ofFFP where multiple function symbols are allowed to be associated
with the temporal connectives and we are allowed to nest different functions over the flexible variables.
We call this fragment2FFP(E). Among other things, this logic allows us to encode arbitrarily large
grids. For example, we can express that functionsf andg commute over all nodes reachable from a
given constantc

(f,x [g,y f(g(y)) ' g(f(y))]x) (c)

We show that the satisfiability problem for this logic is undecidable.
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{ r andd commute.}

∀̃x : [s
r
→ null].∀̃y : [x

d
→ null].rdy ' dry

∧ { right-most edge is straight.}

∀̃x : [s
r
→ null].∀̃y : [x

d
→ null].ry ' null⇔ rdy ' null

∧ { bottom edge is straight.}

∀̃x : [s
r
→ null].∀̃y : [x

d
→ null].dy ' null⇔ dry ' null

∧ { null loops on self.}

r(null) ' null ∧ d(null) ' null

∧ { each node has one type.}

∀̃x : [s
r
→ null].∀̃y : [x

d
→ null].

∨

i∈[1,k]

Ti(y) ∧
∧

j∈[1,k]\{i}

¬Tj(y)

∧ { types are right compatible.}



∀̃y : [x

d
→ null].

∨

(i,j)∈R

Ti(y) ∧ Tj(ry)


 U r,x rx ' null


 (s)

∧ { Types are down compatible.}

∀̃x : [s
r
→ null].




∨

(i,j)∈D

Ti(y) ∧ Tj(dy) U d,y dy ' null


 (x)

∧ { Top-left node has typeT0. }

T0(s)

∧ { Bottom right node has typeTk. }

(r,x (d,y y 6' null ∧ ry ' dy ' null ∧ Tk(y)) (x)) (s)

Figure 2: Tiling problem encoding

Theorem 3.20.The satisfiability of2FFP(E) is undecidable.

Proof. We will create a tiling problem with functionsd (down) andr (right), and use two pointss (start)
andnull. Figure 2 shows the encoding.

4 Integration with the SMT solver Z3

This section describes a decision procedure forFFP(E). It uses an integration of a LTL checker and
a solver for a background theoryT . The structure of the integration is similar to how SAT solvers
may be combined with decision procedures. A reference implementation of the integration is available
from http://research.microsoft.com/en-us/people/nbjorner/ffpsrc.zip.
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4.1 FFP and theories

Our formulation ofFFP uses auxiliary constantsa, b, c, c′ but does not say whether there are any addi-
tional constraints on the constants. The constants are usedinstead of adding to the signature ofFFP alien,
composite, terms from other theories thanFFP. Other theories that could be of interest in the context of
program analysis and verification are for instance the theory of arithmetic, term algebras, bit-vectors and
arrays. We useT to refer to “other theories” thanFFP.

The Nelson-Oppen combination result [24] applies toFFP, becauseFFP is stably infinite. It allows
for us to use this abstraction because the only information thatFFP requires from the interface terms is
that there is aT -consistent partition that is also consistent with theFFP portion of the formula we wish
to check. Theinterfaceterms here comprises of all alien terms and subterms of the form f(t), wheret is
a interface term.

Proposition 4.1. Let T be a stably infinite theory. Letϕ be a formula, with the set of rigid, interface
termsTerms = t1, . . . , tn overT , and setR1, . . . , Rm of rigid alien predicates. Thenϕ is satisfiable
over FFP + T if and only if there is a partitionPartition(Terms) of the set of termsTerms and an
assignmentαi of the predicatesRi to trueor false, such that

ϕ[αi/Ri] ∧ Partition(Terms) ∧
∧

i

(αi ↔ Ri)

is consistent overFFP + T if and only if

Partition(Terms) ∧
∧

i

(αi ↔ Ri) is consistent withT

and
ϕ[αi/Ri] ∧ Partition(Terms) is consistent withFFP(E).

