
DERANDOMIZING SOME NUMBER-THEORETIC AND

ALGEBRAIC ALGORITHMS.

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Neeraj Kayal

to the

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

May, 2007

CERTIFICATE

Certified that the work contained in the thesis entitled “Derandom-

izing some number-theoretic and algebraic algorithms.”, by “Neeraj

Kayal”, has been carried out under my supervision and that this

work has not been submitted elsewhere for a degree.

(Dr. Manindra Agrawal)

Professor,

Department of Computer Sc. & Engg.,

Indian Institute of Technology,

Kanpur.

May, 2007

ii

Synopsis

The aim of this thesis is to provide deterministic upper bounds for various naturally

occuring computational problems.

We begin this thesis with a study of computational problems related to rings and

their automorphisms. We consider the problem GroupRA of computing the automorhism

group of a given ring in terms of a set of generators of its automorphism group. We

show that an efficient deterministic algorithm for GroupRA would imply the existence of

efficient deterministic algorithms for a number of well-studied problems of intermediate

complexity including polynomial factoring (over finite fields), Integer factoring and Graph

Isomorphism. On the other hand, we upper bound the complexity of GroupRA by showing

that GroupRA is in the complexity class fnAM and therefore is not NP-hard (NP6⊆
P GroupRA) unless the polynomial hierarchy collapses. We then consider the problem of

computing a nontrivial automorphism of a given ring R and show that it is random-

polynomial-time equivalent to integer factoring. We then investigate the complexity of

determining the existence of a nontrivial automorphism of a given ring. This problem is

shown to admit an efficient deterministic algorithm.

We then study the identity testing problem for depth 3 arithmetic circuits (ΣΠΣ

circuits). We give the first deterministic polynomial time identity test for ΣΠΣ circuits

with bounded top fanin.

Next, we consider the deterministic complexity of the problem of polynomial factoriza-

tion over finite fields - given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute

a nontrivial factor of h(x, y). This problem admits a randomized polynomial-time algo-

rithm and no deterministic polynomial-time algorithm is known. We give a deterministic

polynomial-time algorithm that partially factors the input polynomial h(x, y).

The motivation for the partial factoring algorithm developed is to upper bound the

complexity of the following polynomial solvability problem: given a finite field Fq and a

iii

set of polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn] of total degree at most d determine

the Fq-solvability of the system f1 = f2 = · · · = fm = 0. This problem is easily seen

to be NP-complete even when the field size q is as small as 2 and the degree of each

polynomial is bounded by d = 2. Here we investigate the deterministic complexity of

this problem when the number of variables n in the input is bounded. We show that

there is a deterministic algorithm for this problem whose running time, for any fixed n, is

bounded by a polynomial in d, m and log q. Moreover, the algorithm can be implemented

parallely to get a family of P -uniform circuits of depth poly(log d · logm · log q) and size

poly(d ·m · log q) for the solvability problem.

Finally, we present a deterministic polynomial-time algorithm that determines whether

an input number n is prime or composite.

iv

Acknowledgements

Over the years, many teachers have initiated and guided me into the world of science. In

the following paragraphs, in words not all my own, I will try to acknowledge some of them.

Naturally, my warmest thanks are to my advisor Manindra Agrawal. In words not all my

own, let me try to express the extent of friendship, admiration and gratitude I have for

Manindra.

Thank you Manindra for your close guidance in all different aspects of the scientific

process. In all things, large and small, I knew that I could always count on you! Thank

you for having had confidence in me from the first time I stepped into your office as an

undergraduate student. Thank you for treating me as a colleague from the first time we

started working on a common problem and at the same time sheltering me in a parental

manner. Thank you for pushing me forward when possible and laying off in times when

work could not have been a high priority for me. And thank you for sharing with me in

hours and hours of conversations over coffee, your deep understanding of computer science,

your zest for clarity and simplicity of exposition and an abundance of ideas.

My colleague and friend Nitin made the entire research process very enjoyable. I learnt

quite a bit of my mathematics and computer science from him.

I am grateful to IIT Kanpur, especially the Department of Computer Science and

Engineering for providing a wonderful environment where it was possible to discover, learn

and exchange ideas and insights. Specially Professor Somenath Biswas, Sumit Ganguly

and Pankaj Jalote for their teaching and encouragement over many years. The work at

IIT Kanpur was supported by a fellowship from Infosys Technologies Limited, Bangalore.

During the high-school days, many teachers sparked in me an intrest in science, teachers

whose guidance and mentoring was priceless. For this, I am especially indebted to Mangesh

Rege of NEHU and to Jagadis Bose National Science Talent Search (JBNSTS).

I am grateful to Bernard Chazelle and Princeton University for hosting me in 2003-04.

v

I am also thankful to P. S. Thiagarajan and National University of Singapore for hosting

me in 2004-05. There are so many other people to whom I am in debt for sharing their

knowledge and ideas with me. A partial list that comes to my mind is: Hendrik Lenstra,

Jaikumar Radhakrishnan, K V Subramaniam, Alan Lauder and Amit Sahai.

A special thanks to my office-mate, friend and counsellor Atul Gupta for all the

wonderful times I have spent with him. I have also been fortunate to have had a large

number of friends despite moving from one university to another at the end of each

academic year. I will thank them in person.

Finally, I have to say thank you to my family, particularly my father and mother for

everything they have done for me. They raised me, supported me, taught me, and loved

me. To them I dedicate this thesis.

vi

Contents

List of Publications i

1 Introduction 1

1.1 Randomized Algorithms. 2

1.2 Derandomization. 2

1.3 The Problems. 3

1.4 Our Contributions . 4

1.5 Organization. 5

2 Preliminaries 6

2.1 Algebraic Preliminaries. 6

2.1.1 Groups . 6

2.1.2 Rings . 7

2.1.3 Local Rings . 8

2.1.4 Structure Theorem for finite commutative rings. 9

2.1.5 Examples. 10

2.1.6 Representing Rings . 11

2.1.7 Hensel Lifting Lemma . 12

2.2 Basics of Complexity Theory . 12

2.2.1 Reductions . 16

3 Automorphisms of Rings 17

3.1 Introduction . 17

3.2 The output of GroupRA. 19

3.3 Lower Bounds for GroupRA . 21

3.3.1 Elementary Operations . 21

vii

3.3.2 Decomposing a ring using GroupRA. 23

3.3.3 Ring Isomorphism testing reduces to GroupRA. 27

3.3.4 Graph Isomorphism reduces to GroupRA. 29

3.4 Upper bounds for GroupRA. 30

3.4.1 The Complexity of Counting Ring Automorphisms. 31

3.4.2 GroupRA is in fnAM. 35

3.5 The Complexity of deciding the existence of a nontrivial automorphism. . . 37

3.5.1 A classification of finite rigid rings. 37

3.5.2 The Algorithm for RA . 41

3.6 Computing a nontrivial automorphism. 44

3.7 Discussion . 46

4 Polynomial Identity Testing for Depth-3 Cicuits 47

4.1 Introduction . 47

4.2 ΣΠΣ Arithmetic Circuits . 48

4.2.1 Previous Approaches . 49

4.2.2 Our Approach . 50

4.3 Chinese remaindering . 52

4.3.1 Notation and Terminology. 52

4.3.2 Preliminaries . 53

4.3.3 Properties of multivariate polynomials over local rings 54

4.4 Description of the Identity Test . 56

4.4.1 Overview of the Algorithm . 56

4.4.2 The Algorithm . 57

4.4.3 Proof of Correctness . 59

4.5 Discussion . 60

5 Factoring Multivariate Polynomials over Finite Fields 62

5.1 Introduction . 63

5.1.1 Basic Idea . 65

5.2 Mathematical machinery. 66

5.2.1 Nice bivariate polynomials . 66

5.2.2 How Fq-irreducible bivariate polynomials behave over extensions of

Fq. 66

viii

5.2.3 Defining the linear systems. 70

5.2.4 Factoring v(z) using linear systems over Rv. 76

5.3 The Algorithm. 77

5.4 Discussion . 79

6 Solvability of Polynomial Equations over Finite Fields 80

6.1 Introduction . 80

6.1.1 Motivation . 80

6.1.2 Problem Definition . 82

6.1.3 Our results . 83

6.1.4 The Idea . 84

6.2 Basic Algebraic Geometry with Examples 85

6.2.1 Examples . 88

6.2.2 Notation . 90

6.3 Algorithm Description . 91

6.3.1 Overview . 91

6.3.2 The output of the decomposition and rational points on hypersurfaces 91

6.3.3 Description of the decomposition algorithm. 94

6.3.4 The Primitive Element Theorem . 99

6.3.5 Intersection of two hypersurfaces. 101

6.3.6 Proof of Correctness . 103

7 A blackbox derandomization of Primality Testing 107

7.1 Introduction . 107

7.1.1 Black-box derandomization in general. 108

7.1.2 Black-box derandomization of identity testing. 108

7.2 A randomized algorithm for primality . 108

7.3 Derandomization of Primality Testing Algorithm. 111

7.4 Summary . 118

8 Conjectures and Open Problems 119

8.1 Introduction . 119

8.2 Identity testing . 120

8.3 Computing rational points on curves and varieties over a finite field. 121

8.4 Quantified Formulae in bounded number of variables over Fq 122

ix

8.5 F-algebra isomorphism. 123

8.6 Recognizing Perfect Numbers. 123

8.7 Comparing two sums of square roots. 124

A Reduction of GI to Ring Isomorphism 125

References 128

Index 134

x

Chapter 1

Introduction

The aim of this work is to give deterministic upper bounds for some naturally occuring

computational problems. The computational problems that we consider typically have a

strong algebraic and/or number-theoretic flavour. In order to understand the task ahead

of us - its significance and its limitations - let us first consider the role of randomness

in computation. A randomized algorithm is an algorithm that is allowed to “flip coins”.

Thus at each step of its computation, a randomized algorithm can obtain a bit which

is 0 with probability half and 1 with probability half (and is independent of previous

coin-flips). For some tasks such as those of achieving cryptographic security or simulating

probabilistic events, randomness is essential and cannot be dispensed with. For algorithmic

tasks it is generally believed that randomness can be dispensed with, without significantly

increasing the usage of other resources such as time, space or parallelism. This belief,

however remains an unproven conjecture. The task of proving concrete versions of this

conjecture is referred to as derandomization. Research on derandomization has proceeded

along two lines. One stream of research makes use of complexity-theoretic assumptions to

derandomize entire complexity classes. An example is the result by Impagliazzo and

Wigderson [IW97] showing that if there exists a language in the complexity class E

requiring exponential size circuits then P = BPP. The other stream of derandomization

research seeks to establish deterministic upper bounds for specific computational problems

without relying on any unproven assumptions. An example is the recent result by Omer

Reingold [Rei05] showing that undirected connectivity is in LOGSPACE. The work that

we present in this dissertation is of the second kind. In the rest of this chapter we expand

on this discussion and then present the specific computational problems that we deal with

1

2

and give an overview of our results.

1.1 Randomized Algorithms.

Let L ⊆ {0, 1}∗ be a language. An algorithm A which takes as input a pair of strings

〈x, r〉 and accepts with high probability (over the random choice of r) if and only if x ∈ L

is called a randomized algorithm for the language L. Ever since its invention in the

1970s randomization has played a central role in algorithm design. The class BPP of

problems admitting efficient randomized algorithms has now replaced the class P of

problems considered efficiently solvable. For most problems, the available randomized

algorithms significantly outperform their deterministic counterparts in terms of resource

usage (time, space, parallelism) and their ease of implementation.

1.2 Derandomization.

As remarked above, randomized algorithms are usually superior to their deterministic

counterparts in most ways. Indeed for each of the problems that we consider here, we

do not expect our deterministic algorithms to be practically competitive with the existing

randomized ones. It is therefore natural to question the motivation behind the study of

derandomization and its importance, if any.

The first justification is common to all of theory. The task of devising deterministic

algorithms often poses very elegant and challenging mathematical problems of a funda-

mental nature. In the words of Boaz Barak:

When we design an n15 algorithm for a problem, we do not give a practical

way to solve that problem. Instead, we are proving something inherent about

this problem, namely that it is in P , and so its hardness does not grow

exponentially with the input size. The hope is that along the way we will also

produce some key insights that might later be used in practical algorithms for

it, in improving the analysis of existing algorithms for it or in solutions to other

related problems.

More specifically, the task of derandomizing algorithms has led to the construction of

such objects as expanders and extractors, objects which have found many applications in

3

mathematics and computer science. They even turn out to be essential in places where

randomization is not even an issue, such as error correction and metric embeddings.

The second justification has to do with the nature of the physical world we live in. A

randomized algorithm requires a source of truly random bits for its analysis to hold good.

Moreover, in practical situations we need to provide the algorithm with these random bits

at a huge rate - the speed at which modern computers operate. It is not clear if there

does exist a source of true randomness and even if it does, we cannot in practice generate

these random bits at the same rate at which they are consumed by the algorithm.

Most important however is the justification that stems from recent discoveries showing

that derandomizing specific computational problems would lead to lower bounds. It

was shown by Impagliazzo and Kabanets [IK03] that derandomizing a specific BPP-

problem, Polynomial Identity Testing, is essentially equivalent to proving arithmetic circuit

lower bounds for NEXP. More recently, it was shown in [Agr05] that a “black-box

derandomization” of the identity testing problem would imply strong arithmetic circuit

lower bounds. For a precise definition of black-box derandomization of a randomized

algorithm see the chapter on primality testing, chapter 7. Proving absolute lower bounds

on the complexity of problems is the central aim of complexity theory. This connection

between proving lower bounds and devising deterministic algorithms provides the main

motivation for the latter. In general, the hope is that devising deterministic algorithms

for specific computational problems would eventually lead to the development of tools and

techniques that are useful in proving lower bounds.

1.3 The Problems.

The problems that we attempt to derandomize are the following:

• Polynomial Factoring over finite fields. Given a finite field Fq and a polynomial

f(x1, . . . , xn) ∈ Fq[x1, . . . , xn], find a nontrivial factor of f .

• Solvability. Given a finite field Fq and a set of polynomials

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ Fq[x1, . . . , xn],

determine if there is a common Fq-solution to the system of equations

f1(x̄) = . . . = fm(x̄) = 0.

4

• Identity Testing. Given a field F and an arithmetic circuit C over F, determine if

the polynomial computed by it is the identically zero polynomial.

• Primality Testing. Given a number n, determine whether it is prime or not.

We will also be considering the following problems.

• Integer Factoring. Given an integer n, compute its prime factorization.

• Graph Isomorphism. Given two graphs G1 and G2, determine if they are isomor-

phic.

• Ring Automorphism. Given a finite ring R as input, determine if it admits a

nontrivial automorphism.

• GroupRA. Given a finite ring R as input, compute its automorphism group Aut(R)

in terms of a set of generators for Aut(R).

1.4 Our Contributions

We devise deterministic algorithms for some specific computational problems which were

previously known to admit only randomized algorithms. The computational resources that

we will be concerned with are time and parallelism. We devise a deterministic algorithm

for partially factoring polynomials. Our algorithm is an extension of deterministic distinct

degree factoring algorithms that were available earlier [GKL04]. Moreover, it is efficiently

parallelizable with respect to the degree of the input polynomial. We then use it to devise

an efficient deterministic algorithm for Solvability when the number of variables in the

input is bounded. Moreover the parallel time complexity of the algorithm is polyloga-

rithmic in the degree of the input polynomials and the number of equations. We then

consider the problem of identity testing and devise an efficient deterministic algorithm

for depth-3 arithmetic circuits with bounded top fanin. Finally, we present a “black-box

derandomization” of the randomized primality testing algorithm of Agrawal and Biswas

[AB03].

A common mathematical object that recurs in all these algorithms is a ring and the

group of automorphisms associated with it. So we begin our study with an investigation of

the complexity of computing the automorphism group of a given ring and some variants of

this problem. We show that many important and well-studied computational problems of

5

“intermediate complexity” such as polynomial factoring, integer factoring and graph iso-

morphism deterministically reduce to the problem of computing the automorphism group

of a given ring. We also show that computing a single nontrivial automorphism is (random

polynomial time) equivalent to integer factoring. Finally we show that determining the

existence of a nontrivial automorphism can be done in deterministic polynomial time.

Remark. ZPP ⊆ BPP is the class of languages admitting randomized algorithms whose

output is always correct and whose expected running time is polynomial in the input size.

Primality Testing and Solvability (in a bounded number of variables) over finite fields were

the only two “natural decision problems” known to be in the complexity class ZPP but

not known to be in P . We give efficient deterministic algorithms for both these problems

and now, we do not know the example of any such problem in ZPP not known to be in

P .

Remark. We do not expect our deterministic algorithms to be practically competi-

tive with the existing randomized algorithms. Consequently, we shall often forego some

optimizations that would have been practically very significant, were our deterministic

algorithms to be implemented. For a given computational problem at hand, we shall

instead strive to present a simple and efficient deterministic algorithm with a proof of

correctness that is elementary, short and self-contained. We will also not be doing a

detailed time-complexity analysis of an algorithm being presented as long as it clear that

it is “qualitatively efficient”. Thus for polynomial-time bounded computation we do not

calculate the exact exponent as long as it is clear that the exponent occuring is a constant.

1.5 Organization.

Some of the results presented in this monograph first appeared in the following papers:

[AKS04, KS05, Kay05, KS06]. We begin the dissertation with a brief introduction to

relevant concepts and theorems from algebra and complexity theory in chapter 2. The

subsequent chapters each deal with a specific computational problem and can be followed

independently of each other. Finally we collect some open problems and conjectures in

chapter 8.

Chapter 2

Preliminaries

Summary:

In this chapter, we give a brief introduction to relevant concepts and theorems

from algebra and complexity theory.

2.1 Algebraic Preliminaries.

In this section we mention some elementary properties of groups and rings. For further

details, the interested reader is referred to the text by Herstein [Her75] and McDonald

[McD74].

2.1.1 Groups

A group (G, ·) consists of a set of elements G together with a multiplication operation ‘·’
satisfying the properties:

• Associative Law. a · (b · c) = (a · b) · c for all a, b, c ∈ G.

• Existence of identity. There exists an identity element e such that a · e = a for

all a ∈ G.

• Existence of inverse. Every element a has an inverse which is an element b such

that a · b = 1.

A group 〈G, ·〉 is said to be commutative if a ·b = b ·a for all a, b ∈ G. The group operation

for a commutative group is often denoted by ‘+’ rather than a ‘·’. If G,H are two groups

then we use H ≤ G to denote that H is a subgroup of G. For a finite group G: H ≤ G

6

7

implies that #H divides #G (Lagrange’s Theorem). Given two groups 〈G1, ·〉 and 〈G2, ·〉
we can compose them to get a new group G1 ⊕G2 whose set of elements is G1 ×G2 and

the group operation ‘·’ is done component-wise. That is,

(g1, g2) · (g′1, g′2) = (g1 · g′1, g2 · g′2).

Sylow subgroups.

If d is a divisor of the size of some finite group G then it is not true in general that G has

a subgroup of size d. But for a prime p, if pk|#G then there always exist a subgroup of

size pk. If pk is the highest power of p dividing #G then a subgroup of size pk is called a

p-Sylow subgroup of G. In general a group G does not have a unique p-Sylow subgroup, but

it does indeed hold true that all the p-Sylow subgroups of G are conjugates of each other

(cf. Herstein [Her75]). A p-Sylow subgroup Sp of size pk can be broken into a composition

series, i.e., there are groups Gi of size pk−i such that:

Sp = G0 > G1 > G2 > . . . > Gk = {1}.

Structure Theorem for finite commutative groups.

Groups!Finite abelian groups There is a classification known for finite commutative groups.

Basically, each such group completely decomposes into a bunch of cyclic groups.

Proposition 2.1.1. [Structure theorem for finite commutative groups] If 〈G,+〉 is a finite

commutative group then it can be uniquely (up to permutations) expressed as:

(G,+) ∼=
⊕

i

(Z/pi
αiZ)

where pi’s are primes (not necessarily distinct) and αi ∈ Z≥1 and ⊕ is the natural

composition of groups with component-wise multiplication.

2.1.2 Rings

A ring (R,+, .) consists of a set of elements together with addition and multiplication

operations. The basic properties of a ring are

• (R,+) is an commutative group.

8

• Multiplicative Identity. There exists an element 1 ∈ R such that 1 · r = r for all

r ∈ R.

• Associative law. a · (b · c) = (a · b) · c for all a, b, c ∈ R.

• Distributive law. a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a) for all

a, b, c ∈ R.

Throughout this thesis, the rings that we come across will always have the (multiplicative)

identity element. A ring is said to be commutative if a·b = b·a for all elements a, b ∈ R. All

the rings that we come across in this dissertation will be commutative unless mentioned

otherwise. There are two useful groups living in a ring R. Firstly, (R,+) is a group with

respect to addition called the additive group. If R∗ is the set of elements in R having

multiplicative inverse then (R∗, ·) is the second group called the multiplicative group. For

precise definition and some elementary properties see Herstein [Her75].

In analysing a ring R we use special subgroups of (R,+) called ideals.

Definition 2.1.2. A subset I ⊆ R is an ideal of R if:

• (I,+) is a subgroup of (R,+), and

• for all i ∈ I, r ∈ R, both i · r and r · i are in I. This can also be stated as: ∀r ∈ R
both r · I, I · r ⊆ I.

Ideals can be multiplied together to give new (smaller) ideals.

Definition 2.1.3. Let I,J be two ideals of a ring R. We define their product as:

I · J := ring generated by the elements {ij | i ∈ I, j ∈ J }

Powering of ideals, It for positive integer t, is defined similarly. It is easy to see that

I · J is again an ideal of R.

2.1.3 Local Rings

We will often come across special kinds of rings known as local rings. The importance of

local rings stems from the structure theorem for finite commutative rings which states that

any finite commutative ring can be written uniquely as a direct sum of local rings. We

now define local rings and mention their elementary properties. We refer the interested

reader to [McD74] for further properties of such rings.

9

Definition 2.1.4. A commutative ring R is said to be a local ring if it has a unique

maximal ideal.

Example: Consider ring R = F[x1, x2]/(x3
1, x2(x2 + x1)). Observe that R is a local ring

with the unique maximal ideal M generated by x1, x2. Also note that M is the set of

nilpotent elements, i.e., for any element m ∈M there is a k ≥ 1 such that mk = 0 in R.

The basic properties of finite commutative local rings are captured in the following

lemma.