Note that we require that the alien terms and predicates be rigid. It is for example not allowed to nest
alien function symbols over flexible variables. On the otherhand, it is allowed to nest the functions used
by FFP within rigid terms, since terms can be purified by introducing extra constants and equalities. For
example,ϕ[f(c) + 3] is equisatisfiable withc′ ' f(c) ∧ ϕ[c′ + 3], wherec′ is a fresh constant symbol.

4.2 Abstraction/refinement solver combinations

Most modern SMT solvers, including Z3 [10], integrate theory solvers with a propositional SAT solver,
based on state-of-the-art techniques for SAT solving. The integration of theory solvers and the SAT
solver can be described using a simple exchange:

The SAT solver treats each atom in a formula as propositionalatoms. It provides propositional
models that assign each atom totrue or false. We will uses to refer to a propositional model, and it will
be represented as a the set of atomic formulas that are true inthe propositional model. A propositional
models of a formulaϕ corresponds to a conjunction of literals:

L :=
∧

a∈ASF(ϕ),a∈s

a ∧
∧

a∈ASF(ϕ),a6∈s

¬a

The theory solvers check the propositional models forT consistency. If the conjunction isT -unsatisfiable,
then there is a minimal (not necessarily unique) subsetL′ ⊆ L such thatT ∧ L′ is inconsistent and for
every subsetL′′ ⊂ L′, it is the case thatT ∧ L′′ is consistent. The SAT solver can in exchange learn
the clause¬L′ and has to search for a propositional model that avoidsL′. The basic integration can be
described using the figure below:
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SAT T
-

�

s

¬L′

We will here describe an analogous abstraction/refinement based on LTL. Instead of adding proposi-
tional clauses, we rely on adding propositional temporal safety properties. Thus, given a formulaϕ, we
create an initial propositional abstraction. When a LTL satisfiability checker returns a temporal model
σ for ϕ it is checked forT -consistency (we assume this includes consistency with respect to the theory
of ground equations), as well as consistency with respect tothe safety properties from definition 3.12.
If the propositional modelσ violates any of theT +safety property checks, the integration produces a
temporal safety property that is conjoined to the initial propositional abstraction. Conversely, the BDD-
based satisfiability checker we use for LTL is also able of characterizing the set of feasible initial states
using a predicateInit . The combination of these assignments can be used to constrain future checks for
T consistency. The combination approach is illustrated below:

LTL T
-

�

Init , σ

Safety blockers

4.3 Checking Satisfiability of LTL formulas

There are to date a variety of methods for checking satisfiability of LTL formulas. Some are based
on buildingω-automata, or alternatingω-automata [31]. Any method can in principle be used for our
approach; the important feature is that the satisfiability checker produces a propositional temporal model
σ. We will here describe a method based on a more traditional construction that is based on creating
tableaux. It is simple to implement using a symbolic BDD package.

Our approach is to build aµ-calculus formula that can be evaluated using symbolic model-checking
techniques. The technique is analogous to reducing LTL checking to fair CTL model checking [7]. The
starting point for the construction is a temporal tableauTab(ϕ). For this purpose associate propositional
variables~u with each of the atomic formulas used inTab(ϕ). This includes subformulas of the form
d(ψ U f,x ψ

′)e(x) andd hf ψe. If u is an atomic subformula, we associateu′ with the subformulahf u.
Thus, the temporal tableau induces relationsdϕe(~u), Inv(~u), Next(~u, ~u′), and the set of relations

F (~u) ∈ F .
Let us introduce the following shorthands:

〈pre〉P := λ~u.∃~u′ . Inv(~u) ∧ Inv(~u′) ∧ Next(~u, ~u′) ∧ P (~u′),

〈post 〉P := λ~u.∃~u0 . Inv(~u0) ∧ Inv(~u) ∧ P (~u0) ∧ Next(~u0, ~u),

〈pre∗〉P := µX . λ~u . P (~u) ∨ 〈pre〉X(~u),

〈post∗〉P := µX . λ~u . P (~u) ∨ 〈post 〉X(~u).

The set of initial states that contain an accepting path can then be defined asInit , where:

Rec := νR . 〈post〉(λ~u .
∧

F∈F

(F (~u) ∧ 〈post∗〉(R)(~u))) (17)

Init := dϕe(~u) ∧ 〈pre∗〉Rec(~u) (18)

We can build the relation forInit by evaluating the propositionalµ-calculus fixed-point expressions
using a BDD package. The resulting relation forInit summarizes the set of propositional evaluations
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that admit accepting models. So ifInit is empty, the propositional formula is unsatisfiable; otherwise,
one can extract a modelσ consisting of aprefix s0, s1, . . . , si, and a periodicsuffixsi+1, . . . , sj that is
repeated. In other words,σ is of the forms0, s1, . . . , si, (si+1, . . . , sj)

ω. Each state in the propositional
model evaluates the atomic sub-formulas in the original formulaϕ to eithertrue or false.

We will now describe the steps taken for checking and refine a propositional modelσ.

4.4 Refining the LTL abstraction

As described above, models produced by the LTL abstraction are refined using checks forT consistency,
as well as the auxiliary safety constraints from definition 3.12. The refinement steps are described in the
following.

4.4.1 State consistency

Every states in a propositional modelσ assigns the atomic formulas inϕ to eithertrue or false. We can
check whether the assignment isT -consistent for arbitrary stably infinite theoriesT . So given a states,
letL′ be a minimalT -inconsistent subset of the literals associated withs. We add the invariant¬L′ to
ϕ and re-check the formula for satisfiability modulo propositional linear-time temporal logic.

Checking state consistency in the theory of equality allowsfor adding some of the auxiliary invari-
ants from definition 3.12 as a side-effect. In particular, the invariant (13) is checked and added as a
consequence of checking state consistency.

We should notice that the invariants that are produced need not correspond to a well-formed formula
in FFP(E).

Example4.2 (State consistency). Suppose a states contains the following assignment:

P (x) ∧ x ' c ∧ y ' c ∧ ¬P (y)

The theory of equality is required in order to detect the contradiction. So theT solver is expected to
produce the invariant¬(P (x) ∧ x ' c ∧ y ' c ∧ ¬P (y)). Notice that it does not correspond to a
formula formFFP(E) because it uses two flexible variablesx andy.

4.4.2 Cross state consistency

Cross-state consistency generalizes state consistency. Instead of checking consistency of a single state
s, we check the joint consistency of the statess0, s1, . . . , sj in the propositional modelσ. This is done
by checking the consistency of the literalsL0(~x0) ∧ L1(~x1) ∧ . . . ∧ Lj(~xj), where the set of literals
associated with each state is instantiated by a set of different flexible variables (~x0, ~x1, . . . , ~xj). If a
cross-state constraint isT -unsatisfiable, then add the safety condition:

¬L1 ∨ . . . ∨¬Lk ForT -unsatisfiable statesL1, . . . , Lk

Cross-state consistency allows blocking states that are not mutually consistent.

Example4.3 (Cross-state consistency). The two statess1 ands2 are contradictory ifs1 entails the as-
signmentP (x) ∧ x ' c and states2 entails the assignment¬P (y) ∧ y ' c for potentially different
flexible variablesx andy. Such a situation is ruled out if we apply safety condition (6) for every pair of
flexible variablesx, y, and every literal̀ (x), but cross-state consistency checking will also capture this
case. The resulting safety condition is in this case

¬(P (x) ∧ x ' c) ∨ ¬(¬P (y) ∧ y ' c)
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4.4.3 Neighbor consistency

Example4.4 (Neighbor consistency). Suppose the modelσ contains the sequence of statess0, s1, . . .,
and suppose thats0 contains the state assignmentc ' f(c′) ∧ x ' c′ ∧ ¬P (c), ands1 contains the state
assignmentP (x). The states cannot be neighbors because the conjunction

c ' f(c′) ∧ x ' c′ ∧ ¬P (c) ∧ hf P (x) ≡ c ' f(c′) ∧ x ' c′ ∧ ¬P (c) ∧ P (f(x))

is contradictory. To rule out this case, it suffices to add thesafety formula

c ' f(c′) ∧ x ' c′ ∧ ¬P (c) ⇒ ¬P (x)