Lemma 2.1.5. ([McD74].) Let R be a finite commutative local ring whose additive group

(R,+) is the direct sum of d cyclic groups. Then:

(i). Every non-unit element r ∈ R is a nilpotent element, i.e. rt = 0 for some t ∈ Z≥1.

(ii). The unique maximal ideal M of R consists of all the nilpotent elements of R.

(iii). There is an integer t ≤ d such that the product of any t (not necessarily distinct)

elements of M is zero in R.

(iv). If R is an F-algebra for some finite field F, then every element r ∈ R can be uniquely

written as r = α +m, α ∈ F and m ∈ M. This implies that there is a unique ring

homomorphism φ : R→ F such that φ(α+m) = α.

There is also a converse to part (i) of the above lemma. For a finite commutative ring

R, if every non-unit element r ∈ R is a nilpotent element then R is a local ring.

2.1.4 Structure Theorem for finite commutative rings.

Algebraic structures often break into simpler objects. In case of rings, these elementary

structures are referred to as indecomposable rings.

Definition 2.1.6. Indecomposable ring: A ring R is said to be indecomposable if there

do not exist rings R1, R2 such that R ∼= R1⊗R2, where ⊗ denotes the natural composition

of two rings with component wise addition and multiplication.

Remark. Here and henceforth we will use ‘⊕’ to denote group composition and ‘⊗’ to

denote ring composition. In mathematical literature ‘⊗’ is sometimes used to denote the

tensor-product of rings. In this dissertation, we will never come across tensor-products and

we will always use ‘⊗’ to denote the natural composition of two rings with component-wise

addition and multiplication.

10

Theorem 2.1.7. A finite commutative ring is indecomposable if and only if it is local.

Unlike commutative groups, a classification of commutative rings is not known yet.

But as a first step rings can be decomposed uniquely into indecomposable rings.

Proposition 2.1.8. [Structure theorem for rings] [McD74]. If R is a finite ring then it

uniquely (up to permutations) decomposes into indecomposable rings R1, . . . , Rs such that

R ∼= R1 ⊗ . . .⊗Rs

2.1.5 Examples.

Example Let n = p2q where p, q are distinct primes and define a natural ring R :=

(Z/nZ,+, ·). Then observe that R decomposes as (Z/p2Z,+, ·) ⊗ (Z/qZ,+, ·) where the

two component rings are local.

Example Consider a ring R := F[x, y]/(x3, y2). The subset yR, denoted as (y), is an

ideal of R. Similarly, xR + yR, denoted by (x, y), is also an ideal of R. Note that the

product of these two ideals is (y) · (x, y) = (xy, y2) = (xy). Similarly in R, (x, y)2 =

(x2, xy), (x, y)3 = (x2y) and (x, y)4 = 0. Moreover, it can be shown that R is a local ring

withM = (x, y) as its unique maximal ideal.

Example Consider the ring R := (Z/p2q3Z)[x, y]/(x4, px, y2 − y). By factoring the

characteristic p2q3 we get:

R ∼= (Z/p2Z)[x, y]/(x4, px, y2 − y)⊗ (Z/q3Z)[x, y]/(x4, px, y2 − y)

Further, by factoring y2 − y into coprime irreducibles over the respective local rings in x

we get:

R ∼= (Z/p2Z)[x, y]/(x4, px, y)⊗ (Z/p2Z)[x, y]/(x4, px, y − 1)

⊗(Z/q3Z)[x, y]/(x4, px, y)⊗ (Z/q3Z)[x, y]/(x4, px, y − 1)

11

2.1.6 Representing Rings

For concreteness we first fix the way we are going to present the finite rings and their

homomorphisms in the input or the output.

Definition 2.1.9. Basis representation of rings: A finite ring R is given by first

describing its additive group in terms of n additive generators and then specifying multi-

plication by giving for each pair of generators, their product as an element of the additive

group. More concretely, R is presented as:

(R,+, .) := 〈(d1, d2, d3, · · · , dn), ((ai,j,k))1≤i,j,k≤n〉

where, for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < dk and ai,j,k ∈ Z.

This specifies a ring R generated by n elements b1, b2, · · · bn with each bi having additive

order di and (R,+) = (Z/d1Z)b1 ⊕ (Z/d2Z)b2 · · · ⊕ (Z/dnZ)bn. Moreover, multiplication

in R is defined by specifying the product of each pair of additive generators as an integer

linear combination of the generators: for 1 ≤ i, j ≤ n, bi · bj =
∑n

k=1 ai,j,kbk.

Definition 2.1.10. Representation of maps on rings: Suppose R1 is a ring given in

terms of its additive generators b1, . . . , bn and ring R2 given in terms of c1, . . . , cn. In this

chapter maps on rings would invariably be homomorphisms on the additive group. Then

to specify any map φ : R1 → R2, it is enough to give the images φ(b1), . . . , φ(bn). So we

represent φ by an n× n matrix of integers A, such that for all 1 ≤ i ≤ n:

φ(bi) =
n∑

j=1

Ai,jcj

and for all 1 ≤ i, j ≤ n, 0 ≤ Ai,j < additive order of cj .

Example Consider the ring R := (Z/3Z)[x]/(x2−x+1). Here, 1 and x can be taken as

basis elements and (R,+) = (Z/3Z) · 1⊕ (Z/3Z) · x. Multiplication on the basis elements

is defined as: 1 · 1 = 1 · 1 + 0 · x, 1 · x = x · 1 = 0 · 1 + 1 · x and x · x = 2 · 1 + 1 · x. Note

that the map φ sending 1 7→ 1 and x 7→ −1 is a homomorphism from R to itself and with

respect to the basis {1, x} it can be represented as: A =

(
1 0

2 0

)
.

12

2.1.7 Hensel Lifting Lemma

We collect here the well-known Hensel-lifting lemma which is used at several places in this

monograph. Let R be a ring and f ∈ R be an element of R. Further let I be an ideal

of R. The Hensel lifting lemma then says that given a ‘coprime’ factorization of f in the

ring R/I, that factorization can be uniquely ‘lifted’ to a factorization in the ring R/(I2).

To make the above statement more precise we need to extend the definition of copri-

mality for arbitary rings.

Definition 2.1.11. Let R be a ring and a, b ∈ R be two elements in R. Then a and b are

said to be formally coprime if there exist a′, b′ ∈ R such that a · a′ + b · b′ = 1.

Lemma 2.1.12. 1 Let R be a ring and I ⊂ R be an ideal. For any f ∈ R and for any

factorization f = g · h (mod I) of f in R/I such that g, h ∈ R/(I) are formally coprime

in R/I, there exist g∗ and h∗ in R/(I2) such that

f ≡ g∗ · h∗ (mod I2)

g∗ ≡ g (mod I)

h∗ ≡ h (mod I).

 (1)

Moreover, the following holds:

• For any solution g∗, h∗ to (1), g∗ and h∗ are formally coprime in R/(I2).

• Given f ∈ R and g, h ∈ R/I, we can compute g∗, h∗ ∈ R/(I2) by solving a system

of linear equations over R/I.

• The solution g∗, h∗ to (1) is unique in the following sense. Any other pair g′, h′ ∈
R/(I2) is a solution to (1) if and only if there exists an element α ∈ I such that

g′ = (1 + α) · g∗ (mod I2)

h′ = (1− α) · h∗ (mod I2).

2.2 Basics of Complexity Theory

A decision problem in computer science is represented by a language L ⊆ {0, 1}∗ which

is the set of all ‘yes’ strings. We say that L is in the complexity class NP if there is a
1This version of the Hensel lemma is taken from the lecture notes on Algebra and Computation by

Madhu Sudan available at http://theory.lcs.mit.edu/%7Emadhu/FT98/course.html

13

polynomial time deterministic Turing Machine M and a positive number c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c , M(x, y) accepts

}
x is the input and y is called as witness, membership proof or nondeterministic guess. L

is said to be in coNP iff L ∈ NP.

Example Consider the problem of satisfiability of boolean formulas:

3-SAT := {φ(x1, . . . , xn) | φ = ∧m
i=1 (xi1 ∨ xi2 ∨ xi3) and has a satisfying assignment}

3-SAT is in NP as given a formula φ and a satisfying assignment v it can be verified in

polynomial time whether φ(v) is ‘true’.

We can also define a “randomized” version of the class NP called AM (for Arthur-

Merlin protocol). We will say a language L is in AM if there is a positive number c and a

polynomial time deterministic Turing Machine M such that:

x ∈ L ⇒ Prob
y∈{0,1}|x|c [∃z ∈ {0, 1}

|x|c , M(x, y, z) accepts] ≥ 2
3

x 6∈ L ⇒ Prob
y∈{0,1}|x|c [∃z ∈ {0, 1}

|x|c , M(x, y, z) accepts] ≤ 1
3

Typically, the proof of showing an L ∈ AM goes through by giving a protocol between

the Verifier (named Arthur – the ‘king’) who can do randomized polynomial time com-

putations and the Prover (named Merlin – the ‘advisor’ to the king) who has unlimited

computational resources. Arthur is interested in determining whether the input x ∈ L and

he sends (x, y) to Merlin who responds with a witness z. Arthur does some computations

on (x, y, z) following M and decides whether x ∈ L with high confidence.

A classic example of a problem in AM is that of checking whether a set is large. We

will be referring to its AM protocol in a later chapter.

Proposition 2.2.1. Suppose S is a set whose membership can be tested in non-

deterministic polynomial time and its size is either m or 2m. Then the decision problem

of testing whether S is of size 2m is in AM.

Proof. The idea of the AM protocol is that if S is large then for a random hash function

h there will be an x ∈ S such that h(x) = 0 with high probability.

Suppose that the elements of S are represented as binary strings of length s. Arthur

first increases the ‘gap’ in the size of S by defining a new set T = S4. Now #T is either

14

m4 or 16m4. Also, the elements of T are binary strings of length 4s. View them as a

column vector. Arthur then chooses a random 0/1 matrix A of size dlog 3m4e × 4s and

sends it to Merlin. Merlin returns a column vector t ∈ {0, 1}4s. Arthur accepts iff t ∈ T
and A · t = 0 (mod 2).

To analyse this AM protocol note that for a given x ∈ {0, 1}4s \ {0}4s:

Prob
A∈{0,1}dlog 3m4e×4s [A · x = 0 (mod 2)] =

1
2dlog 3m4e

Thus by linearity of expectation:

E
A∈{0,1}dlog 3m4e×4s [#{t ∈ T | A · t = 0 (mod 2)}] =

#T
2dlog 3m4e .

Now Markov inequalities give us that:

#T = 16m4 ⇒ Prob
A∈{0,1}dlog 3m4e×4s [∃t ∈ T, A · t = 0 (mod 2)] ≥ 5

8

#T = m4 ⇒ Prob
A∈{0,1}dlog 3m4e×4s [∃t ∈ T, A · t = 0 (mod 2)] ≤ 1

3

This shows that with high probability Arthur accepts only when set S is large.

Also, note that this AM protocol uses O(s logm) random bits (for A) and O(s)

nondeterministic bits (for t).

If a problem L is in NP ∩ coNP then intuition suggests that it should not be “hard”.

Similarly, if a problem L is in NP∩coAM (or AM ∩coAM) then L is ‘unlikely’ to be NP-

hard. What makes these classes interesting is that there are many problems in NP∩coAM

that are not known to be in P . Such problems are called problems of “intermediate”

complexity. To make these notions more precise we need to form a polynomial-time

hierarchy.

Let us denote NP by Σ1 and define Σ2 = NPNP, where by NPC we mean set of languages

L such that there is a polynomial time deterministic Turing Machine M using an oracle

to C and a positive number c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c , M(x, y) accepts

}
Similarly, Σk := NPΣk−1 . The union of all these Σ’s is called the polynomial-time hierarchy:

PH = ∪k≥1Σk.

It is mostly believed that Σ1,Σ2, . . . are all distinct complexity classes and hence there

is no k such that PH collapses to Σk. Coming back to the intermediate complexity

15

classes, it is easy to see that if NP∩coNP has a NP-hard problem then PH = Σ1. Also, if

NP∩coAM (or AM ∩coAM) has a NP-hard problem then it was shown in [Sch88, Kla89]

that PH collapses to the second level Σ2. The proof goes through by showing that

AM ∩ coAM is low for Σ2, i.e., ΣAM ∩coAM
2 = Σ2 and thus, NP ⊆ AM ∩ coAM implies

Σ3 = ΣNP
2 ⊆ ΣAM ∩coAM

2 = Σ2 which eventually results in collapsing PH to Σ2.

This notion of intermediate complexity can be generalized to functional problems. We

define FP to be the set of functional problems computable in polynomial time. Define

functional NP – denoted by fnNP – to contain functions f : {0, 1}∗ → {0, 1}∗ such that

there is a a positive number c and a deterministic polynomial time Turing machine M

(that outputs a string) such that, for all x, t ∈ {0, 1}∗:

f(x) = t iff ∃z ∈ {0, 1}|x|c M(x, z) = t (2.1)

Remark: The above definition says that for all x, t ∈ {0, 1}∗, t is a correct output

of the function f on the input x if and only if there is an easily verifiable certificate z

certifying that f(x) = t.

Now if a function f ∈ fnNP is NP-hard (SAT ∈ P f) then we also get that coSAT

∈ fnNP implying that unsatisfiability of boolean formulae has short, easily verifiable

proofs. That is, coNP ⊆ NP and so the polynomial hierarchy collapses to Σ1. Thus it is

“unlikely” that any function in fnNP is NP-hard.

These notions for functional version of NP can be extended to the class AM which

is a randomized version of the class NP. Define functional AM – denoted by fnAM – to

contain functions f : {0, 1}∗ → {0, 1}∗ such that there is a a positive number c and a

deterministic polynomial time Turing machine M (that outputs a string) such that, for all

x, t ∈ {0, 1}∗:

f(x) = t iff Prob
y∈{0,1}|x|c [∃z ∈ {0, 1}

|x|c M(x, y, z) = t] ≥ 2
3

(2.2)

Remark: The above Definition says that for “most” of the y ’s there is a z such that

M(x, y, z) outputs the correct value of f(x). On the other hand, for “most” of the y ’s

there is no z such that M(x, y, z) outputs an incorrect value.

Again the techniques of Schoning [Sch88] essentially show that fnAM is low for Σ2.

Lemma 2.2.2. (Schoning, [Sch88]) If f : {0, 1}∗ → {0, 1}∗ ∈ fnAM then Σf
2 = Σ2.

16

Thus, if a function f ∈ fnAM is NP-hard (i.e. NP ⊆ P f) then PH collapses to Σ2.

We sketch the proof here for the sake of completeness. Define for all k ≥ 1, Πk := co-Σk.

Proposition 2.2.3. Schoning, [Sch88]. ΣfnAM
2 = Σ2.

A proof of this proposition is also given in Saxena [Sax06].

2.2.1 Reductions

Some results in this thesis reduce one problem L to another problem L′. If there is a

function f : {0, 1}∗ → {0, 1}∗ in class C such that x ∈ L iff f(x) ∈ L′ then we say that L

is many-one reducible to L′ and denote it by L ≤Cm L′.

If a problem L can be solved in class C by using L′ as an oracle then we say that L is

Turing reducible to L′ and denote it by L ≤CT L′.

In the reductions given in this chapter C is either P or ZPP – the set of languages

(functions) that can be decided (computed) in expected polynomial time.

Chapter 3

Automorphisms of Rings

Summary: In this chapter we study computational problems related to rings

and their automorphisms. We consider the problem GroupRA of computing

the automorhism group of a given ring in terms of a set of generators of its

automorphism group. We show that an efficient deterministic algorithm for

GroupRA would imply the existence of efficient deterministic algorithms for a

number of well-studied problems of intermediate complexity including polynomial

factoring (over finite fields), Integer factoring and Graph Isomorphism. On

the other hand, we upper bound the complexity of GroupRA by showing that

GroupRA is in the complexity class fnAM and therefore is not NP-hard (

NP6⊆ P GroupRA) unless the polynomial hierarchy collapses.

We then consider the problem of computing a nontrivial automorphism of a

given ring R and show that it is random-polynomial-time equivalent to integer

factoring. We then investigate the complexity of determining the existence of

a nontrivial automorphism of a given ring. This problem is shown to admit an

efficient deterministic algorithm.

3.1 Introduction

Given a problem, can we realistically solve it using computers? Computational Complexity

Theory aims to answer this question by describing the amount of resources required to

solve the problem as a function of the input size. Those problems whose solution can be

computed in time bounded by a polynomial in the size of the input are said to belong to the

class P . By consensus, this is the class of problems considered efficiently solvable. Another

17

18

intensely investigated class is the class NP consisting of search problems - problems for

which the correctness of a given solution can be verified efficiently. An early breakthrough

in complexity theory was the discovery of the phenomenon of NP-completeness [Kar72]

and its wide applicability to naturally occuring computational problems [Coo71]. It

involves the existence of certain problems in NP whose efficient solution would imply

efficient solutions for all NP-problems. Since then, most natural problems in NP have

been classified as either being NP-complete or in P . Only a handful of natural problems

in NP remain unclassified.

This chapter is motivated by a common theme that underlies many of these un-

classified problems. Most such unclassified problems have a strong algebraic and/or

number-theoretic flavour. These problems include quadratic residuosity, integer factoring,

polynomial factoring over finite fields and graph isomorphism. Even within these problems

there appears to be a wide variation in hardness: integer factoring is believed to be average-

case hard and therefore suitable for cryptographic purposes, Graph Isomorphism appears

to be easy on the average but may be hard in the worst-case, whereas polynomial factoring

is believed to be efficiently solvable. Somewhat surprisingly then is our first result that a

common theme underlies these diverse problems. We show that these unclassified problems

are manifestations of the underlying problem of computing the automorphism group of

a given ring. Indeed many algorithms for these problems either explicitly or implicitly

make use of the automorphisms of the corresponding ring. Thus it is also natural to

independently study the complexity of computing the automorphism group of a given

ring.

We will restrict our attention to finite rings with unity. We assume that the rings are

given in terms of the basis of their additive group and the multiplication table of basis

elements (see section 2.1.6 for details).

In this chapter we consider the problem GroupRA of computing the automorphism

group of a given ring. More precisely, GroupRA is the following computational problem -

given an input ring (R,+, ·), output a set of automorphisms (φ1, φ2, . . . , φd) which generate

the automorphism group, Aut(R) of the ring R. We show that polynomial factoring

(over finite fields), quadratic residuosity, integer factoring all reduce to GroupRA. Saxena

[Sax06] has shown that the Graph Isomorphism problem also reduces to GroupRA.

We then consider a decision version of GroupRA. The ring automorphism, RA problem

is to test if a ring has a non-trivial automorphism. We prove that this problem is in P .

19

This is in contrast to the corresponding problem for graphs whose status is still open. On

the other hand we show that the problem of finding a nontrivial automorphism of a given

ring is equivalent to integer factoring. This implies that the search version of the problem

is likely to be strictly harder than the decision version. The results of this chapter mostly

appear in [KS05].

Remark. Before proceeding, we make two important disclaimers.

(i) Not all known natural algebraic/number theoretic problems of ‘intermediate com-

plexity’ reduce to the problem of computing the automorphism group of a ring. The

discrete logarithm problem, a very important and well-studied number-theoretic

problem in the class NP ∩ coNP does not fall under this framework.

(ii) Our algorithm for determining the existence of a nontrivial automorphism of a

given ring unfortunately does not imply an efficient algorithm for the corresponding

problem for graphs - determine if there exists a a nontrivial automorphism of a given

graph. We will expand on this remark later.

3.2 The output of GroupRA.

An algorithm for GroupRA is expected to output a set of automorphisms generating the

automorphism group of a ring R. It is therefore natural to ask whether there exists a

small-sized generating set and whether we can efficiently verify if each of the output maps

is an automorphism or not. In this section we first observe that there does indeed exist a

generating set of size polynomial in (log|R|). We then show that we can verify if a map

φ : (R,+) 7→ (R,+) is an automorphism of R or not.

The following proposition argues that the automorphism group G of a ring R can have

size at most exponential in (log|R|) and consequently there exists a generating set of G of

size poly((log|R|)).

Proposition 3.2.1. The automorphism group G of any finite ring R has a generating set

of size (log|R|)2.

Proof. The size of a basis of (R,+) is at most n = log|R|. Now any homorphism (R,+) 7→
(R,+) is completely described by describing the images of all the basis elements and

consequently there are at most |R|n such maps. Any automorphism is in particular a

20

homomorphism from (R,+) to (R,+) and consequently the number of automorphisms,

#G of R is also bounded by |R|n.

Now from a sequence of automorphisms generating G one can eliminate redundancies -

automorphisms which lie in the subgroup of G generated by the automorphisms occuring

previously. In this way, we obtain a sequence of irredundant automorphisms so that the

subgroup of G generated by the first i elements in the sequence is a proper subgroup of

the group generated by the first (i + 1) elements. By Lagrange’s theorem for groups the

size of the subgroup generated by the first (i + 1) elements is at least twice as large the

size of the subgroup of G generated by the first i elements. Consequently the length of an

irredundant sequence of generators is at most log|G| ≤ (log|R|)2, as required.

Proposition 3.2.2. Given a ring (R,+, .) and a map φ : (R,+) 7→ (R,+) we can verify

in deterministic polynomial time if φ ∈ Aut(R).

Proof. Let us assume that the additive group of the ring R is provided as:

(R,+) = (Z/m1Z)b1 ⊕ . . .⊕ (Z/mnZ)bn,

where b1, . . . , bn form a basis of the additive group (R,+).

Moreover in the description of R we are given integers ((ai,j,k))i,j,k∈[n] such that

bi · bj =
n∑

k=1

ai,j,kbk.

φ is an automorphism of R iff it satisfies the following conditions:

• φ preserves addition: check whether for all 1 ≤ i ≤ n, mi · φ(bi) = 0.

• φ preserves multiplication: check whether for all 1 ≤ i, j ≤ n, φ(bi) · φ(bj) =∑n
k=1 ai,j,kφ(bk), where ((ai,j,k))i,j,k∈[n] is the same matrix as given in the description

of R.

• φ is an invertible map from (R,+) to (R′,+): check whether det(A) ∈
(Z/(m1m2 . . .mn)Z)∗, where A is the n × n integer matrix describing the map φ :

R→ R′.

The first two conditions above imply that φ is a homomorphism between the two rings.

The third condition ensures that φ is bijective. All these three conditions can be checked

in polynomial time.

21

3.3 Lower Bounds for GroupRA

In this section we show that a number of well-studied computational problems of in-

termediate complexity are deterministically reducible to the problem of computing the

automorphism group of a given ring. In these reductions we will be using GroupRA as

an oracle and then using this oracle to solve various problems in deterministic polynomial

time. It is therefore natural to first investigate the elementary computations that one can

do using the automorphism group of a ring.

3.3.1 Elementary Operations

Let (R,+, ·) be a finite commutative ring with identity and Aut(R) be its automorphism

group. Suppose further that the automorphism φ1, . . . , φd ∈ Aut(R) generate Aut(R). For

an element r ∈ R, define the orbit of r denoted Orbitr to be the set {φ(r)|φ ∈ Aut(R)}.
We first observe that if we are given the generators for Aut(R) then we can efficiently

compute the orbit of every element of R.

Now suppose that H is a subgroup of Aut(R). Then associated with H is a subring

RH of R consisting of elements of r which are fixed by every automorphism in H. That

is,

RH def= {r ∈ R | ∀ψ ∈ H : ψ(r) = r}

RH is then called the subring of R fixed by H. We will also see that given a set of

generators for the subgroup H of Aut(R), the computation of RH boils down to solving a

set of linear equations and hence can be done efficiently.

Computing the orbit of an element.

The next proposition shows that given the generators of the automorphism group we can

efficiently compute any required number m of elements in the orbit of an element of R.

Proposition 3.3.1. Suppose we are given an input ring R and its automorphism group

in terms of a set of generators {φ1, . . . , φd}, then for every r ∈ R, we can compute m

elements in its orbit, if as many exist, in deterministic time poly(m · log |R|).

Proof: Fix the r ∈ R whose orbit we desire to compute. Define the sets

A0 ⊆ A1 ⊆ . . . ⊆ Orbitr

inductively as follows:

22

• A0
def= {r}.

• Ai+1
def= Ai ∪

⋃j=d
j=1{φj(x)|x ∈ Ai}

It is easy to verify that for all i ≥ 0,

Ai ⊆ Ai+1 ⊂ Orbitr

and that the elements of Ai+1 can be computed efficiently given the elements of Ai.

Moreover, if at some stage t we have At+1 = At then Orbitr = At = At+1.

Now given an integer m ≥ 1, we succesively compute A0, A1, A2, . . . until we reach a

set At such that either |At| ≥ m or At = Orbitr. If At = Orbitr then we have computed

the entire orbit of r and we can output accordingly. Else we have computed at least m

elements in the orbit and we output the first m elements of At.

Computing the subring fixed by a subgroup.

We next show that given a sequence of automorphisms ψ1, . . . , ψd ∈ Aut(R) generating a

subgroup H of Aut(R) we can efficiently compute the subring RH of R which is fixed by

H. This happens because the computation of RH boils down to simply solving a set of

homogeneous linear equations over Z/mZ, where m is the characteristic of R.

Proposition 3.3.2. Given a ring R and a set of automorphisms ψ1, . . . , ψd ∈ Aut(R)

generating a subgroup H of Aut(R), we can efficiently compute the subring RH of R

which is pointwise fixed by each of these automorphisms.

Proof. Let us assume that the additive group of the ring R is provided as:

(R,+) = (Z/m1Z)b1 ⊕ . . .⊕ (Z/mnZ)bn.

Then m = Lcm(m1, . . . ,mn) is the characteristic of R.

Now observe that an element

x ∈ (R,+), x = x1b1 + x2b2 + . . .+ xnbn

is in RH if and only if ψ(x) = x for all ψ ∈ {ψ1, . . . , ψd}. This amounts to a set of (d · n)

homogeneous linear equations in the unknowns xi’s over the ring Z/mZ. Solving this set

of linear equations we obtain a basis of the additive group of RH .

23

Finally, expressing the product of each pair of basis elments of (RH ,+) as a linear

combination of the basis elements we obtain the complete description of RH .

3.3.2 Decomposing a ring using GroupRA.

We show here that GroupRA can be used to factor integers and polynomials over finite

fields. Both these factoring problems are special cases of the problem of decomposing

a ring into its component local rings. We show that GroupRA can in fact be used to

completely decompose a ring. The key idea in this decomposition is the notion of an

idempotent element which is an element e ∈ R satisfying e2 = e. We will see that a

nontrivial idempotent (e 6= 0, 1) e ∈ R leads to the following decomposition of R:

R = R · e⊗R · (1− e)

Definition 3.3.3. Let R be a ring. An element e ∈ R is said to be an idempotent element

if and only if e satisfies e2 = e. An idempotent e is said to be nontrivial if and only if

e 6= 0, 1.

Lemma 3.3.4. [McD74] A commutative ring R is decomposable if and only if it contains

a nontrivial idempotent element. Moreover if e ∈ R is a nontrivial idempotent then

R = R · e⊗R · (1− e)

is a decomposition of R.

Proof. (=⇒). Suppose that

R = R1 ⊗R2

Then the elements (1, 0) and (0, 1) are nontrivial idempotents of R.

(⇐=). Let e be a nontrivial idempotent of R. Then observe that (1− e) 6= e is also a

nontrivial idempotent of R. Also observe that the idempotence of e implies that the set

R · e def= {r · e, r ∈ R}

is the same as the set {r ∈ R | r · e = r} and is a subring of the ring R with the element e

as its multiplicative identity. That is

R · e def= {r · e, r ∈ R} = {r ∈ R | r · e = r} (3.1)

24

Similarly, the set

R · (1− e) def= {r · (1− e), r ∈ R} = {r ∈ R | r · (1− e) = r} (3.2)

is a subring of R containing (1−e) as its multiplicative identity. We claim that the required

decomposition of R is then given by

R = R · e⊗R · (1− e).

To prove this we need to show three things

(i). R · e and R · (1− e) are both ideals of R.

Proof. To see that R · e is an ideal of R observe that for any a ∈ R, a · (r · e) =

(a · r) · e ∈ R · e and hence a · (R · e) ⊆ R · e for all a ∈ R. A similar argument shows

that R · (1− e) is an ideal of R.

(ii). R · e ∩R · (1− e) = {0}.

Proof. Suppose that r ∈ R · e ∩ R · (1− e). Then by equations 3.1 and 3.2 we have

r · e = r and r · (1− e) = r. Together they imply that r = 0.

(iii). Every element r ∈ R can be uniquely written as r = r1 + r2 where r1 ∈ R · e and

r2 ∈ R · (1− e).

Proof. For any element r ∈ R we have r = (r · e) + (r · (1− e)) and therefore r can

certainly be expressed as the sum of an element in R ·e and an element in R · (1−e).
Further suppose that there exist two different representations of this form of an

element r ∈ R. If

r = r1 + r2 = r′1 + r′2,

then we have

r1 − r′1 = r2 − r′2.

But (r1 − r′1) ∈ R · e and (r2 − r′2) ∈ R · (1 − e) so that by (ii) above we have

r1 − r′1 = r2 − r′2 = 0. Thus such a representation of r is unique.

This completes the proof of the lemma.

25

Remark. Oracles for integer factoring and polynomial factoring over finite fields can

be used to find nontrivial idempotents in a ring R and thereby compute its complete

decomposition. To see this, suppose that for two coprime integers d1 and d2, R contains

(Z/d1d2Z) as a subring, then the element e def= (d−1
1 (mod d2))d1 is a nontrivial idempotent

in (Z/d1d2Z) and hence also a nontrivial idempotent in R. Similarly for two coprime

polynomials f(x), g(x) ∈ (Z/pαZ)[x], if the ring (Z/pαZ)[x]/〈f(x) · g(x)〉 is a subring

of R then the element e def= (f(x)−1 (mod g(x))) · f(x) is a nontrivial idempotent in

(Z/pαZ[x])/〈f(x) · g(x)〉 and hence in R.

We now show that a GroupRA oracle can be used to deterministically compute a

nontrivial idempotent of a given ring R and thereby decompose a given ring R into its

indecomposable or local subrings.

Proposition 3.3.5. Using an oracle for GroupRA we can compute the decomposition of

a given ring R in deterministic polynomial time.

Proof. Let S be the ring

S
def= R[z]/〈z2 − z〉.

The next claim shows that the elements in the orbit of z under Aut(s) correspond

correspond to idempotents of R. It is easy to verify the following claim.

Claim 3.3.5.1. If e ∈ R is an idempotent of R then the map φ : S 7→ S, z 7→ e ·
(1 − z) + (1 − e) · z is an automorphism of S. In the converse direction, if φ ∈ Aut(S)

is an automorphism of S, φ : z 7→ (a + bz) the a is an idempotent of R. Further if

(a+ bz) /∈ {z, 1− z} then a is a nontrivial idempotent of R.

This means that R is decomposable if and only if S contains an automorphism φ :

S 7→ S such that φ(z) is different from z and (1 − z). Thus by proposition 3.3.1, using

an oracle for GroupRA, we can efficiently compute 3 distinct elements in the orbit of the

element z ∈ S. At least one of them gives us a non-trivial idempotent e of R. We then use

lemma 3.3.4 to decompose R into two component subrings R = R ·e⊗R · (1−e). Indeed if

b1, . . . , bn form a basis of the additive group (R,+) of R, then every element in R ·e can be

expressed as an integer linear combination of the elements b1·e, . . . , bn·e ∈ R·e. Eliminating

redundancies gives us a basis of the component subring R · e. Expressing the product of

any two basis elements as an integer linear combination of these basis elements gives us a

26

complete description of the ring R · e. Similarly we compute a complete description of the

subring R · (1− e).
Having decomposed R into two subrings we recursively decompose these two subrings

to obtain a complete decomposition of R in deterministic polynomial time.

As a corollary of this we get that both integer factoring and polynomial factoring over

finite fields reduce to GroupRA.

Corollary 3.3.6. Polynomial Factoring ≤P
T GroupRA.

Proof. It is well-known (cf. Berlekamp [Ber70]) that over any field, general polynomial

factorization problem reduces to factoring square-free polynomials. Now given a finite

field Fq and a square-free polynomial f(x) ∈ Fq[x] having factorization

f(x) =
m∏

i=1

fi(x),

the ring R def= Fq[x]/〈f(x)〉 has the unique decomposition

R ∼=
m⊗

i=1

Fq[x]/〈fi(x)〉.

By Proposition 3.3.5 we can compute this decomposition of R using an oracle for GroupRA

together with projection maps πi : R 7→ Fq[x]/〈fi(x)〉. Computing the minimum polyno-

mial of πi(x) in each of the component subrings gives us the desired factors fi(x) of f(x).

In a similar vein, we have

Corollary 3.3.7. Integer Factoring ≤P
T GroupRA.

Proof. Given an integer n having prime factorization

n =
m∏

i=1

pei
i ,

the ring Z/nZ has the unique decomposition

Z/nZ ∼=
m⊗

i=1

Z/pei
i Z.

By Proposition 3.3.5 we can compute this decomposition of Z/nZ and thereby obtain the

prime factorization of n.

27

It is well-known that Quadratic Residuosity ≤P
T Integer Factoring (cf. [BGry]) and

thus we get the following corollary.

Corollary 3.3.8. Quadratic Residuosity (modulo composites) ≤P
T GroupRA.

3.3.3 Ring Isomorphism testing reduces to GroupRA.

In this section we show that an oracle for GroupRA can be used to efficiently decide if two

given finite commutative rings are isomorphic or not. We use this result, together with a

construction of Saxena [Sax06] in the next subsection to show that the Graph Isomorphism

problem also efficiently reduces to GroupRA.

First we show how to use the GroupRA oracle to determine if two given local rings are

isomorphic.

Lemma 3.3.9. Let R1 and R2 be two commutative local rings. Let R def= R1 ⊗R2. Then

the orbit of the element (1, 0) ∈ R under Aut(R) contains two distinct elements if and

only if R1 and R2 are isomorphic.

Proof. Observe that an element (r1, r2) ∈ R is an idempotent of R if and only if r1 ∈ R1

and r2 ∈ R2 are idempotents in their respective rings. By assumption R1 and R2 are

commutative local rings and therefore contain no nontrivial idempotents. Thus the only

nontrivial idempotents in R are (1, 0) and (0, 1). Since nontrivial idempotents may contain

only nontrivial idempotents in their orbit therefore the orbit of the element (1, 0) ∈ R is

either {(1, 0), (0, 1)} or just {(1, 0)}.
(=⇒ .) If (0, 1) ∈ Orbit(1,0) then there is an automorphism φ ∈ Aut(R) such that

φ((1, 0)) = (0, 1). Now we have

φ((r1, 0)) = φ((r1, 0) · (1, 0))

= φ((r1, 0)) · φ((1, 0))

= φ((r1, 0)) · (0, 1)

= (0, r2) for some r2 ∈ R2.

Thus φ induces an isomorphism φ′ : R1 7→ R2, φ′ : r1 7→ r2 where r2 is the unique element

of R2 such that φ(r1, 0) = (0, r2). It is easy to verify that φ′ is indeed an isomorphism

from R1 to R2.

(⇐= .) Suppose φ : R1 7→ R2 is a ring isomorphism. Then φ induces an automorphism

φ′ : R 7→ R, φ′ : (r1, r2) 7→ (φ−1(r2), φ(r1)).

28

So we have

φ′(1, 0) = (φ−1(0), φ(1))

= (0, 1) [since φ(0) = 0 and φ(1) = 1]

and thus (0, 1) ∈ Orbit(1,0) as required.

Thus given two local rings R1 and R2 whose isomorphism we want to test, we form the

ring R def= R1 ⊗ R2 and by Proposition 3.3.1, we can efficiently compute the orbit of the

element (1, 0) ∈ R using an oracle for GroupRA and thereby determine if R1 is isomorphic

to R2 or not using the lemma 3.3.9 above. This gives us the following lemma.

Lemma 3.3.10. Given two finite commutative local rings R1 and R2 as input, we can

efficiently determine if R1 is isomorphic to R2 using an oracle for GroupRA. That is,

Local Ring Isomoprhism ≤P
T GroupRA.

This lemma can be generalized to show that indeed the ring isomorphism problem, of

testing whether two rings are isomorphic or not efficiently reduces to GroupRA.

Theorem 3.3.11. Given two finite commutative rings R1 and R2 as input, we can

efficiently determine if R1 is isomorphic to R2 using an oracle for GroupRA. That is,

Ring Isomoprhism ≤P
T GroupRA.

Proof. Let the decomposition of R1 and R2 into their component local rings be

R1 =
m1⊗
i=1

R1i, R2 =
m2⊗
i=1

R2i. (3.3)

By Proposition 3.3.5, an oracle for GroupRA can be used to compute the decomposition

3.3 of R1 and R2. Then R1 is isomorphic to R2 if and only if the number of component

local rings are the same (m1 = m2) and every component local ring R1i of R1 is isomorphic

to some corresponding local ring R2j of R2. Thus isomorphism testing of R1 and R2 now

boils down to isomorphism testing of the component local rings R1i’s and R2j ’s, which

can be done efficiently by lemma 3.3.10.

Remark: The structure theorem for finite abelian groups can be used to check in

polynomial time whether for two rings, given in basis form, the additive groups are

isomorphic or not. Suppose the two additive groups are G := (Z/d1Z)⊕· · ·⊕ (Z/dnZ) and

29

G′ := (Z/d′1Z)⊕ · · · ⊕ (Z/d′nZ). Consider the set D = {di | i ∈ [n]} ∪ {d′i | i ∈ [n]}. We

take gcds of all pairs of integers from the set D and expand D in each such gcd-operation

as: if α, β ∈ D have a nontrivial gcd then replace them by α
gcd(α,β) ,

β
gcd(α,β) and gcd(α, β).

We can keep repeating this process on the new expanded D till all the elements of D

become mutually coprime. It is guaranteed to stop in polynomial time, for D can expand

to a maximum size of log(#G ·#G′) as the number of prime factors of a number N are

less than logN . Now factor di ’s and d′j ’s as much as possible using the numbers from

D. Say, di = de1
i,1 · · · d

ek
i,k where di,1, . . . , di,k ∈ D are mutually coprime. We can refine the

decomposition of G by breaking (Zdi
,+) as:

(Z/de1
i,1Z)⊕ · · · ⊕ (Z/dek

i,kZ).

At the end of all this refining of di’s and d′j ’s using D, let the finer structural decomposi-

tions be: G ∼= (Z/m1Z) ⊕ · · · ⊕ (Z/mn′Z) and G′ ∼= (Z/m′
1Z) ⊕ · · · ⊕ (Z/m′

n′Z). Now by

invoking the structure theorem: G will be isomorphic to G′ if and only if the multi-sets

(i.e. elements with repetition) {mi}i∈[n′] and {m′
i}i∈[n′] are equal.

3.3.4 Graph Isomorphism reduces to GroupRA.

In this subsection our aim is to show that the Graph Isomorphism problem deterministi-

cally reduces to GroupRA. It is based on a construction of Saxena [Sax06]. Corresponding

to a graph G, the construction of Saxena [Sax06] gives a local F5-algebra R(G) such

that two such local algebras R(G1) and R(G2) are isomorphic if and only if their source

graphs G1 and G2 are isomorphic. We reproduce the construction and for the sake of

completeness, give the proof in the appendix.

Let G be an undirected graph with n vertices and no self loops. The construc-

tion involves a local commutative F5-algebra. Associate variables to each vertex (x-

variable) and capture the “connectivity” of the graph by defining the edges-polynomial –∑
(u,v) is an edge xuxv – as zero in the ring.

Define the following commutative F5-algebra:

R(G) := F5[x1, . . . , xn]/I

where, ideal I has the following relations:

1. x’s are nilpotents of degree 2, i.e., for all i ∈ [n]: x2
i = 0.

30

2. the edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

xixj = 0.

3. all cubic terms are zero, i.e., for all i, j, k ∈ [n] : xixjxk = 0.

Suppose (i0, j0) is an edge in G such that 1 ≤ i0 < j0 ≤ n. Then the additive structure

of the ring is:

(R(G),+) = F5 · 1⊕
⊕
i∈[n]

F5 · xi ⊕
⊕

i<j∈[n]
(i,j) 6=(i0,j0)

F5 · (xixj)

Thus, the dimension of the ring over F5 is
(
n+1

2

)
. Multiplication satisfies the associative

law simply because the product of any three variables (in any order) is zero. Also, R(G)

is a local commutative F5-algebra.

Observe that if G1
∼= G2 then any graph isomorphism φ induces a natural isomorphism

between rings R(G1) and R(G2). So we only have to prove the converse:

Lemma 3.3.12. [Sax06]. Let G1 and G2 be two undirected graphs having no self-loops.

Further, assume that graphs G1 and G2 are not a disjoint union of a clique and a set of

isolated vertices. Then, R(G1) ∼= R(G2) implies G1
∼= G2.

Proof. See the appendix.

It is easy to see that testing isomorphism of arbitary graphs reduces to testing iso-

morphism of connected graphs. Consequently in what follows we will work with simple

undirected connected graphs. The lemma above essentially implies that Graph Isomor-

phism reduces to the problem of testing the isomorphism of two local rings. By Theorem

3.3.11, this can be decided efficiently using an oracle for GroupRA and thus we have:

Theorem 3.3.13. Graph Isomoprhism ≤P
T GroupRA.

Since Graph Automorphism is turing-reducible to Graph Isomorphism (cf. [KST93]),

we also get

Corollary 3.3.14. Graph Automorphism ≤P
T GroupRA.

3.4 Upper bounds for GroupRA.

In this section we give upper bounds for GroupRA and show that GroupRA is in the

complexity class fnAM. By Proposition 2.2.3, this implies that if GroupRA is NP-hard (i.e.

31

NP ⊆ P GroupRA) then PH collapses to Σ2, an ‘unlikely’ event. Let us first upper bound

the complexity of the closely related problem of counting the number of automorphisms

of a given ring. We will subsequently use this to derive our upper bound for GroupRA.

3.4.1 The Complexity of Counting Ring Automorphisms.

In this subsection we consider the counting version of the ring automorphism problem.

Definition 3.4.1. The computational problem #RA is defined as the functional problem

of computing the number of automorphisms of a given ring. Its decision version is the

language:

cRA := {(R, k) | R is a ring in basis form s.t. #Aut(R) ≥ k} (3.4)

We begin the investigation of the complexity of #RA by investigating the complexity

of counting the number of automorphisms of the additive group (R,+) of the given ring

R.

Counting the number of automorphisms of (R, +).

Using the structure theorem of abelian groups, we can compute #Aut(R,+) of a ring R

presented in terms of additive generators having prime-power additive orders.

Proposition 3.4.2. Given a ring R in terms of additive generators, all having prime-

power additive orders, we can compute the number of automorphisms of the additive group

of R, #Aut(R,+), in polynomial time.

Proof. Automorphisms of the additive group (R,+) are nothing but the invertible linear

maps on the additive generators of R. Thus, to compute #Aut(R,+) we compute the

number of invertible linear maps or the number of invertible matrices.

Let (R,+) be given as ∼=
⊕l

i=1

⊕
j(Z/pi

αi,j Z), where pi’s are distinct primes and

αi,j ∈ Z≥1. For 1 ≤ i ≤ l define subrings Ri of R as:

Ri := {r ∈ R | r has power-of-pi additive order}

Observe that

R ∼= R1 × · · · ×Rl

this is because if ri ∈ Ri and rj ∈ Rj (i 6= j) then for some ci, cj ∈ Z≥0, pci
i rirj = p

cj

j rirj =

0 which implies that rirj = 0 (since ∃a, b ∈ Z such that apci
i + bp

cj

j = 1) and by a similar

argument r1 ∈ R1, . . . , rl ∈ Rl are linearly independent.

32

This decomposition of R gives us:

#Aut(R,+) =
l∏

i=1

#Aut(Ri,+)

Thus, it suffices to show how to compute #Aut(R,+) when (R,+) is given as ∼=⊕n
i=1(Z/pαiZ) where p is a prime and αi ∈ Z≥1.

Suppose we are given R in terms of the following additive basis:

(R,+) = (Z/pβ1Z)e1,1 ⊕ . . .⊕ (Z/pβ1Z)e1,n1 ⊕ . . .

. . .⊕ (Z/pβmZ)em,1 ⊕ . . .⊕ (Z/pβmZ)em,nm

where, n1 + . . .+ nm = n and 1 ≤ β1 < . . . < βm.

Observe that φ ∈ Aut(R,+) iff the matrix A describing the map φ is invertible (mod p)

and preserves the additive orders of ei,j ’s. Our intention is to count the number of all such

matrices A. To do that let us see how A looks:

A =


B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

... . . .
. . .