The safety condition (11) uses only one atom. It can therefore be compiled directly into theNext

relation. On the other hand, to maintain the safety condition (12) c ' f(c′) ∧ x ' c′ ⇒ (x ' c),
we may potentially need to introduce the new atomx ' c. The number of such atoms can be quadratic
in the the number of constants and variables. We therefore defer imposing this safety condition, and
instead check propositional modelsσ for neighbor consistency. This is achieved by checking eachpair
of neighboring states〈sk, sk+1〉, for k = 0, . . . , j−1, and〈sj, si〉 for consistency by checkingL1∧ hf L2.

¬(L1 ∧L2) ForT -unsatisfiable successorsL1, L2

4.4.4 Interface terms

Definition 3.12 requires potentially producing equality literals corresponding to all pairs of interface
terms, to ensure that the safety conditions are enforced. Weapply a model-based approach for introduc-
ing such equality literals [9]: an equalityt ' t′ between two interface terms is added only if the states in
σ are cross-state consistent with a model that evaluatest to the same value ast′.

4.4.5 Embedding consistency

Example4.5 (Embedding consistency). Suppose we have the formula

(f,x ffx ' x ∧ P (x)) (x) ∧ (f,x (f,x ¬P (x)) (x)) (x) ∧ x ' a.

It says that froma, there is a sequence off applications that reachP (x) andffx ' x, but also eventually
¬P (x) holds for every sequence off applications. The (uncluttered) LTL version:

ϕPTL :(ffx ' x ∧ P (x)) ∧ (¬P (x)) ∧ x ' a

is satisfiable if' is left un-interpreted. But after adding an instance of axiom 7 and 11, we obtain the
prepositionally unsatisfiable formula:

ϕPTL ∧ (ffx ' x⇒ (P (x)↔ P (x)) ∧ (ffx ' x⇒ ffx ' x)

The additional safety conditions from definition 3.12 are checked by a custom solver forFFP(E).
The solver checks that each of the invariants holds for the propositional pathσ.

The condition (5) requires one of the more interesting checks. Recall, that we assumeσ is of the form
s0, s1, . . . , si, (si+1, . . . , sj)

ω. The paths0, s1, . . . , si, . . . , sj , si, . . . , sj is checked for an occurrence of
the first repeated equalityx ' c. The test succeeds if there is no state containing an equality of the form
x ' c, otherwise, it suffices checking the state sequence corresponding to the first repeated equality.
Each of the acceptance conditionsF ∈ F(x) is checked with the sub-sequence. If some conditionF
does not evaluate totrue in the sub-sequence, we add the conditions corresponding to(5).
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4.5 Constraining theFFP(E) abstraction

A formula is obviously unsatisfiable moduloFFP(E)+T if dϕe is already unsatisfiable moduloT . Any
partial axiomatization forFFP(E) can be used for checkingdϕe. So in principle we can add any set of ad-
hoc axioms used in [16, 21, 25] to further constrain propositional models. By using Z3’s trigger-based
quantifier instantiation mechanism, these axioms can be instantiated on demand based on the current
ground subformulas. To see how how this facility can be used in the context ofFFP(E), consider the
following unfolding axiom forU :

∀x . d
(
ψ U f,x ψ

′
)
e(x) ↔ ψ′ ∨ (ψ ∧ d

(
ψ U f,x ψ

′
)
e(f(x))).