...

Bm,1 Bm,2 . . . Bm,m


n×n

where the block matrices Bi,j ’s are integer matrices of size ni×nj . The properties of these

block matrices which make A describe an automorphism of (R,+) are:

• for 1 ≤ j < i ≤ m: entries in Bi,j are from {0, 1, . . . , pβj − 1}.

• for 1 ≤ i ≤ m: entries in Bi,i are from {0, 1, . . . , pβi − 1} and Bi,i is invertible

(mod p).

• for 1 ≤ i < j ≤ m: entries in Bi,j are from {0, 1, . . . , pβj − 1} and Bi,j ≡
0 (mod pβj−βi).

It is not difficult to see that the number of matrices satisfying these conditions can

be found in time polynomial in (n1β1 + . . .+ nmβm)(log p), and hence the number of A’s

which describe an automorphism of (R,+).

33

Remark: When a ring R is given in terms of generators having composite additive

orders then computing #Aut(R,+) entails factoring integers. For example, suppose n =

pq where p 6= q are primes and ring R is given as (Z/nZ,+, ·). Then #Aut(R,+) =

(p − 1)(q − 1) = φ(n) and if we compute φ(n) then we can factorize n in randomized

polynomial time (see [Mil76]).

This section will explore the complexity of the problem of counting ring automor-

phisms. We will show that the natural decision version of the counting problem, cRA is

in the complexity class AM ∩ coAM and therefore is unlikely to be NP-hard.

cRA ∈ AM ∩ coAM .

We will now show that given a finite ring R there is an AM protocol in which Merlin sends

a number ` and convinces Arthur that #Aut(R) = `. The ideas in the proof are basically

from Babai and Szemeredi [BS84].

Theorem 3.4.3. #RA ∈ FP AM ∩coAM .

Proof. Let R be a finite ring given in its basis form. We will first show how Merlin can

convince Arthur that #Aut(R) ≥ k. Recall that in Equation (3.4) we defined this problem

as cRA.

Claim 3.4.3.1. cRA ∈ AM .

Proof of Claim 3.4.3.1. Merlin can give Sylow subgroups Sp1 , . . . , Spm of Aut(R), in

terms of generators, to Arthur such that p1, . . . , pm are distinct primes and the product

|Sp1 |. · · · .|Spm | ≥ k. Arthur now has to verify whether for a given Sylow subgroup Sp,

|Sp| = pt or not. So Merlin can further provide the composition series of Sp:

Sp = Gt > Gt−1 > . . . > G1 > G0 = {1}.

Suppose, by induction, that Arthur is convinced about |Gi| = pi. Then to prove |Gi+1| =
pi+1, Merlin will provide xi+1 ∈ Gi+1 to Arthur with the claim that xi+1 6∈ Gi but

xp
i+1 ∈ Gi. Latter can be verified easily by Arthur as Merlin can give the way to produce

xp
i+1 from the generators of Gi. Finally, the only nontrivial thing left for Arthur to verify

is whether xi+1 6∈ Gi, which can be verified by a standard AM protocol (Proposition 2.2.1)

as there is a gap in the size of the set X := (group generated by xi+1 and Gi):

xi+1 6∈ Gi ⇒ #X = pi+1

xi+1 ∈ Gi ⇒ #X = pi

34

To avoid too many rounds, Merlin first provides x0 = 1, x1, . . . , xt ∈ Aut(R) with the

proof of: for all 1 ≤ i ≤ t, xp
i ∈ Gi−1 := (group generated by x0, . . . , xi−1) to Arthur and

then provides the proof of: for all 1 ≤ i ≤ t, xi 6∈ Gi−1 in the second round for Arthur to

verify. �

Now we give the AM protocol that convinces Arthur of #Aut(R) ≤ k.

Claim 3.4.3.2. cRA ∈ coAM .

Proof of Claim 3.4.3.2. Arthur has a finite ring R and he wants a proof of #Aut(R) ≤
k. Firstly, Merlin provides the prime factorization of the characteristic of R which

Arthur uses to decompose the given ring into component rings of prime-power order. The

automorphism group of the ring R is then simply a direct product of the automorphism

groups of the prime-power order subrings of R. Then the size of the automorphism group

of R is the product of the sizes of the automorphism groups of the prime-power order

subrings of R. Merlin now needs to prove an appropriate lower bound on the sizes of each

of these prime-power subrings of R.

So now we can assume that R is given in terms of generators having prime-power

additive orders. For concreteness let us assume:

(R,+) =
n⊕

i=1

(Z/pαi
i Z)bi

Merlin sends Arthur a number ` ≤ k as a candidate value for #Aut(R) and also

provides some Sylow subgroups, the product of their sizes being equal to `, with the

AM-proofs for their sizes (as used in Claim 3.4.3.1). Let

X := {
〈
((ai,j,k))i,j,k∈[n]

〉
| ∃π ∈ Aut(R,+) s.t. π(bi) · π(bj) =

n∑
k=1

ai,j,kπ(bk);

for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < pαk
k } .

Observe that #X = #Aut(R,+)
#Aut(R) and #Aut(R,+) can be computed in polynomial time

when (R,+) is given in terms of generators having prime-power additive orders (see

Proposition 3.4.2). Thus, Arthur computes s := #Aut(R,+). Arthur is already convinced

that `|#Aut(R) and he now wants to verify #Aut(R) ≤ `. A standard AM protocol (see

35

Proposition 2.2.1) now follows by utilizing the gap in the size of X in the two cases:

#Aut(R) ≤ ` ⇒ #X ≥ s

`
.

#Aut(R) > ` ⇒ #Aut(R) ≥ 2` [∵ #Aut(R) has a subgroup of size `]

⇒ #X ≤ s

2`
.

�

The claims above show that #RA ∈ FP cRA ⊆ FP AM ∩coAM .

3.4.2 GroupRA is in fnAM.

Note that the AM protocols that we give for #RA not only count the number of automor-

phisms but give a lot more information about the automorphism group. In fact, these AM

protocols compute the full automorphism group of a ring R in terms of the generators of

the Sylow subgroups of Aut(R).

Corollary 3.4.4. Function GroupRA ∈ fnAM and hence is low for Σ2.

Proof. Let f be the function, corresponding to GroupRA, that maps a ring R (given in

basis form) to the tuple (#Aut(R), Aut(R)). Since cRA is in both AM and coAM there

are deterministic polynomial time Turing Machines A and B, and positive constants c, d

such that:

#Aut(R) ≤ k iff Proby∈{0,1}logc #R [(∃z ∈ {0, 1}log
c #R) A(R, k, y, z) accepts]

≥
(

1− 1
2logd #R

)
#Aut(R) ≥ k iff Proby∈{0,1}logc #R [(∃z ∈ {0, 1}log

c #R) B(R, k, y, z) accepts]

≥
(

1− 1
2logd #R

)
(3.5)

The parameter d above will be chosen large enough so that all the subsequent arguments

go through. To show that f ∈ fnAM we plan to run A and B in parallel. We can modify

A slightly to A′ by requiring that A(R, k, y, z) outputs (`,G) where, ` is the number and

G is the group, given by the generators of the (intended) Sylow subgroups, as occurred in

36

the proof of the Claim 3.4.3.2. It is easy to see that:

f(R) = (m,H)

⇒ Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3
4

(3.6)

The above holds because Merlin can simply send `′ as equal to #G and a part of the

string z and z′ having the group Aut(R) in terms of the generators of Sylow subgroups

(see the proof of Claim 3.4.3.2). Then Equations (3.5) give us the probability lower bound

of 3
4 . Also, the output of A′(R, `′, y, z) for such `′, z will trivially be (m,H).

To show the converse assume that there is a number m and a group H such that:

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3
4

(3.7)

Now if (m,H) 6= (#Aut(R), Aut(R)) then the way A′ outputs, it is clear that Merlin tried

to “fool” Arthur and so by the Equations (3.5) we get that for some positive d′:

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R),both A′(R, `′, y, z) and

B(R, `′, y, z′) accept | A′(R, `′, y, z) 6= (#Aut(R), Aut(R))] ≤ 1

2logd′ #R

which together with the large probability lower bound of Equation (3.7) means that:

(m,H) = (#Aut(R), Aut(R)). Thus,

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3
4

⇒ f(R) = (m,H) (3.8)

Recall Equation (2.2) for the definition of fnAM, clearly, Equations (3.6) and (3.8) tell us

that: f ∈ fnAM.

This completes the proof that GroupRA is in fnAM. The significance of this upper

bound is that even though so many interesting and unclassified problems in NPreduce

to GroupRA, it is not an NP-hard problem. Only a few naturally occuring examples of

37

problems of intermediate complexity are known and this shows that GroupRA is one of

them.

The next two sections study the problem of checking whether a given ring is rigid

(i.e., has no nontrivial automorphism) and if not then finding a nontrivial automorphism.

We will show that RA, the problem of determining if a given ring has a nontrivial

automorphism, can be decided in deterministic polynomial time but finding a nontrivial

automorphism (FRA) is as hard as integer factoring.

Thus, there appears to be a difference in the complexity of decision, search and counting

versions of ring automorphism problems. Also, note the contrast that we (currently) have

with the complexity of the corresponding versions for graph automorphism problems, for

instance, GA is not known to be in P.

3.5 The Complexity of deciding the existence of a nontrivial

automorphism.

Definition 3.5.1. A ring R is said to be rigid if it does not admit any nontrivial

automorphism.

RA is then the computational problem of deciding if a given input ring is rigid. The aim

of this section is to prove the following theorem.

Theorem 3.5.2. RA ∈ P .

We first derive a classification of finite rigid rings and then use that classification to

devise an efficient algorithm for RA.

3.5.1 A classification of finite rigid rings.

In this subsection, we shall show here that those finite rings which do not have nontrivial

automorphisms (rigid rings) have a nice mathematical description which will later be used

to test rigidity in polynomial time. Indeed, we will show that

Theorem 3.5.3. Let R be any finite ring with identity. R can be expressed as the direct

sum of two rings

R = R2pow ⊗Rodd,

where R2pow is a power-of-2 sized ring while Rodd is an odd-sized ring. Then R is rigid if

and only if

38

1. R2pow is of the form

Z/2α1Z⊗ . . .⊗ Z/2αnZ or

(Z/2Z)[x]/(x2)⊗ Z/2α1Z⊗ . . .⊗ Z/2αnZ

where, 1 ≤ α1 < α2 < . . . < αn.

2. Rodd is of the form⊗
i

⊗
j

Z
p

αij
i

where, pi’s are distinct odd primes and 1 ≤ αi1 < αi2 <

Proof. It is easy to verify the following claim:

Claim 3.5.3.1. A ring R is rigid if and only if each one of its indecomposable component

rings is rigid and no two of these indecomposable components are isomorphic.

This means that any arbitary rigid ring is just a direct sum of a set of non-isomorphic

indecomposable rigid rings. Thus to get a classification of finite rigid rings, it is sufficient

to get a classification of finite indecomposable rigid rings. In the rest of this proof we give

such a requisite characterization of indecomposable rigid rings.

Let R be a ring given in basis form. Let us first dispose off the case when R is

non-commutative.

Claim 3.5.3.2. If R is a non-commutative ring then it has a nontrivial automorphism.

Proof of Claim 3.5.3.2. It can be shown ([Len04]) that if the units in a ring R

commute with the whole of R then R is generated by its units, and consequently R

will be commutative. Thus, if R is a non-commutative ring then there is a unit r ∈ R

that doesn’t commute with the whole of R. Then clearly the map φ : x 7→ rxr−1 gives a

nontrivial automorphism of R. �

When R is commutative we first consider the case of odd sized component subring

Rodd of R.

Classification of Rodd. We will show that indecomposable components of a rigid

commutative odd-sized ring Rodd are isomorphic to Z/pmZ, for some odd prime p:

Claim 3.5.3.3. If Rodd is an indecomposable rigid commutative odd-sized ring then ∃
prime p and m ∈ N such that, Rodd

∼= Z/pmZ.

39

Proof of Claim 3.5.3.3. It is known (e.g. see [McD74]) that any indecomposable

commutative ring Rodd contains an associated Galois ring G such that:

G = (Z/pmZ)[x]/(f(x))

where square-free f(x) is irreducible over Z/pZ and,

Rodd = G[x1, . . . , xk]/(xn1
1 , . . . , xnk

k , g1, . . . , gl)

where x1, . . . , xk form an irredundant generating set for Rodd over G and the gi’s are

polynomials in (x1, . . . , xk).

Let M := (ring generated by x1, . . . , xk) be an ideal of Rodd, it will be nonzero if we

assume k ≥ 1. Let t > 0 be the least integer such that Mt = 0.

Consider the case when t > 2. We can assume without loss of generality that x1 cannot

be expressed as a polynomial in x2, . . . , xk in the ring Rodd. Now choose an α ∈ Mt−1

such that no term in α is linear in x1 and consider the map:

φ :



x1 7→ x1 + α

x2 7→ x2

...

xk 7→ xk

φ is injective: otherwise a polynomial h(x1, ..., xk) maps to 0, in Rodd, under φ. This

means that h(x1 + α, ..., xk) = 0 in Rodd. Now if h(x1, ..., xk) had no linear occurrence of

x1 then h(x1 + α, x2, ..., xk) = 0 implies h(x1, ..., xk) = 0 (as α · M = 0). On the other

hand if h(x1, ..., xk) has a linearly occurring x1 then h(x1 + α, x2, ..., xk) = 0 implies that

x1 = (an expression containing no linear term in x1) which in turn means that x1 can be

expressed completely in terms of x2, ..., xk which is a contradiction.

φ is onto: it is enough to show that in the ring Rodd we can obtain x1 from x1 +

α, x2, ..., xk. Since α is generated by x1, . . . , xl it can be expressed as a polynomial in

x1, . . . , xl. Viweing α as a polynomial in x1. Let α = x1 · h(x1, . . . , xk) + g(x2, . . . , xk),

where h(x1, ..., xk) has no constant term. Then

x1 + α− g(x2, ..., xk) = x1 + x1 · h(x1, ..., xk)

= x1 + x1 · h(x1 + α, x2, ..., xk) (as α · M = 0)

= x1 · (1 + h(x1 + α, x2, ..., xk)).

40

Now h(x1 + α, x2, ..., xk) ∈ M, and therefore by the property 2.1.5 of local rings, (1 +

h(x1 + α, x2, ..., xk)) has to be invertible in Rodd and thus,

x1 = [(x1 + α)− g(x2, ..., xk)] · [1 + h(x1 + α, x2, ..., xk)]−1 in Rodd.

Thus, φ induces a nontrivial automorphism of Rodd. This means that for Rodd to

be rigid, we must have that the number of variables k is zero R is just a Galois ring.

Rodd = G. If f(x) is of degree > 1 then (Z/pZ)[x]/(f(x)) has a nontrivial automorphism,

the Frobenius automorphism sending x 7→ xp, which can be Hensel lifted (see [LN94]) to a

nontrivial automorphism of (Z/pmZ)[x]/(f(x)) too. Thus, the only way that Rodd has no

nontrivial automorphism is when degree of f(x) is 1 meaning Rodd = G = Z/pmZ.

Now suppose t = 2. If k ≥ 2 then taking α = x2 in the above discussion gives us a

nontrivial automorphism φ of Rodd. If k = 1 then the map φ : x1 7→ 2x1 is a nontrivial

automorphism of Rodd. If k = 0 then Rodd = G and as shown before the only way that

Rodd has no nontrivial automorphism is when Rodd = G = Z/pmZ.

The last case of t = 1 means M = 0 implying Rodd = G which as before yields

Rodd = G = Z/pmZ. �

As a consequence of the above observations we have that any rigid commutative odd-

sized ring Rodd looks like:⊗
i

⊗
j

Z
p

αij
i

where, pi’s are distinct odd primes and 1 ≤ αi1 < αi2 < (3.9)

Classification of R2pow. Let us now take up the case of the power-of-2 sized compo-

nent subring R2pow of R. We will show that R2pow is rigid only if the indecomposable

rings that appear in the decomposition of R2pow are isomorphic to either Z/2mZ or

(Z/2Z)[x]/(x2).

Claim 3.5.3.4. If R2pow is an indecomposable rigid commutative power-of-2 sized ring

then R2pow is either Z/2mZ or (Z/2Z)[x]/(x2).

Proof of Claim 3.5.3.4. Recall the proof of the claim 3.5.3.3. The only case which needs

to be handled in the case of even sized ring is when t = 2 and k = 1. The rigidity of R2pow

implies that the characteristic of R2pow is 2 for otherwise φ : x1 7→ 3x1 gives a nontrivial

automorphism of R2pow. Thus, the rigid ring with t = 2, k = 1 is R = (Z/2Z)[x1]/(x2
1).

�

41

It follows from the above claim that a commutative power-of-2 sized ring is rigid iff it

is isomorphic to one of the following:

Z/2α1Z⊗ . . .⊗ Z/2αnZ or

(Z/2Z)[x]/(x2)⊗ Z/2α1Z⊗ . . .⊗ Z/2αnZ (3.10)

where, 1 ≤ α1 < α2 < . . . < αn.

Collecting these two classifications, we get the classification theorem 3.5.3 for finite

rigid rings.

3.5.2 The Algorithm for RA

We now give the algorithm referred to in theorem 3.5.2 for testing the rigidity of a

ring. Our algorithm for RA will test whether a given ring R is of the form given in

the classification theorem (3.5.3) or not. As in the classification thereoem (3.5.3), suppose

that the decomposition of a given input rings R is

R = R2pow ⊗Rodd, (3.11)

where R2pow is a power-of-2 sized ring and Rodd is an odd-sized ring. Note that since its

easy to factor out powers of 2 from any integer, we can compute the decomposition of

the additive group (R,+) of R as the direct sum of two subgroups - one having power-

of-2 size and another having odd size. This decomposition of (R,+) then readily gives a

decomposition of the form (3.11) of the input ring R. Note that now R is rigid if and only

if both R2pow and Rodd are rigid rings. In this way our problem boils down into cases -

testing rigidity of R2pow and that of Rodd.

Testing rigidity of R2pow. Since we can factor polynomials over Z/2mZ we can

compute the decomposition of R2pow into indecomposable rings and check whether they

are of the forms: Z/2mZ, (Z/2Z)[x]/(x2) or not. Hence, we can check the rigidity of

power-of-2-sized rings in polynomial time.

Testing rigidity of Rodd. Let Rodd be given as:

(Rodd,+) = (Z/m1Z)e1 ⊕ . . .⊕ (Z/mnZ)en

Here we can assume that (m1, . . . ,mn) = (dα11
1 , dα12

1 , . . . , dα21
2 , dα22

2 , . . . , dαt1
t , dαt2

t , . . .)

where d1, . . . , dt are mutually coprime. For otherwise ∃i 6= j s.t. gcd(mi,mj) =: g > 1 and

42

can be used to break mi or mj into coprime factors a, b ∈ Z>1, hence, breaking (Rodd,+)

further by applying:

((Z/abZ)ek,+) ∼= (Z/aZ)(bek)⊕ (Z/bZ)(aek)

We can repeatedly apply this process of refining the basis to get basis representations of

the ring Rodd over:

Z/dα11
1 Z⊕ Z/dα12

1 Z⊕ . . .⊕ Z/dα21
2 Z⊕ . . .⊕ Z/dαt1

t Z⊕ . . .

for some coprime d1, d2, . . . , dt ∈ Z>1

Let us define for all 1 ≤ i ≤ t,

Ri := {r ∈ Rodd | r has a power-of-di additive order}

Now since the di’s are mutually coprime Rodd
∼=
⊗t

i=1Ri (as in the proof of proposition

3.4.2). Thus, Rodd has a nontrivial automorphism iff ∃i ∈ [t], Ri has a nontrivial

automorphism. Consequently, we can assume without loss of generality that the additive

basis of the rings Rodd is given in the form:

(Rodd,+) = (Z/dα1Z)e1 ⊕ . . .⊕ (Z/dαnZ)en (3.12)

We can also assume that αi’s are distinct (say, 1 ≤ α1 < α2 < . . . < αn) otherwise Rodd

would not be rigid as it would not be of the form in the classification theorem (3.5.3).

Thus we need to check if a given ring Rodd is of the form:

Z/dα1Z⊗ . . .⊗ Z/dαnZ (3.13)

Remark. There do exist rings whose additive group is of the form (3.12) but the rings

themselves are not of the form (3.13). For example, the ring R def= (Z/d2Z)[x]/〈x2, dx〉 has

additive group isomorphic to Z/d2Z⊕ Z/dZ but R is not isomorphic to Z/d2Z⊗ Z/dZ.

Overview of the algorithm. Now we sketch an algorithm to check whether Rodd is

isomorphic to:

Z/dα1Z⊗ . . .⊗ Z/dαnZ for α1 < . . . < αn.

43

Our algorithm proceeds by decomposing Rodd into Z/dα1Z ⊗ R′ and then recursively

verifying that the component ring R′ is of the form

Z/dα2Z⊗ . . .⊗ Z/dαnZ for α1 < α2 . . . < αn.

The key observation behind obtaining the decomposition of Rodd into Z/dα1Z⊗R′ is the

following claim which is easy to verify:

Claim 3.5.3.5. If

ψ : Rodd 7→ Z/dα1Z⊗ . . .⊗ Z/dαnZ

is an isomorphism and

(Rodd,+) = (Z/dα1Z)e1 ⊕ . . .⊕ (Z/dαnZ)en

then ψ(e1) = (β1, β2, . . . , βn) where β1 ∈ (Z/dZ)∗ and d|β2, . . . , βn, so that if f(x) ∈ Z[x]

is the minimal polynomial of e1 in Rodd then

f(x) (mod d) = xl · (x− (β1 (mod d))) for some l ∈ Z≥0.

Following the above claim, we compute β1 ∈ Z/dα1Z and thereby obtain the zero divisor

(e1−β1) of Rodd and this zero divisor is then used in the standard way to decompose Rodd.

Algorithm: Determine if Rodd is of the form (3.13).

S-1. Compute f(x) := minpoly of e1 over Z/dαnZ. This can be found out by checking

whether ei1 can be written as a linear combination of 1, e1, . . . , ei−1
1 which amounts

to doing linear algebra (mod dαn).

S-2. If Rodd
∼= Z/dα1Z⊗. . .⊗Z/dαnZ then say e1 = (β1, . . . , βn) where βi ∈ Z/dαiZ. Also,

since e1 has characteristic dα1 and α1 � α2, . . . , αn we can deduce: β1 is coprime to

d and d|β2, . . . , βn.

These observations mean that:

f(x) = lcmn
i=1 {minpoly of βi over Z/dαiZ}

≡ (x− β1)xl (mod d), for some l ∈ Z≥0

44

or else Rodd is not of the form (3.13). So we have a non-repeating root β1(mod d)

of f(x)(mod d) and we can use Hensel lifting (see section 2.1.7) to find a root of

f(x)(mod dα1), which gives β1(mod dα1).

S-3. Consider e1 − β1 = (0, β2 − β1, . . . , βn − β1). Note that β2 − β1, . . . , βn − β1 are all

coprime to d. So if we compute (using linear algebra)

R1 := {γ ∈ Rodd | (e1 − β1)γ = 0}

then R1
∼= Z/dα1Z or else Rodd is not of the form (3.13).

S-4. Let ê1 ∈ Rodd be the unity of R1. Compute R⊥
1 := {γ ∈ Rodd | ê1γ = 0}. Check that

Rodd = R1 ⊗R⊥
1 otherwise Rodd is not of the form (3.13).

S-5. Recursively check whether R⊥
1
∼= Z/dα2Z⊗ . . .⊗ Z/dαnZ or not.

Remark. Note that our algorithm for ring automorphism does not imply an efficient

algorithm for the Graph Automorphism problem because the construction of the ring

associated with a graph G (as in section (3.3.4)) gives us a local F5-algebra R(G) which

has lots of nontrivial automorphism already as in the proof of lemma (3.5.3.3).

3.6 Computing a nontrivial automorphism.

We just saw that deciding whether a ring has a nontrivial automorphism is in P. Here we

give evidence that the search version of this problem is apparently harder. We show that

FRA is as hard as integer factoring (IF).

Theorem 3.6.1. IF ≡ZPP
T FRA.

Proof. Let us first see how we can find a nontrivial ring automorphism if we can do integer

factoring. Suppose the given ring R is non-commutative then we know from the proof of

claim 3.5.3.2: there is a unit of R that does not commute with the whole of R and thus

defines a nontrivial automorphism. So we compute the multiplicative generators of R∗ in

randomized polynomial time and surely one of the generators will not commute with the

whole of ring R.

45

Now assume the given ring R is commutative. It can be decomposed into local rings,

as remarked after lemma 3.3.4, in expected polynomial time using randomized methods

for polynomial factorization and oracle of integer factorization. Once we have local rings

we can output nontrivial automorphisms like φ in the proof of claim 3.5.3.3.

Conversely, suppose we can find nontrivial automorphisms of rings and n is a given

number. We can assume that n has no small(≤ (log n)3) prime factor p for clearly we

can find such small prime factors in polynomial-time. Let n = pa · m where pa is the

highest power of the prime p which divides n and m is coprime to p. Randomly choose a

monic cubic polynomial f(x) ∈ (Z/nZ)[x]. Define R := (Z/nZ)[x]/(f(x)) and suppose we

can find a nontrivial automorphism φ of R. It follows from the distribution of irreducible

polynomials over finite fields ([LN94]) that with probability ∼ 1
9 , f (mod n) satisfies the

following properties:

• f(mod n) is squarefree. Equivalently, n is coprime to the discriminant, ∆f , of f .

• f(mod m) is irreducible. That is, there exists a prime q|m such that f(mod q) is

irreducible.

• f(mod p) has exactly two irreducible factors f1, f2, say f1 is linear.

Thus,

R ∼= (Z/paZ)⊗ (Z/paZ)[x]/(f2(x))⊗ (Z/mZ)[x]/(f(x)).

Note that we can compute Rφ, the set of elements of R fixed by φ, using linear algebra

(if at any point we cannot invert an element (mod n), we get a factor of n). As φ is a

nontrivial automorphism of R we have that φ is identity on atmost one of the component

rings (Z/paZ)[x]/(f2(x)) or (Z/mZ)[x]/(f(x)). Thus, we have three cases:

C1). If φ fixes (Z/paZ)[x]/(f2(x)):

Then Rφ ∼= (Z/paZ) ⊗ (Z/paZ)[x]/(f2(x)) ⊗ (Z/mZ/(f(x)))φ. Thus, |Rφ| = p3am1

where m1 6= m3 as φ moves (Z/mZ/(f(x))) .

C2). If φ fixes (Z/mZ)[x]/(f(x)):

Then Rφ ∼= (Z/paZ)⊗ (Z/paZ)⊗ (Z/mZ)[x]/(f(x)). Thus, |Rφ| = p2am3.

C3). If φ moves both (Z/paZ)[x]/(f2(x)) and (Z/mZ)[x]/(f(x)):

Then Rφ ∼= (Z/paZ)⊗ (Z/paZ)⊗ (Z/mZ)[x]/(f(x))φ. Thus, |Rφ| = p2a ·m1, where

m1 6= m2 because f(mod m) is irreducible. (if qb|m be such that f(mod q) is

irreducible, then (Z/qbZ)[x]/(f(x))φ has size precisely qb.)

46

Since, the size of Rφ is in no case of the form n, n2 or n3, the process of finding Rφ by

doing linear algebra (mod n) is going to yield a factor of n. In particular, this means that

if the matrix describing φ over the natural additive basis {1, x, x2} is:

A :=


1 0 0

a0 a1 a2

b0 b1 b2


then the determinant of one of the submatrices of (A− I) will have a nontrivial gcd with

n.

This idea can be extended to the case of composite n having more prime factors.

Thus, the two problems: finding nontrivial automorphisms of commutative rings and

integer factoring have the same complexity (with respect to randomized polynomial time

reductions).

3.7 Discussion

In this chapter, we studied the complexity of computing the automorphism group of a

given ring and its variants. A much finer classification is given in [KS05, Sax06]. Some

related open problems and conjectures are given in the chapter on open problems (chapter

8).

Chapter 4

Polynomial Identity Testing for

Depth-3 Cicuits

Summary: In this chaper, we study the identity testing problem for depth

3 arithmetic circuits (ΣΠΣ circuits). We give the first deterministic polynomial

time identity test for ΣΠΣ circuits with bounded top fanin.

4.1 Introduction

Polynomial Identity Testing (PIT) is the following problem: given an arithmetic circuit

C computing a polynomial p(x1, x2, · · · , xn) over a field F, determine if the polynomial is

identically zero. Besides being an interesting problem in itself, many other well-known

problems such as Primality Testing and Bipartite Matching also reduce to PIT. Moreover

fundamental structural results in complexity theory such as IP=PSPACE and the PCP

theorem involve the use of identity testing.

The first randomized algorithm for identity testing was discovered independently by

Schwartz [Sch80] and Zippel [Zip79] and it involves evaluating the polynomial at a random

point and accepting if and only if the polynomial evaluates to zero at that point. This was

followed by randomized algorithms that used fewer random bits [CK00, LV98, AB03] and

a derandomization of the polynomial involved in primality testing [AKS04] but a complete

derandomization remains distant.

A surprising observation was made by Impaggliazzo and Kabanets [KI04] who showed

that efficient deterministic algorithms for identity testing would also imply strong arith-

metic circuit lower bounds. More specifically, they showed that if identity testing has an

47

48

efficient deterministic polynomial time algorithm then NEXP does not have polynomial

size arithmetic circuits. This result gave further impetus to research on this problem and

subsequently algorithms were developed for some restricted models of arithmetic circuits.

Raz and Shpilka [RS04] gave a deterministic polynomial time algorithm for non-

commutative formulas. Klivans and Spielman [KS01] noted that even for depth 3 circuits

where the fanin of the topmost gate was bounded, deterministic identity testing was an

open problem. Subsequently, Dvir and Shpilka [DS05] gave a deterministic quasipolynomial

time algorithm for depth 3 arithmetic circuits (ΣΠΣ circuits) where the fanin of the

topmost gate is bounded (note that if the topmost gate is a Π gate than the polynomial

is zero if and only if one of the factors is zero and the problem is then easily solved).

Example: The circuit

C(y, x1, x2)
def= (y) · (y + x1 + x2) + (x1) · (x2)− (y + x1) · (y + x2)

is a ΣΠΣ-circuit computing the identically zero polynomial over the field Q of rational

numbers.

In this paper, we give a deterministic polynomial time algorithm for the identity testing

of such ΣΠΣ circuits. Our main theorem is:

Theorem 4.1.1. There exists a deterministic algorithm that on input a circuit C of depth

3 and degree d over a field F, determines if the polynomial computed by the circuit is

identically zero in time poly(n · dk), where k is the fanin of the topmost addition gate

and n is the number of inputs. In particular if k is bounded, then we get a deterministic

polynomial time algorithm for identity testing of depth 3 circuits.

The rest of this chapter is organized as follows. Section 4.2 gives an overview of ΣΠΣ

circuits. Then section 4.3 proves a generalization of the well-known Chinese Remaindering

Theorem which is crucial to our algorithm. Finally, section 4.4 describes the identity test

for ΣΠΣ circuits of bounded top fanin.

4.2 ΣΠΣ Arithmetic Circuits

As noted by Impagliazzo and Kabanets, the Polynomial Identity Testing problem is

closely related to proving arithmetic circuit lower bounds. Proving lower bounds for

general arithmetic circuits is one of the central problems of complexity theory. Due to

49

the difficulty of the problem research has focused on restricted models like monotone

circuits and bounded depth circuits. Only weak lower bounds are known for bounded

depth arithmetic circuits [Pud94, RS01]. Thus, a more restricted model was considered –

the model of depth 3 arithmetic circuits (also called ΣΠΣ circuits if we assume alternate

addition and multipication gates with addition gate at the top). A ΣΠΣ circuit computes

a polynomial of the form:

C(x) =
k∑

i=1

βi

di∏
j=1

Lij(x) (4.1)

where Lij ’s are homogeneous linear functions (or linear forms). Exponential lower bounds

on the size of ΣΠΣ arithmetic circuits has been shown over fixed size finite fields [GK98].

For general ΣΠΣ circuits over large/infinite fields only the quadratic lower bound of [SW99]

is known.

No efficient algorithm for identity testing of ΣΠΣ circuits is known. Here we are

interested in studying the identity testing problem for a restricted case of ΣΠΣ circuits

– when the top fanin, k, is bounded. This case was posed as a challenge by Klivans and

Spielman [KS01] and a quasipolynomial time algorithm was given by Dvir and Shpilka

[DS05].

4.2.1 Previous Approaches

Let C be a ΣΠΣ circuit, as in Equation (4.1), computing the zero polynomial. We will call

C to be minimal if no proper subset of the multiplication gates of C sums to zero. We say

that C is simple if there is no linear function that appears in all the multiplication gates

(up to a multiplicative constant). Rank of C is the rank of the linear forms appearing in

C.
The quasipolynomial time algorithm of [DS05] is based on the following result – rank of

a minimal and simple ΣΠΣ circuit with bounded top fanin and computing zero is “small”.

Formally, the result says:

Theorem 4.2.1. (Thm 1.4 of [DS05]). Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple

and minimal ΣΠΣ circuit of degree d with k multiplication gates and n inputs, then

rank(C) ≤ 2O(k2) log(d)k−2.

Effectively, this means that if we have such a circuit C and k is a constant then

we can check whether it is zero or not in time O(drank(C)) = 2O(log(d)k−1). This gave

50

hope of finding a polynomial time algorithm if we can improve the upper bound on the

rank(C) to a constant (i.e. independent of d). Infact, [DS05] conjectured that rank(C) =

O(k). Unfortunately this approach is unlikely to work at least over finite fields of fixed

characteristic as shown by Nitin Saxena in [Sax06]. [Sax06] gives the following identity

over finite fields of fixed characteristic p that contradicts this conjecture.

Lemma 4.2.2. (Saxena, [Sax06]). Let p be an odd prime. Define:

C(x1, . . . , xm) def=
p−1∑
i=0

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(b1x1 + · · ·+ bmxm)

Then, over Fp, C is a simple and minimal ΣΠΣ zero circuit of degree d = pm−1 with k = p

multiplication gates and having “unbounded” rank(C) = logp(d) + 1.

Thus, methods of [DS05] are unlikely to give an efficient algorithm (at least over all

fields) and we give new techniques in section 3 that solve the problem.

4.2.2 Our Approach

We now give the basic idea behind our approach to this problem after introducing a little

bit of notation.

Terminology - Leading monomial and leading coefficient.

Let F be a field and � be the graded-lexicographic ordering on monomials in F[x1, . . . , xn].

That is, � ranks monomials by their total degree and breaks ties by using lexicographic

ordering. For f(x̄) ∈ F[x̄]:

• The leading monomial of f(x̄), written LM(f(x̄)), is the monomial which is ranked

highest under � of all monomials which have nonzero coefficients in f(x̄).

• The leading coefficient of f(x̄), written LC(f(x̄)), is the coefficient of LM(f(x̄)) in

f(x̄).

• For a monomial xα1
1 xα2

2 . . . xαn
n and a polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn], we

will denote by Coeff(xα1
1 xα2

2 . . . xαn
n , f(x1, . . . , xn)) the coefficient of the monomial

xα1
1 xα2

2 . . . xαn
n in f(x1, . . . , xn).

Note that the leading monomial satisfies the following property:

51

Property. For f1(x̄), f2(x̄) ∈ F[x̄],

(i) LM(f1(x̄) · f2(x̄)) = LM(f1(x̄)) · LM(f2(x̄)). In particular, if f1(x̄) divides f2(x̄)

then LM(f1(x̄)) divides LM(f2(x̄)).

(ii) If LM(f1(x̄)) � LM(f2(x̄)) then LM(f1(x̄)) � LM(f1(x̄) + f2(x̄)).

The Idea

The input is a circuit C(x1, . . . , xn) in F[x1, . . . , xn] which looks like:

C = β1 · T1 + β2 · T2 + . . .+ βk · Tk

where each Ti is a product of linear forms

Ti = Li1 · Li2 · . . . · Lid

and where each Lij is a linear form:

Lij = aij1x1 + aij2x2 + · · ·+ aijnxn

for some aij1, aij2, · · · , aijn ∈ F. We want to check if C computes the identically zero

polynomial over F. By rearranging the terms if necessary we can assume without loss of

generality that

LM(T1) � LM(T2) � . . . � LM(Tk).

Then by property (ii) of leading monomials we have

LM(T1) � LM(C). (4.2)

We first verify that T1 divides C in a recursive manner to be described a short while later.

We next check if Coeff(LM(T1), C(x1, . . . , xn)) = 0. We accept C if and only if it passes

both the tests. Clearly, if C(x1, . . . , xn) = 0, the input will pass both the tests and our

algorithm will correctly identify C(x1, . . . , xn) as the zero polynomial. So we will assume

that C(x1, . . . , xn) 6= 0. In that case, by Property (i) of LM we then have

LM(C) � LM(T1). (4.3)

Combining equations (4.2) and (4.3), we get

LM(C) = LM(T1).

52

But

Coeff(LM(T1), C(x1, . . . , xn)) = 0,

implying that

Coeff(LM(C), C(x1, . . . , xn)) = 0,

a contradiction since C(x1, . . . , xn) was assumed to be non-zero.

Checking that T1 divides C(x1, . . . , xn). We have T1 = L11 · L12 · . . . · L1d. We

recursively verify that C ≡ 0 (mod L1j) for all 1 ≤ j ≤ d. Note that T1 vanishes modulo

L1j and that F[x1, . . . , xn]/〈L1j〉 ∼= F[y1, . . . , yn−1] is isomorphic to a polynomial ring in

(n−1) variables over the field F. Therefore verifying C ≡ 0 (mod L1j) amounts to identity

testing of a ΣΠΣ circuit of top fanin (k − 1) in (n− 1) variables over the fied F.

Having verified that C ≡ 0 (mod L1j) for all 1 ≤ j ≤ d, we can deduce by the Chinese

Remaindering Theorem that L def= Lcm(L11, L12, . . . , L1d) divides C. Now if L = T1 then

we are done.

In general, however there would exist pathological cases in which T1 has repeated

factors and L properly divides T1. The algorithm for the general case has the same

structure as above, except that we now work with polynomials over local rings instead of

fields. Our main tool will be a generalization of the Chinese Remainder Theorem (CRT).

The next section is devoted to this generalization of CRT.

4.3 Chinese remaindering

In our algorithm, the polynomials that we get will be over some local ring R ⊃ F instead

of being over F but we can show that the chinese remaindering property of polynomials

in F[z1, . . . , zn] continues to hold in R[z1, . . . , zn]. Specifically, we need that:

Chinese Remaindering Theorem: If ‘coprime’ f(z1, . . . , zn), g(z1, . . . , zn) divide

p(z1, . . . , zn) then f · g | p over R.

4.3.1 Notation and Terminology.

Terminology - Natural Ring Homomorphism.

Let R be a local ring over a field F with maximal idealM. Then every element r ∈ R can

be written uniquely as r = α+m where α ∈ F and m ∈M is a nilpotent element of R. By

the term natural ring homomorphism from R to F, we will mean the unique homomorphism

53

φ : R 7→ F that maps every element in M to zero in F. That is, φ(r) = α. The map φ

then extends in a natural way to a homomorphism from the polynomial ring R[z1, . . . , zn]

to the polynomial ring F[z1, . . . , zn] so that the polynomial
∑

α aαz̄α is mapped to the

polynomial
∑

α φ(aα)z̄α. We will say that two polynomials f(z̄) and g(z̄) in R[z̄] are

coprime if and only if the corresponding polynomials φ(f(z̄)) and φ(g(z̄)) are coprime.

Notation - Set of Linear Forms over R.

Let R be a local ring over a field F with maximal ideal M. We will denote by LFR/F(x̄)

the set of all linear forms in n variables x̄ = (x1, x2, . . . , xn) over R with coefficients from

F. That is,

LFR/F(x1, . . . , xn) = {
i=n∑
i=1

aixi +m|m ∈M, ai ∈ F , ∃i : ai 6= 0}

4.3.2 Preliminaries

For any ring S, we can define the ring of fractions Sfr of a ring S as the set of elements
u
v where, u, v ∈ S and v is not a zero divisor of S. Clearly, Sfr is also a ring. We will be

considering polynomials over rings S and Sfr. A polynomial g(z) ∈ S[z] is called monic

if its leading coefficient is a unit of S. The following is a well known lemma that relates

polynomial factorization over the ring S to its ring of fractions Sfr.

Lemma 4.3.1 (Gauss’ Lemma). Suppose f(z), g(z) ∈ S[z] and h(z) ∈ Sfr[z] such that:

f(z) = g(z)h(z). If g(z) is monic then h(z) ∈ S[z].

Proof. Let the degrees of f , g and h be α, β and γ respectively. Let

f(z) =
α∑

i=0

fiz
i where fi ∈ S ,

g(z) =
β∑

i=0

giz
i where gβ = 1, gi ∈ S and

h(z) =
i=γ∑
i=0

hiz
i where hi ∈ Sfr.

Suppose if possible that h(z) /∈ S[z]. Let k ∈ [1 · · · γ] be the largest integer such that hk,

the coefficient of zk in h(z), does not belong to S. Now the coefficient of zβ+k in g(z)h(z)

54

is

fβ+k = hkgβ +
β∑

j=1

gβ−jhk+j

Thus fβ+k belongs to Sfr but not to S. This is a contradiction for f(z) ∈ S[z].

4.3.3 Properties of multivariate polynomials over local rings

In this section we will show that (multivariate) polynomials over local rings have divisibility

properties analogous to those of polynomials over fields. In showing this, we will often make

use of linear transformation of variables. We start out with a lemma which shows that

after the application of suitable linear transformation, any polynomial p(x1, x2, · · · , xn) ∈
F[x1, x2, · · · , xn] of total degree d can be transformed into a polynomial p̂ that is monic

of degree d with respect to the variable x1.

Lemma 4.3.2. Let F be a field of size at least d and p(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn]

be any polynomial of total degree d. Then there exists a linear transformation φ , φ :

xi 7→
∑n

j=1 αijxj such that p̂(x1, x2, · · · , xn) def= p(φ(x1), φ(x2), · · · , φ(xn)) is monic of

degree d with respect to the variable x1. Indeed a random linear transformation φ will

work with high probability.

Proof. Let p(x̄) = q(x̄) + r(x̄) where q(x̄) 6= 0 is a homogeneous polynomial of degree d

and r(x̄) consists of all the remaining smaller degree terms of p(x̄). Then the coefficient

of xd
1 in p̂(x̄) is simply q(α11, α21, · · · , αn1).

By the Schwartz-Zippel lemma [Sch79], q(α11, α21, · · · , αn1) 6= 0 with high probability

and thus p̂(x̄) is monic in x1 with high probability.

The same proof can now be extended to local rings over a field.

Corollary 4.3.3. Let F be a field of size at least d and R a local ring over F. Let

p(x1, x2, · · · , xn) ∈ R[x1, x2, · · · , xn] be any polynomial of total degree d. Then there

exists a linear transformation φ , φ : xi 7→
∑n

j=1 αijxj such that p̂(x1, x2, · · · , xn) def=

p(φ(x1), φ(x2), · · · , φ(xn)) is monic of degree d with respect to the variable x1. Indeed a

random linear transformation φ will work with high probability.

55

Throughout the rest of this section we will assume that R is a local ring over a field F
and the natural ring homomorphism from R to F is φ. The natural extension of the map

φ to a homomorphism from R[z1, z2, · · · , zn] to F[z1, z2, · · · , zn] will also be denoted by φ.

The unique maximal ideal of R is M and t is the least integer such that Mt = 0 in R.

Lemma 4.3.4. Let R be a local ring and p, f, g ∈ R[z1, z2, · · · zn] be multivariate polyno-

mials such that φ(f) and φ(g) are coprime.

If p ≡ 0 (mod f)

and p ≡ 0 (mod g)

then p ≡ 0 (mod f · g).

Proof. Let the (total) degrees of φ(f) and φ(g) be df and dg respectively. By corollary

4.3.3 we can apply a suitable invertible linear transformation on the variables z1, z2, · · · , zn,

if needed, and can thus assume without loss of generality that the coefficients of zdf
n in f

and that of zdg
n in g are both units of R. Consequently, in the product fg the coefficient

of zdf+dg
n is also a unit.