If we instantiate the quantifier whenever there is a ground sub-formula of the formd(ψ U f,x ψ
′)e(t),

it will produce another ground subterm of the formd(ψ U f,x ψ
′)e(f(t)), triggering an indefinite set of

instantiations. Z3 allows controlling instantiations based onpatterns, known from the Simplify theorem
prover [12]. Z3 uses efficient term indexing techniques for implementing E-matching based quantifier
instantiation [8]. Universally quantified axioms are instantiated only when the current state of the
search contains one or more ground terms matching a set of patterns that use the bound variables. The
pattern{d(ψ U f,x ψ

′)e(f(x))} allows instantiating the quantifier if there is a ground termof the form
d(ψ U f,x ψ

′)e(f(t)). An instantiation based on this pattern is expected to be unproblematic as it unfolds
subformulas ofψ andψ′ in (ψ U f,x ψ

′) (f(t)). The multi-pattern{d(ψ U f,x ψ
′)e(x), f(x)} consists of

two terms usingx. A multi-pattern is instantiated when there are ground terms both of the formf(x)
as well asd(ψ U f,x ψ

′)e(x). Again, an instantiation based on this pattern is expected to not introduce
recurrent opportunities for matching. The resulting pattern annotated formula can be written:

∀x .{{d
(
ψ U f,x ψ

′
)
e(x), f(x)}, {d

(
ψ U f,x ψ

′
)
e(f(x))}}

d
(
ψ U f,x ψ

′
)
e(x) ↔ ψ′ ∨ (ψ ∧ d

(
ψ U f,x ψ

′
)
e(f(x)))

5 Conclusions and Future Work

In this paper, we have introduced several ground first-orderlogics with fixed-points, and shown how
satisfiability for the functional fixed-point logic with equality FFP(E) can be reduced to checking satis-
fiability of linear-time temporal formulas. Furthermore, we have developed and implemented an abstrac-
tion/refinement framework that integrates a LTL solver witha SMT solver to efficiently solveFFP(E)
satisfiability problems directly.

Our choice of LTL as the target is a matter of convenience thatwas useful for identifying NP-
complete subsets ofFFP(PL) in Section 3.1. We suspect that one can extend those techniques to
identify fragments ofFFP(E) with a NP-complete decision problem. Our reduction toFFP(E) satis-
fiability checking was reduced to checking satisfiability oftableau normal forms. It is well-known that
the tableau construction captures more than LTL; it also allows for handling formulas in the extended
temporal logic, ETL [33]. In ETL, we can for instance expressthe formula∀n ≥ 0.P (f2n(a)). It is
expressible as(νXλx.X(ff(x)) ∧ P (x))(a), but does not correspond to a formula inFFP(E). Nev-
ertheless, the satisfiability of such formulas can be checked using the same apparatus developed in this
paper.

While simple extensions ofFFP(E) are undecidable, there are decidable classes of formulas that can
be formulated using functional fixed-points, yet they cannot be formulated inFFP(E). For example [16]

studies a fragment based on the predicate∀x : [a
f
→ b].ϕ that allows multiple functions and variables to
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interact. Among other things, their predicate allows one tospecify the formula

∀x : [a
f
→ nil].

(
x = nil ∨ ∀y : [f(x)

f
→ nil].y 6' x

)

which states that the elements in the list froma to nil are distinct. The formula refers simultaneously to
multiple dereference functions. Theorem 3.17 implies thatthe more general logic with until operators is
alreadyNEXPTIME-hard with a single function symbol, and simple versions with two function symbols
are not decidable (Theorem 3.20). The reduction to LTL does not work when there are multiple bound
variables: The LTL reduction requires that at most one flexible variable is affected in the tableau state
transitions. We are investigating whetherfreezequantifiers, which were developed in the context of
real-time temporal logic [1] and hybrid logic [11], can be applied.

There are ad-hoc ways to extend our methodology to handle fixed-points in the context of analyzing
low-level software [6]. In this context, one seeks transitive closures of functions that interact with pointer
arithmetic with mostly constant offsets. For example, we may want to compute the transitive closure of
head , f(head +12), f(f(head +12)+12), f(f(f(head +12)+12)+12), . . .. There is a direct way to
simulatef(x+12), using a separate function symbolf12(x). The approach is complete when other uses
of f are limited, but would like to understand more precisely thelimits of how arithmetic (of offsets) can
be mixed with fixed-points in a systematic way.
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