Now think of f and g as polynomials in one variable zn with coefficients coming from

the ring of fractions, R(z1, z2, · · · , zn−1), of R[z1, z2, · · · , zn−1]. Now since φ(f) and φ(g)

are coprime over F, they are also coprime as univariate polynomials in zn over the function

field F(z1, z2, · · · , zn−1). Consequently, there exists a, b ∈ F(z1, z2, · · · , zn−1)[zn] such that:

aφ(f) + bφ(g) = 1 in F(z1, z2, · · · , zn−1)[zn].

That is,

af + bg = 1 in (R/M)(z1, · · · , zn−1)[zn].

By the well known Hensel Lifting lemma we get that there exist a∗, b∗ ∈ R(z1, . . . , zn−1)[zn]

such that:

a∗f + b∗g = 1 in (R/Mt)(z1, z2, · · · , zn−1)[zn]

which is R(z1, z2, · · · , zn−1)[zn]

56

Now by the assumption of the lemma:

p ≡ 0 (mod f)

⇒ p = fq for some q in R[z1, z2, · · · , zn−1][zn]

also, p ≡ 0 (mod g)

⇒ fq ≡ 0 (mod g)

⇒ a∗fq ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

⇒ q ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

∴ p = fgh for some h in R(z1, z2, · · · , zn−1)[zn]

Since, the leading coefficient of zn in fg is in R∗ and p, fg are in R[z1, z2, · · · , zn−1][zn],

therefore by Gauss Lemma (see Lemma 4.3.1) we get that in fact h ∈ R[z1, z2, · · · , zn−1][zn]

and so

p ≡ 0 (mod fg) in R[z1, z2, · · · , zn].

4.4 Description of the Identity Test

4.4.1 Overview of the Algorithm

We now give an overview of our algorithm. The input is a ΣΠΣ circuit C(x1, . . . , xn)

having an addition gate at the top with fanin k and computing a polynomial of total

degree atmost d over a field F. Our algorithm is recursive such that in each recursive call

k reduces while the base ring (initially, it was F) becomes larger. The intermediate larger

rings that appear are all ensured to be local. The dimension of the base ring (over F)

increases by a factor of atmost d in each recursive call and thus, the complexity comes out

to be poly(dk · n) (assuming the field operations in F take constant time).

We will now demonstrate a snapshot of the algorithm. Let R be a local ring over the

field F having maximal ideal M. The circuit C(z1, . . . , zn) in R[z1, . . . , zn] looks like:

C = β1 · T1 + β2 · T2 + . . .+ βk · Tk

where each Ti is a product of linear forms

Ti = Li1Li2 · · ·Lid

57

and where each Lij is a linear form:

Lij = aij0 + aij1z1 + aij2z2 + · · ·+ aijnzn

for some aij1, aij2, · · · , aijn ∈ F and aij0 ∈ M. We want to check if C computes the

identically zero polynomial over R. Note that in each Ti, the coefficient of its leading

monomial Coeff(LM(Ti), Ti) is in F ⊆ R∗. We renumber the terms and ensure that

LM(T1) � LM(T2) � . . . � LM(Tk).

Suppose that T1 factors over R into a product of ‘coprime’ polynomials p1, . . . , pl. We

recursively verify that:

C ≡ 0 (mod pi) for 1 ≤ i ≤ l

By our version of Chinese Remaindering Theorem for local rings we deduce that:

C ≡ 0 (mod
l∏

i=1

pi)

Our choice of the polynomials pi ensures that the total degree of
∏l

i=1 pi(z1, . . . , zn) is

at least as large as that of C(z1, . . . , zn). Finally by verifying that Coeff(LM(T1), C),
the coefficient of the leading monomial of T1 in C(z1, . . . , zn), is zero we deduce that C
computes the identically zero polynomial over R.

Our choice of the polynomials pi ensures two things:

i) There is an invertible linear transformation τ on the variables z such that it ‘sim-

plifies’ the polynomial pi:

τ ◦ pi(z1, . . . , zn) = (z1 +m1) · (z1 +m2) · · · (z1 +ms)

where, mj ∈M. Thus, the ring Si := R[z1]/(τ ◦ pi) is a local ring.

ii) pi divides T1 and so T1 ≡ 0 (mod pi). Thus τ ◦ C can be viewed as a ΣΠΣ circuit

with top fanin atmost (k − 1), total degree d and (n − 1) variate over the (larger)

ring Si. We can check C = 0 (mod pi) by checking τ ◦ C = 0 over Si recursively.

4.4.2 The Algorithm

Input: The three inputs to the algorithm are:

58

• A local ring R of dimension r over a field F with maximal ideal M. (In the initial

call, R = F andM = 〈0〉).

• A set of k coefficients 〈β1, . . . , βk〉, where k ≥ 1 and ∀i : βi ∈ R.

• A set of k terms 〈T1, . . . , Tk〉. Each Ti is a product of di linear forms in n variables

over the ring R. That is, each Ti is of the form Ti =
∏di

j=1 lij and each lij ∈
LFR/F(x1, x2, . . . , xn) .

Output: The input parameters compute the following polynomial over the ring R:

p(x1, . . . , xn) def= β1T1 + . . .+ βkTk

The output of the algorithm, ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉), is YES iff

p(x1, . . . , xn) = 0 .

Algorithm: ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉):

Step 1: (Rearranging the terms.) By rearranging the terms if needed ensure that

LM(T1) � LM(Ti) ∀2 ≤ i ≤ k.

Step 2: (Base case of one multiplication gate) If k = 1 then we need to check

whether β1T1 = 0 as a member of R[x1, x2, · · · , xn]. Since LC(T1) is a unit in F,

this happens if and only if β1 = 0.

Step 3: (Verifying that p(x1, . . . , xn) ≡ 0 (mod T1)) We shall verify that T1 divides

p(x1, . . . , xn) by using recursion to verify that all the distinct coprime factors of T1

divide p(x1, . . . , xn). Since T1 is the product of linear forms over R, it can be written

as the product of coprime factors, each factor being of the form

S = (l +m1)(l +m2) . . . (l +mt)

where l ∈ F[x1, . . . , xn] is a linear form in n variables over F. Now to verify that S

divides p(x1, . . . , xn) do the following:

Step 3.1 (Applying a linear transformation.) Define a linear tranformation

σ acting on the variables x1, . . . , xn such that σ sends l 7→ x1 and transforms

x2, . . . , xn such that it is an invertible linear map. Now S divides p(x1, . . . , xn)

if and only if σ(S) divides σ(p(x1, . . . , xn)).

59

Step 3.2 (Recursively verify σ(S) divides σ(p)). Define the ring R′ as

R′ def= R[x1]/(σ(S)) .

Note that σ(T1) ≡ 0 (mod σ(S)). For all i between 2 and k compute γi and

T ′i such that:

σ(Ti) = γiT
′
i (mod σ(S)) where γi ∈ R′ and T ′i ∈ LFR′/F(x2, . . . , xn).

Recursively call ID(R′, 〈β2γ2, . . . , βkγk〉 , 〈T ′2, . . . , T ′k〉). If the recursive call

returns NO then output NO and exit.

Step 4: (Comparing coefficient of the highest monomial.) Compute the coefficient

of LM(T1) in p(x1, . . . , xn) and output YES iff its zero.

4.4.3 Proof of Correctness

The proof of correctness is now straightforward. We continue using the notation set in

the last subsection. The claim here is summarized as:

Theorem 4.4.1. Let R be a local ring of dimension r over a field F. Then

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

returns YES iff β1T1 + · · · + βkTk = 0 in R[x1, . . . , xn]. Furthermore, the time taken is

poly(nrdk) assuming all the field operations can be done in constant time, where d is the

maximum degree of any term.

Proof. Time complexity. Note that in all the recursive calls that

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

makes to ID(·, ·, ·) the dimension of the base ring R increases by a factor of at most d

whereas the value of k, the number of terms, decreases by one. Moreover there are at

most d such recursive calls. Therefore, if h(k, r) denotes the time taken by

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

then we have the following recurrence:

h(k, r) ≤ d · h(k − 1, dr) + poly(ndrk)

60

Thus, we get that h(k, r) = poly(nrdk).

Correctness. We prove the correctess of the output of

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

by induction on k:

Claim 4.4.1.1. ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉) returns YES iff

β1T1 + . . .+ βkTk = 0

Proof of Claim 4.4.1.1. The base case of the induction is when k = 1, handled and

explained by Step 2.

Now we assume that k ≥ 2 and that the claim is true for values smaller than k. Let

T1 = S1 ·S2 · . . . ·Sm. In Step 3 we verify that Si divides p(x1, . . . , xn) for all i ∈ [m]. Then

by lemma 4.3.4, we deduce that T1 =
∏

i∈[m] Si divides p(x1, . . . , xn). Thus we get that

p(x1, . . . , xn) = T1 · q(x1, . . . , xn) for some q ∈ R[x1, . . . , xn].

Since LC(T1) is a unit of R we have LM(p) = LM(T1) · LM(q) and in particualar that

LM(p) � LM(T1). On the other hand, since p =
∑

i∈[k] βiTi and LM(T1) � LM(Ti) ∀i ∈
[k] we have that LM(T1) � LM(p).

We therefore deduce that LM(p) = LM(T1). Finally in Step 4 we compute coefficient

of LM(T1) in p and by the above observations it is the same as LC(p). Now p = 0 over R

iff LC(p) = 0 as required.

�

4.5 Discussion

In this chapter we generalized the well-known Chinese Remaindering lemma for polynomi-

als to work even for polynomials over local rings and applied it to develop a deterministic

polynomial-time identity test for ΣΠΣ circuits with bounded top fanin. Ours was a white-

box derandomization in that we had to look at the internal structure of the given circuit

in order to determine if it computes the zero polynomial. There may well exist a stronger

61

black-box derandomization of the identity testing problem. We first describe the notion of

black-box derandomization as applicable to our problem and then mention a conjecture due

to Manindra Agrawal [Agr05] which if true would imply such a black-box derandomization

of the identity testing problem.

Black-box derandomization of Identity Testing. Let Ck,d,n be the set of all

ΣΠΣ algebraic circuits of top fanin k over a field F computing a polynomial of degree

at most d in n variables over F. It is well-known (cf. [Agr05]) that there exist a set P

of t = poly(ndk) points {P1, P2, . . . , Pt} ⊆ Fn such that any circuit C ∈ Ck,d,n computes

the zero polynomial if and only if C evaluates to zero at each of the points P1, P2, . . . , Pt.

Following the terminology of [Agr05], we call such a set P a pseudo-random generator

against the class of circuits Ck,d,n. The challenge then is to give an explicit (deterministic

polynomial-time) construction of such a set P.

A conjecture. Below we reproduce a conjecture which essentially claims that a set of

points with roots of unity as coordinates is a pseudo-random generator for the class Ck,d,n

of ΣΠΣ algebraic circuits. In particular the conjecture implies an efficient deterministic

identity testing algorithm for all ΣΠΣ-circuits.

Conjecture. (Agrawal, [Agr05].) Let n, d, k be natural numbers. Let r ≥ (n · d · k)4

be a prime. Let ωr ∈ F be a primitive r-th root of unity. Then the set of points P =

{P1, P2, . . . , Pr} given by

Pk
def= (ωk0

r , ωk1

r , . . . , ωkn−1

r)

is a pseudo-random generator against the class Ck,d,n of ΣΠΣ algebraic circuits.

Chapter 5

Factoring Multivariate

Polynomials over Finite Fields

Summary:

We consider the deterministic complexity of the problem of polynomial factor-

ization over finite fields - given a finite field Fq and a polynomial h(x, y) ∈
Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible

polynomials. This problem admits a randomized polynomial-time algorithm

and no deterministic polynomial-time algorithm is known. In this chapter,

we give a deterministic polynomial-time algorithm that partially factors the

input polynomial h(x, y). The algorithm can be generalized to partially factor

multivariate polynomials in an arbitary number of variables.

We now describe precisely the output of our partial factoring algorithm.

Associated with every Fq-irreducible factor f(x, y) of h(x, y) are two objects -

its total degree n and the smallest extension field Fqd of Fq over which f(x, y)

splits into absolutely irreducible factors. Collecting all the Fq-irreducible factors

of h(x, y) which have the same degree and the same splitting field, we get a unique

factorization of h(x, y) into a product of “uniform polynomials” - polynomials

whose component Fq-irreducible factors all have the same degree and the same

splitting field. It is this unique representation of h(x, y) as a product of uniform

polynomials that is outputted by our algorithm.

62

63

5.1 Introduction

A fundamental theorem of algebra states that polynomials over any field F admit a unique

factorization into a product of (a finite number of) F-irreducible factors. Computing

this factorization for polynomials over various fields is a very well-studied problem in

algorithmic number theory. For densely represented polynomials (that is, polynomials of

degree n in m variables that are specified by giving all the
(
n+m

m

)
-possible coefficients of

monomials), the problem of factoring multivariate polynomials is known to reduce to the

problem of factoring univariate polynomials [Kal82]. For univariate polynomials over Q,

the field of rational numbers, Lenstra, Lenstra and Lovasz [LLL82] gave a deterministic

polynomial-time algorithm.

Over finite fields, the problem admits random polynomial time algorithms [Ber67,

Ber70, CZ81] but no deterministic polynomial-time algorithm is known. In a very interest-

ing development, Kaltofen devised an algorithm that given an algebraic circuit computing

a moderate degree polynomial in a large number of variables, computes its factorization

in random polynomial time. Kaltofen’s algorithm has been widely used in theoretical

computer science with applications in list decoding of codes [GS99, Gur01] and hardness-

randomness tradeoffs for arithmetic circuits [KI04].

The deterministic complexity of factoring polynomials over finite fields has also made

partial progress. Berlekamp gave a deterministic algorithm for computing the distinct-

degree factorization of univariate polynomials. This was subsequently generalized by Gao,

Kaltofen and Lauder [GKL04] for deterministic distinct degree factorization of multivariate

polynomials over finite fields. Motivated by the solvability problem to be tackled in the

next chapter, we continue this line of work and develop a deterministic algorithm for

partially factoring multivariate polynomials over finite fields. Moreover our algorithm can

be parallelized so that the parallel time complexity is polylogarithmic in the degree of the

input polynomial to be factored.

In order to describe the output of our algorithm we need to introduce some terms.

Definition 5.1.1. A bivariate polynomial h(x, y) ∈ Fq[x, y] is said to be absolutely

irreducible if it is irreducible over Fq and remains irreducible over the algebraic closure Fq

of Fq.

Example: For example, (y2−x3) ∈ F7[x, y] is absolutely irreducible whereas (y2 +x2) ∈
F7[x, y] is irreducible over F7 but factors into (y +

√
−1x)(y −

√
−1x) over the extension

64

F72 = F7(
√
−1) and hence is not absolutely irreducible over F7.

Remark. Note that a univariate polynomial f(x) ∈ Fq[x] is absolutely irreducible if and

only if it is a linear polynomial. To see this, observe that if f(x) ∈ Fq[x] is a univariate

irreducible polynomial of degree d ≥ 2 then then it splits properly over Fqd , and therefore

cannot be absolutely irreducible.

The polynomial h(x, y) has a unique factorization over the algebraic closure Fq of

Fq. Now collect all the elements of Fq that occur as the coefficient of some monomial

xiyj in some absolutely irreducible factor g(x, y) of h(x, y) over F. Since this is a finite

set, all these coefficients lie in some finite extension K of Fq. We will call the smallest

such extension field K the splitting field of h(x, y). We will denote by dimFq(h(x, y)) the

dimension of the splitting field K of h(x, y) over Fq. That is, dimFq(h(x, y))
def= [K : Fq].

We will call a polynomial f(x, y) ∈ Fq[x, y] a uniform polynomial if any two of its

Fq-irreducible factors have the same total degree and the same splitting field K. In this

chapter, we build upon the distinct degree factorization algorithm of Gao, Kaltofen and

Lauder [GKL04] to split a given polynomial h(x, y) ∈ Fq[x, y] into a product of uniform

polynomials. We summarize our main result as a theorem:

Theorem 5.1.2. [Uniform factoring] There exists a deterministic algorithm that on input

a polynomial h(x, y) ∈ Fq[x, y] of degree n outputs

〈(h1(x, y), n1, d1), . . . , (hk(x, y), nk, dk)〉

such that

h(x, y) = h1(x, y) · . . . · hk(x, y)

where each hi(x, y) is a uniform polynomial consisting of Fq-irreducible factors of degree

ni and splitting field Fqdi .

The algorithm has a time complexity of poly(n · log q). Moreover, the algorithm can be

implemented parallely to get a family of P -uniform circuits of depth poly(log n · log q) and

size poly(n · log q).

Note that the output of the algorithm of Theorem 5.1.2 is a refinement of the distinct

degree factorization of h(x, y) over Fq.

We now give the overall idea behind our algorithm.

65

5.1.1 Basic Idea

The starting point of our algorithm is the procedure (due to Kaltofen [Kal82]) for reducing

the problem of factoring bivariate polynomials to the problem of factoring univariate

polynomials. Let Fq be a finite field and h(x, y) ∈ Fq[x, y] be a square-free bivariate

polynomial of degree n that we wish to factor. By applying a suitable linear transformation

if necessary, we can assume without loss of generality that w(z) = h(z, 0) is square-free

(cf. Kaltofen [Kal82]). Suppose we know an α ∈ Fq which is a root of some Fq-irreducible

factor t(z) of w(z). Let Rt
def= Fq[z]/〈t(z)〉 = Fq(α) be the splitting field of t(z). Then

by the squarefree-ness of h(z, 0) there exists a unique (upto constant factors) minimal

degree factor ht(z)(x, y) ∈ Rt[x, y] of h(x, y) such that α is a root of ht(z)(z, 0). With this

background in mind, Kaltofen’s algorithm can be viewed as follows: using the root α having

minimal polynomial t(z) over Fq, it simply writes down a system Rt(z),m of homogeneous

linear equations over Rt whose solutions correspond to polynomials in Rt[x, y] of degree

at most m and which are multiples of ht(z)(x, y). Setting m = n− 1 and taking the gcd of

all the polynomials corresponding to a basis of the solution space of Rt(z),m gives us the

factor ht(z)(x, y) ∈ Rt[x, y] of h(x, y).

Unfortunately the absence of a deterministic algorithm for univariate factoring over

finite fields prevents us from obtaining irreducible factors of w(z). Suppose that v(z) ∈
Fq[z] is any (not necessarily irreducible) factor of w(z). As before, we construct the

ring Rv
def= Fq[z]/〈v(z)〉 (note that Rv is no longer a field). We then view the element

α′ ∈ Rv, α
′ def= z (mod v(z)) as a ‘pseudo-root’ of the polynomial w(x) = h(x, 0) ∈ Rv[x].

Proceeding as before, we write down a system Rv(z),m of homogeneous linear equations

over Rv. We then ask the question - what do the solutions of Rv(z),m correspond to ‘in

reality’? Examining this question minutely, we deduce that by setting v(z) = w(z) and

varying m, the solutions of Rw(z),m can be used to factor out divisors of h(x, y) having

distinct degree or distinct splitting fields over Fq.

Remark. Subsequently, Kaltofen [Kal85] essentially observed that Rw(z),(n−1) does not

have a nontrivial solution if and only if h(x, y) is absolutely irreducible. Combining this

with efficient parallel algorithms for linear algebraic computations, he obtained a fast

parallel deterministic algorithm for absolute irreducibility testing.

66

5.2 Mathematical machinery.

This section forms the core of this chapter. Its organized as follows - following tradition,

we first introduce nice bivariate polynomials. We then examine how an Fq-irreducible

bivariate polynomial factors over various possible field extensions of Fq. Next, we define

some systems of linear equationsRv(z),m, Fv(z),m and Bv(z),m and prove the basic properties

of their solution spaces. Finally we show how these solution spaces can be used to obtain

factors of h(x, y). In this and the next section, we will use h(x, y) for the reducible input

polynomial to be factored and f(x, y) for an Fq-irreducible factor of h(x, y).

5.2.1 Nice bivariate polynomials

Definition 5.2.1. A bivariate polynomial f(x, y) ∈ Fq[x, y] of total degree n is nice if

f(x, 0) is squarefree and of degree n.

Note that the coefficient of xi of a nice polynomial f(x, y) as a polynomial in y has

degree no more than n − i, in particular the leading coefficient of f(x, y) with respect to

x is in Fq.

Also observe that a nice polynomial f(x, y) ∈ Fq[x, y] remains nice over any extension

field K of Fq and that any factor of a nice polynomial is also a nice polynomial. By

doing a square-free factorization of the input polynomial followed by a suitable linear

transformation of the variables, the problem of general bivariate factoring can be reduced

to factoring a nice bivariate polynomial (cf. Kaltofen [Kal82] for details).

Throughout the rest of this chapter we will use Fq to denote the input field and unless

mentioned otherwise, all the algebras that we come across in this chapter will be over

Fq. Also we shall throughout use h(x, y) ∈ Fq[x, y] to denote the input polynomial to be

factored.

5.2.2 How Fq-irreducible bivariate polynomials behave over extensions

of Fq.

We will now examine how an Fq-irreducible factor f(x, y) of h(x, y) factors over an

extension field Fqd of Fq. We will show that over any extension field f(x, y) splits into

a product of conjugate factors and if the extension field happens to be isomorphic to

Fq[z]/〈v(z)〉 where v(z) is an irreducible factor of f(z, 0) then f(x, y) splits into absolutely

irreducible factors over it.

67

Conjugacy - an equivalence relation.

Let K be a field extension of the finite field Fq. Let φ ∈ GalK/Fq
be an automorphism of

K. We extend φ to an automorphism of the ring K[x, y] in the natural way:

Definition 5.2.2. Let φ ∈ GalK/Fq
be an automorphism of K. Define the map φ :

K[x, y] 7→ K[x, y] as

φ(f(x, y)) =
∑

1≤k,l≤n

φ(akl)xkyl

where

f(x, y) =
∑

1≤k,l≤n

aklx
kyl

Observe that the map φ : K[x, y] 7→ K[x, y] is an automorphism of the ring K[x, y] that

fixes the subring Fq[x, y]. In particular,

• φ(f(x, y) + g(x, y)) = φ(f(x, y)) + φ(g(x, y))

• φ(f(x, y) · g(x, y)) = φ(f(x, y)) · φ(g(x, y))

We now define an equivalence relation on K[x, y] induced by such automorphisms of

K[x, y].

Definition 5.2.3. Let f(x, y), g(x, y) ∈ K[x, y] be two bivariate polynomials. g(x, y) is

said to be a conjugate of f(x, y) over Fq, or an Fq-conjugate of f(x, y), if there exists an

automorphism φ ∈ GalK/Fq
such that g(x, y) = φ(f(x, y)).

Observe that conjugacy is an equivalence relation on K[x, y].

Factorization of Fq-irreducible polynomials over extension fields.

Now consider a nice Fq-irreducible polynomial f(x, y) ∈ Fq[x, y]. Let K ⊇ Fq be a finite

field extension of Fq. How does f(x, y) factor over K? We claim that all the K-irreducible

factors of f(x, y) in K are in fact Fq-conjugates of each other. In particular, all the

K-irreducible factors of f(x, y) in K[x, y] are of equal degree.

Lemma 5.2.4. Let f(x, y) ∈ Fq[x, y] be a nice Fq-irreducible polynomial of total degree n.

Let K be any finite field extension of Fq. If f1(x, y) ∈ K[x, y] and f2(x, y) ∈ K[x, y] are

any two K-irreducible factors of f(x, y) then f1(x, y) and f2(x, y) are Fq-conjugates.

68

Proof. For a polynomial g(x, y) ∈ K[x, y], define Hg ≤ GalK/Fq
to be the subgroup of

GalK/Fq
consisting of automorphisms in GalK/Fq

that fix g(x, y). Since the galois groups

of finite extensions of finite fields are cyclic groups, Hg must be a normal subgroup of

GalK/Fq
.

Let g(x, y) ∈ K[x, y] be a K-irreducible factor of f(x, y). Let the set of distinct cosets

of Hg in GalK/Fq
be

GalK/Fq
/Hg = {Hgφ1,Hgφ2, · · ·Hgφt}

Then φ1(g(x, y)), φ2(g(x, y)), · · ·φt(g(x, y)) are all the distinct conjugates of g(x, y).

We claim that the unique factorization of f(x, y) into K-irreducible polynomials over K is

simply the product of all these distinct conjugates of g(x, y). That is,

f(x, y) =
∏

Hgφ∈GalK/Fq /Hg

φ(g(x, y)) (5.1)

We first observe that any Fq-conjugate of g(x, y) is also a K-irreducible factor of f(x, y).

Claim 5.2.4.1. Every conjugate of g(x, y) is a K-irreducible factor of f(x, y).

Proof. Since g(x, y)|f(x, y), therefore ∃g′(x, y) ∈ K[x, y] such that f(x, y) = g(x, y) ·
g′(x, y). Suppose that φ is any automorphism in GalK/Fq

. Applying φ to both sides

we get:

φ(f(x, y)) = φ(g(x, y)) · φ(g′(x, y))

⇒f(x, y) = φ(g(x, y)) · φ(g′(x, y))

⇒φ(g(x, y))|f(x, y)

By the same reasoning φ(g(x, y)) ∈ K[x, y] is K-irreducible for if any ĝ(x, y) ∈ K[x, y] is

a proper divisor of φ(g(x, y)) then φ−1(ĝ(x, y)) is a a proper divisor g(x, y), contradicting

the K-irreducibility of g(x, y). Thus any conjugate of g(x, y) is also an K-irreducible factor

of f(x, y).

Now g(x, y) being K-irreducible, is coprime to all Fq-conjugates distinct from itself.

Thus the rhs of equation (5.1) divides f(x, y). Moreover the rhs of equation (5.1) is fixed

by all the automorphisms in GalK/Fq
. Since finite extensions of finite fields are normal

extensions, so any polynomial in K[x, y] that is fixed by all the automorphisms in GalK/Fq

is in fact a polynomial in Fq[x, y]. Hence the rhs of equation (5.1) is in fact a polynomial in

Fq[x, y] that divides f(x, y). By the Fq-irreducibility of f(x, y), we deduce that equation

69

(5.1) is indeed the unique factorization of f(x, y). Thus all the K-irreducible factors of

f(x, y) over K are precisely all the distinct conjugates of g(x, y).

Now consider an Fq-irreducible polynomial f(x, y) ∈ Fq[x, y] that factors in the alge-

braic closure Fq of Fq. What is the splitting field of f(x, y)? Can we put a bound on

the dimension of the splitting field over Fq? Assuming that f(x, y) is a nice polynomial,

the following proposition shows that if t(z) is an Fq-irreducible factor of f(z, 0), then the

splitting field of f(x, y) is a subfield of the finite field Fq[z]/〈t(z)〉. In particular, if f(z, 0)

has a root α ∈ Fq, then f(x, y) must be absolutely irreducible.

Proposition 5.2.5. Let f(x, y) ∈ Fq[x, y] be a nice Fq-irreducible polynomial of total

degree n whose splitting field is Fqd. Also let t(z) ∈ Fq[z] be an Fq-irreducible factor

of f(z, 0). Then d|deg(t(z)) and f(x, y) breaks into absolutely irreducible factors over

K := Fq[z]/〈t(z)〉, each absolutely irreducible factor being of degree m = n
d .

Proof. Let g(x, y) ∈ K[x, y] be a K-irreducible factor of f(x, y) in K[x, y]. Suppose if

possible that g(x, y) is not absolutely irreducible but breaks further over some finite

extension L ⊃ K.

Let Hg be as in lemma 5.2.4. By lemma 5.2.4

f(x, y) =
∏

Hgφ∈G/Hg

φ(g(x, y)) (5.2)

Let α ∈ K be a root of the polynomial t(z). We start with the observation that

some Fq-conjugate of α must be a root of g(z, 0). Since α is a root of f(z, 0) we have

(z−α)|(f(z, 0) =
∏

Hgφ∈G/Hg
φ(g(z, 0))). Being irreducible, (z−α) must divide one of the

factors on the rhs. That is, ∃φ ∈ GalK/Fq
such that (z − α)|φ(g(z, 0)). Applying φ−1 to

both sides, we get (z−β)|g(z, 0), where β = φ−1(α). This β = φ−1(α) ∈ K is the required

Fq-conjugate of α that is a K-root of the polynomial g(z, 0).

By lemma 5.2.4 the L-irreducible factors of g(x, y) in L[x, y] are all K-conjugates. Let

g1(x, y) ∈ L[x, y] be such an L-irreducible factor of g(x, y) with (z − β) dividing g1(z, 0).

Let ψ ∈ GalL/K be such that ψ(g1(x, y)) ∈ L[x, y] is another L-irreducible factor of g(x, y)

distinct from g1(x, y). Now since (z − β)|g1(z, 0), applying ψ on both sides we get that

(z − ψ(β))|ψ(g1(z, 0)). But ψ(β) = β and therefore (z − β) divides two distinct coprime

factors g1(z, 0) and ψ(g1(z, 0)) of g(z, 0). This implies that (z − β)2 divides g(z, 0) which

is a contradiction since f(z, 0) and hence g(z, 0) are squarefree.

70

Thus the K-irreducible factors of f(x, y) are in fact absolutely irreducible. Hence there

exists a subfield F ⊆ K which is the splitting field of f(x, y). Therefore d = [F : Fq] divides

deg(t(z)) = [K : Fq] = [K : F][F : Fq].

By the definition of the splitting field of f(x, y), the coefficients occuring in g(x, y)

lie in the field F and do not all lie in any proper subfield of F. Hence F is precisely the

subfield of K which is fixed by every automorphism in Hg. So

d = [F : Fq] = ord(GalK/Fq
/Hg).

Further ord(GalK/Fq
/Hg) is the number of distinct absolutely irreducible factors of

f(x, y). Since all the absolutely irreducible factors of f(x, y) are of the same degree, say

m, we have

m.ord(GalK/Fq
/Hg) = deg(f(x, y))

⇒ m.d = n

⇒ m =
n

d

This proposition means that if f(x, y) ∈ Fq[x, y] is a nice Fq-irreducible polynomial

and t1(z), t2(z) ∈ Fq[z] are any two Fq-irreducible factors of f(z, 0) then the degree of

an irreducible factor of f(x, y) over K1
def= Fq[z]/〈t1(z)〉 is the same as the degree of an

irreducible factor of f(x, y) over K2
def= Fq[z]/〈t2(z)〉. This observation will be the key to

our uniform-factoring algorithm.

5.2.3 Defining the linear systems.

We will now define some linear systems over Rv whose solutions capture different factors

of h(x, y). To be able to specify how these factors relate to a “seed polynomial” v(z) we

need to make the following definition.

Definition 5.2.6. Let R be any ring and let v(z) ∈ R[z] be a univariate polynomial

f(x, y) ∈ R[x, y] be a bivariate polynomial. We will say that f(x, y) sits above v(z) if v(z)

divides f(z, 0).

We also extend the usual notion of squarefreeness of polynomials over fields to poly-

nomials over arbitary rings.

71

Definition 5.2.7. Let R be any ring and v(z) ∈ R[z] be a univariate polynomial over R.

Let v′(z) ∈ R[z] be the formal derivative of v(z). We say that v(z) is squarefree if v(z) is

coprime (see (2.1.11) for definition of coprimality) to v′(z).

Fixing Some notation.

We recall some of the quantities from the previous section and define and fix some other

quantities that will be be used through the rest of this chapter.

As before, h(x, y) ∈ Fq[x, y] is a nice bivariate polynomial of degree n that we wish to

factor. w(z) def= h(z, 0) ∈ Fq[z] and v(z) ∈ Fq[z] is any factor of w(z). Let the Fq-irreducible

factors of v(z) be vj(z), 1 ≤ j ≤ r.

Rv
def= Fq[z]/〈v(z)〉 ∼=

r⊗
j=1

Fq[z]/〈vj(z)〉.

We will denote by πvj the projection of Rv onto the j-th component field,

Rvj

def= Fq[z]/〈vj(z)〉.

That is, for any u ∈ Rv,

πvj (u)
def= u (mod vj).

Note that every πvj extends in a natural manner to a homomorphism from polynomial

rings over Rv to corresponding polynomial rings over Rvj . We shall denote by Bv the

Berlekamp subalgebra of Rv, defined as the subalgebra of Rv fixed by the automorphism

φ : ζ 7→ ζq of Rv.

The element α ∈ Rv is defined as α def= z (mod v(z)) and it is an Rv-root of h(x, 0) ∈
Rv[x].

We will now define three linear systems Rv(z),m, Bv(z),m and Fv(z),m. The solutions of

each of these linear systems correspond to factors of h(x, y) ∈ Rv[x, y] of degree at most m

which sit above the polynomial (x− α). The difference is in which subring of Rv[x, y] are

these factors allowed to lie in, that is which subring of Rv do the coefficients come from.

The solutions of Fv(z),m are intended to capture factors (of degree at most m) which lie

in the subring Fq[x, y] of Rv[x, y]. The solutions of Bv(z),m are intended to capture factors

which lie in the subring Bv[x, y] of Rv[x, y]. Finally, the solutions of Rv(z),m are intended

to capture factors which lie in Rv[x, y] itself.

72

Notational convention: In the rest of this chapter we will use r(x, y) to denote

polynomials in Rv[x, y], b(x, y) to denote polynomials in Bv(x, y) and f(x, y) to denote

polynomials in Fq[x, y].

Moreover for m = deg(h(x, y)), the solutions of Rv(z),m are all going to be multiples of

some particular well-defined polynomial rv(z)(x, y) ∈ Rv[x, y]. Similar thing is true for the

linear systems Fv(z),m and Bv(z),m. We will shortly define this factor rv(z)(x, y) ∈ Rv[x, y]

and its analogues. We prove a lemma first.

Lemma 5.2.8. In the component field Rvj of Rv, there exists a unique (upto constant

multiples from Rvj) minimal degree factor rj(x, y) ∈ Rvj [x, y] of h(x, y) in Rvj [x, y] which

sits above (x− πvj (α)).

Proof. Existence. Clearly h(x, y) ∈ Rvj [x, y] is itself a factor of h(x, y) which sits above

πvj (x − α) and therefore there does exist a minimal degree factor rj(x, y) of h(x, y) in

Rvj [x, y] sitting above πvj ((x− α)).

Uniqueness. Note that rj(x, y) must be an Rvj -irreducible polynomial for if

rj(x, y) = r1(x, y) · r2(x, y)

then either r1(x, y) or r2(x, y) sits above (x − πvj (α)) and they are both factors of

h(x, y) in Rvj [x, y] of degree smaller than rj(x, y), contradicting the assumption of the

minimality of the degree of rj(x, y). Suppose r′j(x, y) is another factor of h(x, y) sitting

above (x− πvj (α)), having the same degree as rj(x, y). Then arguing as above, r′j(x, y) is

also irreducible in Rvj [x, y]. Then their product rj(x, y)·r′j(x, y) ∈ Rvj [x, y] must be factor

of h(x, y). But then (x−πvj (α))2 divides rj(x, 0) ·r′j(x, 0) contradicting the squarefreeness

of h(x, 0).

In a similar manner, by the Fq-irreducibility of vj(z), there exists a unique Fq-

irreducible factor bj(x, y) ∈ Fq[x, y] such that vj(z) divides bj(z, 0). We will denote by

rv(z)(x, y) the unique element of Rv[x, y] such that

πvj (rv(z)(x, y)) = rj(x, y)∀1 ≤ j ≤ r.

Analogously, we will denote by bv(z)(x, y) ∈ Bv[x, y] the unique element of Bv[x, y] such

that

πvj (bv(z)(x, y)) = bj(x, y)∀1 ≤ j ≤ r.

73

Finally we define fv(z)(x, y) ∈ Fq[x, y] to be the polynomial

fv(z)(x, y)
def=

∏
1≤j≤r

bvj(z)(x, y)

The linear systems Rv(z),m, Fv(z),m and Bv(z),m.

The polynomials (x−α) and w(x)
(x−α) in Rv[x] are formally coprime (since they are coprime

in each of the projected fields). That is α is an ordinary root of w(x) = h(x, 0) in

Rv = Rv[y]/〈y〉. We fix k ∈ Z>0 to be k def= 2n(n − 1). By the well-known Hensel lifting

lemma 2.1.12, there exists a unique α(y) = α + α1y + α2y
2 + . . . + αky

k ∈ Rv[y]/〈yk+1〉
such that

h(α(y), y) = 0 (mod yk+1).

Moreover, α(y) is easily computed by iteratively solving linear equations over Rv.

Definition 5.2.9. The linear system Rv(z),m over Rv is defined to be the system

m∑
i=0

ui(y)α(y)i = 0 (mod yk+1) (5.3)

with unknowns

ui(y) ∈ Rv[y], deg(ui(y)) ≤ (m− i).

The definitions of the linear systems Bv(z),m and Fv(z),m are very similar except that

the unknown polynomials are restricted to lie in the respective subrings of Rv.

Definition 5.2.10. The linear system Bv(z),m over Bv is defined to be the system

m∑
i=0

ui(y)α(y)i = 0 (mod yk+1) (5.4)

with unknowns

ui(y) ∈ Bv[y], deg(ui(y)) ≤ (m− i).

Definition 5.2.11. The linear system Fv(z),m over Fq is defined to be the system

m∑
i=0

ui(y)α(y)i = 0 (mod yk+1) (5.5)

with unknowns

ui(y) ∈ Fq[y], deg(ui(y)) ≤ (m− i).

74

By a solution r(x, y) of Rv(z),m in Rv[x, y] we will a mean a solution vector

(u0(y), u1(y), . . . , um(y))

of the linear system Rv(z),m, with r(x, y) ∈ Rv[x, y] being

r(x, y) =
m∑

i=0

ui(y)xi ∈ Rv[x, y].

In an analogous manner we will identify solutions of Bv(z),m and Fv(z),m with bivariate

polynomials b(x, y) ∈ Bv[x, y] and f(x, y) ∈ Fq[x, y] respectively.

Properties of the linear systems for irreducible factors of v(z).

We will use Rvj(z),m to denote the projection linear system Rv(z),m onto the j-th compo-

nent:

Rvj(z),m
def= πvj (Rv(z),m).

The projected linear systems Fvj(z),m and Bvj(z),m are defined analogously. We are now

all set to prove the fundamental property of the solution space of these linear systems.

Proposition 5.2.12. For all 1 ≤ j ≤ r:

1. The projected linear system Rvj(z),m has a non-zero solution if and only if

Deg(rvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Rvj [x, y] corresponding to a basis of the

solution space of Rvj(z),m is precisely the polynomial rvj(z)(x, y) ∈ Rvj [x, y].

2. The projected linear system Bvj(z),m has a non-zero solution if and only if

Deg(bvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Bvj [x, y] corresponding to a basis of the

solution space of Bvj(z),m is precisely the polynomial bvj(z)(x, y) ∈ Bvj [x, y].

3. The projected linear system Fvj(z),m has a non-zero solution if and only if

Deg(fvj(z)(x, y)) ≤ m.

Moreover, the gcd of all the polynomials in Fq[x, y] corresponding to a basis of the

solution space of Fvj(z),m is precisely the polynomial fvj(z)(x, y) ∈ Fq[x, y].

75

Proof. The proofs of parts (ii) and (iii) are analogous to that of part (i) and we omit them

for the sake of brevity. To emphasize that Rvj is a field we will let K stand for it in the

rest of this proof.

Existence of solution. Let rvj(z)(x, y) = v0(y) + v1(y)x + . . . vd(y)xd where d =

Deg(rvj(z)(x, y)). Moreover rvj (x, y), being a factor of a nice polynomial h(x, y) is itself

a nice polynomial and so Deg(vi(y)) ≤ (d− i). Now if d ≤ m then

(v0(y), v1(y), · · · , vd(y), 0, . . . , 0)

is clearly a non-zero solution of the linear system Rvj(z),m. Conversely suppose that the

system Rvj(z),m has a nontrivial solution g(x, y) with

g(x, y) :=
m∑

i=0

ui(y)xi ∈ K[x, y]

We claim that rvj(z)(x, y) must divide g(x, y) thereby implying that m ≥ d. Let

ρ(y) := Resultantx(rvj(z)(x, y), g(x, y)) ∈ K[y]

Then deg(ρ(y)) ≤ (2n − 1)n = k. Then there exist polynomials a(x, y), b(x, y) ∈ K[x, y]

such that

ρ(y) = a(x, y)rvj(z)(x, y) + b(x, y)g(x, y) (5.6)

Substituting x := α(y) in equation (5.6), we have

ρ(y) = 0 (mod yk+1).

But deg(ρ(y)) ≤ k and hence we must have that ρ(y) is identically zero. Thus

gcdx(rvj(z)(x, y), g(x, y)) is nontrivial whence by the irreducibility of rvj(z)(x, y) we deduce

that g(x, y) is a multiple of rvj(z)(x, y) as claimed. Thus we have shown that Rvj(z),m has

a non-zero solution if and only if

Deg(rvj(z(x, y)) ≤ m

and moreover rvj(z)(x, y) divides the bivariate polynomial in K[x, y] corresponding to any

solution of Rvj(z),m.

The gcd of the basis vectors. Every solution of Rvj(z),m corresponds to a bivariate

polynomial over K in the natural way and let g(x, y) be the gcd of all the basis polynomials

which are solutions of Rvj(z),m. We must have that

76

FactorRvj(z)(x, y) divides g(x, y) because it divides every polynomial in the basis of

Rvj(z),m. In the converse direction, observe that by definition, any solution of Rvj(z),m is a

K-linear combination of the basis polynomials and therefore g(x, y) divides any polynomial

in the solution space. Since rvj(z)(x, y) is a solution of Rvj(z),m, we must have that g(x, y)

divides rvj(z)(x, y). Thus rvj(z)(x, y) = g(x, y) as was to be shown.

Using Fv(z),n to compute a factor of h(x, y).

Recall that n is the degree of h(x, y) and now we set m = n and look at solutions of Fv(z),n.

Note that the linear system Fv(z),n lies over the field Fq ⊂ Rv which is common to all the

components Rvj . Since Deg(fvj(z)(x, y)) ≤ n, by Proposition 5.2.12 all the projected

linear systems Fvj(z),n have a solution. In fact, among all factors f(x, y) of h(x, y) sitting

above v(z), fv(z)(x, y) is the unique one with the minimal possible degree. By the above

proposition, we can compute it efficiently by taking the gcd of all the basis polynomials

in the solution space of Fv(z),n. We record this discussion as a corollary.

Corollary 5.2.13. Given a factor v(z) of h(z, 0) we can compute in deterministic poly-

nomial time the unique minimal degree factor f(x, y) of h(x, y) such that v(z) divides

f(z, 0).

The linear systems L such as Rv(z),m and Bv(z),m will have nontrivial solutions in a

projected component field Rvj depending on whether the projected linear system Rvj(z),m

has a nontrivial solution there or not. The next proposition shows that if L has a nontrivial

solution for some but not all the vj(z)’s, then we can use the solutions of L to factor v(z).

5.2.4 Factoring v(z) using linear systems over Rv.

Recall that v(z) is the product of r irreducible polynomials vj(z)s.

Proposition 5.2.14. Let S ⊆ {1, 2, · · · r} with the following property: the dimension over

Fq of the solution space of the projected system Lvj is non-zero if and only if j ∈ S.

Then we can compute in deterministic polynomial time the nontrivial factor (
∏

j∈S vj(z))

of v(z).

Proof. (We reproduce the following proof from Gao-Kaltofen-Lauder [GKL04].) Certainly

any solution r(x, y) of Rv(z),m will be sent under the map πvj to a solution of Rvj(z),m with

77

entries in Rvj . Moreover this solution will be non-zero if and only if vj(z) does not divide

all of the coefficients in r(x, y) thought of as polynomials in Fq[z]. Conversely any solution

of Rvj(z),m with entries in Rvj can be lifted using the Chinese Remainder Theorem to a

solution for Rv(z),m with entries in Rv.

Now compute a basis over Fq for the space of solutions in Rv of the linear system

Rv(z),m. We claim that the greatest commong divisor g(z) say of v(z) and the polynomials

that occur as entries in the basis vectors (viewed as polynomials in z) is exactly
∏

j /∈S vj .

To see this, suppose j ∈ S. Then there exists some non-zero solution rj(x, y) of the

linear systemRvj(z),m which can be lifted to a non-zero solution r(x, y) of the linear system

Rv(z),m as previously described. This solution r(x, y) has the property that at least one

of the entries is not divisible by vj(z). This solution r(x, y) of Rvj(z),m must lie in the

Fq-span of the basis vectors of the solution space of Rv(z),m. Now if vj(z) divided all the

entries in the basis vectors we would have that vj(z) divides all the entries of of all vectors

in the solution space of Rv(z),m - a contradiction. Hence vj(z) does not divide g(z). Now

suppose, if possible, that j /∈ S and also that vj(z) does not divide g(z). Then vj(z) does

not divide all the entries in the basis vectors of the solution space of Rvj(z),m. Thus there

exists at least one basis element r(x, y) which projects down to a non-zero solution of

Rvj(z),m under πvj - a contradiction. Thus g(z) is as claimed.

Now one may compute the factor g(z) in deterministic polynomial time using only

a deterministic algorithm for computing the solution space over Fq of the linear system

Rv(z),m and the euclidean algorithm for greatest common divisors of univariate polynomi-

als. Moreover, this can be done efficiently in parallel.

5.3 The Algorithm.

Proposition 5.3.1. Let m ≥ 1 be a natural number and h(x, y) ∈ Fq[x, y] a nice poly-

nomial. There is a deterministic polynomial-time algorithm that given 〈Fq, h(x, y),m〉
obtains the product of all the Fq-irreducible factors of h(x, y) having degree at most m.

Proof. Let f(x, y) ∈ Fq[x, y] be the product of all Fq-irreducible factors of h(x, y) having

degree at most m. Set v(z) to be h(z, 0). We claim that the projected linear system

Bvj(z),m has a solution in Rvj if and only if vj(z) divides f(z, 0).

78

(⇒) By Proposition 5.2.12, bvj(z)(x, y) ∈ Fq[x, y] which is an Fq-irreducible factor of

h(x, y) is a solution of the projected system Bvj(z),m. Moreover from the definition of the

linear system Bvj(z),m, bvj(z)(x, y) has degree at most m. Therefore bvj(z)(x, y)|f(x, y).

But vj(z)|bvj(z)(z, 0) and therefore vj(z)|f(z, 0) as required.

(⇐) Since vj(z)|f(z, 0), by the squarefree-ness of f(z, 0), there exists a unique Fq-

irreducible factor g(x, y) of f(x, y) of degree at most m such that vj(z)|g(z, 0). From

the definition of the linear system Bvj(z),m this polynomial g(x, y) is clearly a solution of

Bvj(z),m.

By Proposition 5.2.14, we can recover f(z, 0) and using this seed factor of h(z, 0) as

input to the algorithm of Proposition 5.2.13, we can compute f(x, y) in deterministic

polynomial time.

Given any polynomial h(x, y) of degree we obtain by the above algorithm a factor

f(x, y) consisting of Fq-irreducible factors of degree at most m := n
2 . Recursively repeating

this process (in parallel) on the polynomials f(x, y) and h(x,y)
f(x,y) , we obtain a distinct degree

factorization of h(x, y) in deterministic time poly(n · log q). Moreover implementing all

the fundamental linear-algebraic operations over Fq in parallel we can do this in parallel

time poly(log n · log q).

Proposition 5.3.2. Let m, d ≥ 1 be natural numbers and h(x, y) ∈ Fq[x, y] a nice

polynomial, each of whose Fq-irreducible factors has degree at most m. There is a de-

terministic polynomial-time algorithm given 〈Fq, h(x, y),m, d〉 obtains the product of all

the Fq-irreducible factors of h(x, y) having a splitting field of size at least qd.

Proof. Let f(x, y) ∈ Fq[x, y] be the product of all Fq-irreducible factors of h(x, y) having

a splitting field of size at least qd. Set v(z) to be h(z, 0) and k = m
d . We claim that the

projected linear system Rvj(z),k has a solution in Rvj if and only if vj(z) divides f(z, 0).

(⇒) By Proposition 5.2.12, rvj(z)(x, y) ∈ Rvj [x, y] which is an absolutely irreducible

factor of h(x, y) is a solution of the projected system Rvj(z),k. Moreover from the definition

of the linear system Rvj(z),k, rvj(z)(x, y) has degree at most k. Also bvj(z)(x, y) ∈ Fq[x, y] is

an Fq-irreducible factor of h(x, y) and since all Fq-irreducible factors of h(x, y) have degree

m, therefore bvj(z)(x, y) also has degree m. Now, rvj (x, y) divides bvj(z)(x, y) ∈ Fq[x, y],

79

an Fq-irreducible factor of h(x, y). By Proposition 5.2.5,

dimension of bvj(z)(x, y) = Deg(bvj(z)(x, y))/Deg(hvj(z)(x, y))

= m/Deg(hvj(z)(x, y))

≥ d

Therefore bvj(z)(x, y)|f(x, y). But vj(z)|bvj(z)(z, 0) and therefore vj(z)|f(z, 0) as re-

quired.

(⇐) Since vj(z)|f(z, 0), by the squarefree-ness of f(z, 0), there exists a unique Fq-

irreducible factor g(x, y) of f(x, y) of degree at most m such that vj(z)|g(z, 0). From

the definition of the linear system Bvj(z),m this polynomial g(x, y) is clearly a solution of

Bvj(z),m.

By Proposition 5.2.14, we can recover f(z, 0) and using this seed factor of h(z, 0) as

input to the algorithm of Proposition 5.2.13, we can compute f(x, y) in deterministic

polynomial time.

Given a h(x, y) and m as in the statement of this proposition and setting d = m
2 ,

we obtain by the above algorithm a factor f(x, y) consisting of Fq-irreducible factors

of dimension at most d := m
2 . Recursively repeating this process (in parallel) on the

polynomials f(x, y) and h(x,y)
f(x,y) , we obtain a uniform factorization of h(x, y) in deterministic

time poly(n · log q), and in parallel time poly(log n · log q).

This completes the proof of Theorem 5.1.2.

5.4 Discussion

The presentation here was complicated by the fact that we also wanted an algorithm that

was parallelizable. An easier description for a sequential deterministic algorithm achieving

the same task can be found in [Kay05]. Finally, we note that in general, the deterministic

complexity of factoring polynomials over finite fields remains an open problem and hope

that some of the ideas here can also be used to tackle that.

Chapter 6

Solvability of Polynomial

Equations over Finite Fields

Summary:

We investigate the complexity of the following polynomial solvability problem:

given a finite field Fq and a set of polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

of total degree at most d determine the Fq-solvability of the system f1 = f2 =

· · · = fm = 0. This problem is easily seen to be NP-complete even when the

field size q is as small as 2 and the degree of each polynomial is bounded by

d = 2. Here we investigate the deterministic complexity of this problem when

the number of variables n in the input is bounded. We show that there is a

deterministic algorithm for this problem whose running time, for any fixed n, is

bounded by a polynomial in d, m and log q.

6.1 Introduction

6.1.1 Motivation

Studying the solution set of a system of polynomial equations is one of the main preoc-

cupations of mathematics. Indeed, three of the most celebrated results of the twentieth

century pertain to the solutions of polynomial equations:

• Weil’s Theorem, also known as the Riemann Hypothesis for curves over finite

fields, which gives bounds on the number of rational points on smooth projective

curves over finite fields.

80

81

• Falting’s Theorem which states that any curve over Q, the field of rational num-

bers, of genus greater than 1 has only a finite number of rational points.

• Wiles’ Theorem which states that the curve xn+yn = 1 has no nontrivial (xy 6= 0)

solution over the field of rational numbers for n ≥ 3.

This motivates the study of the corresponding computational problems - given a set

of polynomials over a field F:

• Solvability: Determine whether there exists a common zero of the polynomials.

• Counting solutions: Determine the number of common zeroes.

• Computing a solution: Compute a common zero, if it exists.

One gets different computational problems depending on whether one is looking for

common zeroes in F itself (i.e. F-rational points) or in the algebraic closure F of F.

The decidability of the solvability problem for rational points over Q is an intensively

investigated open problem (Poonen [Poo02] gives a survey). In this chapter we consider

the solvability problem for rational points over finite fields. We give a deterministic

polynomial-time algorithm for the solvability problem over finite fields when the number n

of variables in the system is bounded. Our results can be viewed as the natural algorithmic

outcome of Weil’s theorem. Indeed using Weil’s bounds, we get an algorithm with similar

complexity for the approximate counting version of the problem. We remark here that

given a set of polynomial equations over Q, the field of rational numbers, one can deduce

certain properties of the solution set by looking at the reduction of the system of equations

modulo p for various primes p and use this information to deduce global values of those

properties of the solution set over Q. For certain particularly special sets of polynomial

equations over Q, it might be sufficient to verify solvability modulo lots of primes p in

order to deduce the existence of a solution over Q. We make one such conjecture in the

chapter on open problems. In general, however, there exist polynomials which have lots

of Fp-solutions for all primes p but no solution over the rational numbers. Nevertheless,

given such a set of equations over Q, one can determine almost all the geometric properties

such as the numer of C-irreducible components, their dimension and degree of the solution

set by looking at the solution set modulo p (see Huang and Wong, [HW00] for details).

Our basic solvability algorithm can be extended in two ways to give more information

about the algebraic set X defined by the given set of polynomials over Fq. We also get

efficient deterministic algorithms for:

82

• Approximating the number of Fq-points on X.

• Computing the number of irreducible components of X together with the degree and

dimension of each such irreducible component.

6.1.2 Problem Definition

Here we are interested in the computational complexity of the solvability problem over the

domain of finite fields. The most general version of the polynomial system problem is:

Problem - Existence of solution to a polynomial system (Solvability)

Input. The input is 〈Fq, f1, f2, · · · fm〉 where : (i) Fq is a finite field with q = pr being a

prime power. The finite field can be specified in the usual way by giving a prime p and

an irreducible polynomial of degree r over Fp. (ii) f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

are m polynomials in the n variables x1, x2, · · · , xn with coefficients coming from

the field Fq. The polynomials are specified using the dense representation. That is,

a polynomial of degree d in n variables over Fq has input size
(
d+n

d

)
· log q.

Question. Does there exist a point (a1, a2, · · · , an) ∈ Fn
q such that

fi(a1, a2, · · · , an) = 0 for all 1 ≤ i ≤ m

The general polynomial system problem is easily seen to be NP-complete even over a

field as small as F2 and even when all the polynomials in the specified system are of total

degree at most 2. This suggests that the problem becomes intractable when the number

of variables is large. We examine the complexity of this problem when the number n of

variables in the input system is bounded. Huang and Wong [HW96] give a randomized

polynomial time (ZPP) algorithm for the bounded-variable version of this problem leaving

the determintistic complexity unresolved. Our contribution to this problem is to give a

deterministic polynomial-time algorithm. Moreover, our algorithm works for arbitary

finite fields and not just prime fields.

Remark. Consider the slightly more general problem - given a finite field Fq and

polynomials f1, f2, . . . , fm and g1, g2, . . . , gl ∈ Fq[x̄] in n variables over Fq, determine if

there exists a point ā ∈ Fn
q such that

f1(ā) = . . . = fm(ā) = 0 and g1(ā) 6= 0, g2(ā) 6= 0 . . . , gl(ā) 6= 0

83

Such an apparently more general problem, involving both equations and ‘inequations’

over a field is easily seen to reduce to the solvability problem via what is known as the

”‘Rabinovich trick”’ - introduce a new variable y and determine the Fq-solvability of the

following system of equations instead:

f1(x̄) = f2(x̄) = . . . = fm(x̄) = 0, y · g1(x̄) · . . . · gl(x̄) = 1

Remark. Let f(x) = g(x)
h(x) ∈ Fq(x) be a rational function over Fq with gcd(g(x), h(x)) =

1. Then f(x) induces a partial mapping Fq 7→ Fq via the map a 7→ f(a) for a ∈ Fq.

If f(x) is total and bijective then f(x) is called a permutation function over Fq. In the

special case that h(x) = 1 , so that f(x) = g(x) ∈ Fq[x], it is called a permutation

polynomial over Fq. Permutation functions have been investigated theoretically [Wil68,

Mac67, DL63, BD66, Hay67, Coh70], applied in cryptography [LM83] and the complexity

of recognizing them dealth with [Shp92, Gat91, Gat89, MG95]. Shparlinski [Shp92] gave

a deterministic superpolynomial-time algorithm for this problem while Ma and Gathen

[Gat91, MG95] gave an efficient randomized algorithm. The existence of an efficient

deterministic algorithm was open.

Now note that f(x) = g(x)
h(x) is a permutation function if and only if f(x) is total

(h(x) = 0 has no Fq-solution) and

g(x)h(y)− g(y)h(x) = 0, x 6= y

has no Fq-solution. Thus, by the remark above, recognizing permutation functions boils

down to the solvability problem in 3 variables. Our deterministic solvability algorithm

now implies an efficient deterministic algorithm for recognizing permutation functions and

thus resolves the deterministic complexity of this problem as well.

6.1.3 Our results

We summarize our main result as a theorem:

Theorem 6.1.1. There exists a deterministic algorithm which solves the decision version

of the Solvability problem on an input consisting of a finite field Fq and polynomials

f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn] of total degree bounded by d in time poly(dcn ·m · log q),

where cn is a constant that depends on n alone and is of size nO(n). Moreover, the

algorithm can be implemented parallely to get a family of P -uniform circuits of depth

poly(cn · log d · logm · log q) and size poly(dcn ·m · log q) for the solvability problem.

84

The basic algorithm for solvability can be easily extended to get an approximation

algorithm of the same complexity for the counting version of the problem. More precisely,

the algorithm calculates two non-negative integers N and D, such that |#V − NqD| is

bounded by dcnqD−1/2 for some constant cn that depends on n alone, where #V denotes

the number of common Fq-solutions of the given set of polynomials.

6.1.4 The Idea

The input polynomials with coefficients from Fq describe an algebraic closed set X. Our

aim is to determine if the given closed set X over the given field Fq has any Fq-rational

point or not. The basic idea is to decompose the given closed set X into a union of (possibly

reducible) closed sets Xi, each Xi being birational to a hypersurface Yi. Now Weil’s theorem

and its generalizations [Sch74, CM03, CM04] imply the abundance of Fq-rational points

on any absolutely irreducible Fq-hypersurface. We use the partial factoring algorithm

developed in the previous chapter to determine, for each i, if any of the component Fq-

irreducible hypersurfaces of Yi is absolutely irreducible or not. If Yi happens to have an

absolutely irreducible Fq-factor, we use Weil’s theorem to deduce an abundance of rational

points on Yi and, via the birational correspondence, on Xi as well. Otherwise a rational

point on Xi, if it exists, must lie on a closed proper subset of Xi. We compute this subset

of Xi and determine the existence of a rational point on it recursively.

Comparison with previous algorithms. Our approach parallels that of Huang and

Wong ([HW99]) and it can be viewed as a deterministic modification of their algorithm.

Indeed, [HW99] remark that their method actually gives a deterministic reduction to

univariate factorization so that the only point that prevents their algorithm from being

deterministic is the lack of a deterministic polynomial time algorithm for factoring uni-

variate polynomials over finite fields. The key contribution of our work on this problem

is to observe that as far as the decision version of the problem of solvability is concerned,

we do not need to completely factor the multivariate polynomials that arise during this

computation process. In both the works, the algorithm consists of two phases: we first

decompose the algebraic closed set corresponding to the given set of equations and reduce

the problem to the case of hypersurfaces and then determine the existence of a rational

point on the hypersurface by testing for absolutely irreducibility. The difference is that in

the first phase, while their algorithm decomposes the set into Fq-irreducible components,

the output components of the first phase in our case need not be Fq-irreducible. Our

85

contribution here is to observe that the operations involved and the proofs which hold for

irreducible components and their corresponding fields go through with minor modifications

when we are working with reducible algebraic sets and their corresponding rings. In the

second phase, instead of testing the absolute irreducbility of an Fq-irreducible polynomial,

our algorithm uses the output of the partial factoring algorithm developed in the previous

chapter. Moreover, they use efficiently parallelizable subroutines developed earlier by

Grigoriev, Chistov, et al in order to ensure that the algorithm is efficiently parallelizable

with respect to d and m. We give a self-contained treatment here which preserves this

parallelism while eliminating randomness. Finally, the algorithm in [HW99] works only

over prime fields while our algorithm works over all finite fields Fq, even those with a small

characteristic p. The difficulty in going from prime fields (q is prime) to general finite fields

(q is prime power) is the existence of polynomials f(x1, . . . , xn) ∈ Fq[x1, . . . , xn] of degree

d� q which are squarefree and yet not separable. For example, f(x1, x2) = xp
2−x1 viewed

as a univariate polynomial in x2 over the function field F def= Fq(x1) is squarefree and yet

has repeated roots in the algebraic closure of F. We overcome this difficulty by observing

that a random linear transformation σ ∈ Fn×n
q on the variables transforms a square-free

non-separable polynomial f(x̄) to a separable polynomial in xn. We then replace f(x̄) by

σ(f(x̄)) in our computations and work with this transformed polynomial instead.

We flesh out this basic idea in more detail in a later section, after introducing the

appropriate terminology and proving some basic facts.

6.2 Basic Algebraic Geometry with Examples

In this section we give a very quick overview of some basic facts from algebraic geometry

and introduce the terminology to be used. For proofs see any basic text in algebraic

geometry such as Shafarevich [Sha94]. We then give some representative examples.

Algebraic Closed Sets. Let F be a field. The algebraic closure of F will be denoted

by F. A closed algebraic set over F is a subset X of Fn consisting of all common zeroes of

a finite number of polynomials in n variables with coefficients in F. When the field F is

understood from context we will simply refer to X as a closed algebraic set or just a closed

set. A F-rational point of X is a point P ∈ X all of whose coordinates are in F.

We shall write f(x̄) to denote a polynomial in n variables, allowing x̄ to stand for

the n-tuple of variables (x1, x2, . . . , xn). If a closed set X consists of all common zeroes of

polynomials f1(x̄), . . . , fm(x̄), then we refer to f1(x̄) = · · · = fm(x̄) = 0 as the equations

86

of the set X. We say that X is a hypersurface when it is specified by a single equation

(m = 1). Observe that a point P = (a1, . . . , an) ∈ Fn belongs to the closed algebraic set X

if and only if for all i ∈ [m], fi(x1 + a1, . . . , xn + an) has no constant term. P ∈ X is said

to be a singular point of X iff for all i ∈ [m], fi(x1 + a1, . . . , xn + an) has no constant as

well as no linear terms. We will say that a closed set Y is a singular closed subset of X iff

every point P ∈ Y is a singular point.

A closed algebraic set X is said to be reducible if there exist proper closed subsets

X1, X2 (X such that X = X1 ∪ X2. Otherwise X is irreducible. An irreducible algebraic

closed set X is also referred to as a variety.

It is a fundamental theorem in algebraic geometry that any closed agebraic set X is a

finite union of irreducible algebraically closed sets. Now if X =
⋃
Xi is an expression of X

as a finite union of irreducible closed sets, and if Xi ⊆ Xj then we can delete Xi from the

representation. Repeating this several times, we arrive at a representation X =
⋃
Xi in

which no Xi is a subset of any Xj . We say that such a representation is irredundant, and

the Xi are the irreducible components of X. Such a representation of X as an irredundant

union of a finite number of irreducible algebraic sets is unique.

Let X ⊆ Fn be an irreducible algebraic closed set (variety) residing in an ambient

space of dimension n. Suppose that the minimum possible number of equations required

to completely describe X is m. Then the dimension of X, denoted `X, is the number

(n − m). The varieties contained in an arbitary algebraic closed set are in general of

varying dimensions. When all the varieties in a closed set have the same dimension, we

will refer to it as a uniform-dimensional algebraic closed set.

Correspondence between rings and algebraic sets. Corresponding to the given

closed set X there is a ring RX obtained by quotienting the polynomial ring Fq[x̄] with the

ideal generated by the polynomials which are equations of X. That is, if X is the set of

common zeroes of the polynomials f1(x̄), . . . , fm(x̄) ∈ Fq[x̄] the ring RX corresponding to

X is

RX
def= Fq[x̄]/〈f1(x̄), · · · , fm(x̄)〉.

The elements of RX can be thought of as functions from X to Fq, this set of functions itself

being endowed with a ring structure. The homomorphisms from RX to Fq then correspond

to the Fq-rational points on X. Indeed, ā = (a1, . . . , an) ∈ Fn
q is an Fq-rational point on X

if and only if the map

φ : RX 7→ Fq, φ : xi 7→ ai ∀1 ≤ i ≤ n

87

is a homomorphism from RX to Fq.

In this way the ring RX captures the algebraic set X and the structure of the ring

RX corresponds to the structure of X. In particular, X is Fq-irreducible if and only if RX

is indecomposable. X is absolutely irreducible (or Fq-irreducible) if and only if the ring

RX
def= Fq[x̄]/〈f1(x̄), · · · , fm(x̄)〉 is indecomposable. In this chapter all the rings R that we

will come across will be of the above form (a polynomial ring over Fq quotiented by some

ideal I). We will refer to the closed algebraic set corresponding to the ideal I as the closed

set of R. We will denote by RX the ring corresponding to the closed set X and by XR the

algebraic set corresponding to the ring R. We will denote by Rfr
X the ring of fractions of

RX.

Rational maps between algebraic sets. A map of the form

y1 = ψ1(x1, x2, . . . , xn)

y2 = ψ2(x1, x2, . . . , xn)
...

ym = ψm(x1, x2, . . . , xn),

where the ψi = G(x1,...,xn)
H(x1,...,xn) are ratios of polynomials in the xj is referred to as a rational

map. In general, a rational map may be thought of as a function that transforms some

set of points X in [x1, . . . , xn]-space to a set of points Y in [y1, . . . , ym]-space. Note that

the denominators are polynomials and can have zeroes. Thus the map may not be defined

at all points. We denote this map by ψ : X 7→ Y. Note that for algebraic sets X and Y,

ψ maps points on X to points on Y if and only if the map yi 7→ ψi(x1, . . . , xn) ∀i ∈ [m]

is a homomorphism from Rfr
Y to Rfr

X . We will denote this ring homomorphism also by ψ

itself.

A rational map ψ : X 7→ Y is called birational if it admits an inverse. That is, there

exists a rational map φ : Y 7→ X such that ψ(X) has the same dimension as Y, φ(Y) has the

same dimension as X, ψ · φ = 1 almost everywhere, and φ · ψ = 1 almost everywhere. In

terms of the corresponding rings, it means that (φ ·ψ) : Rfr
Y 7→ Rfr

Y is the identity map on

Rfr
Y and (ψ · φ) : Rfr

X 7→ Rfr
X is the identity map on Rfr

X .

Two algebraic closed sets X and Y are said to be birationally equivalent or birational if

there exists a birational map between X and Y.

A classical theorem from algebraic geometry states that ‘Any algebraic variety X is

birational to a hypersurface Y of the appropriate dimension’. This theorem is a direct

88

consequence of the well-known theorem in algebra that every finite-dimensional field

extension K of some base field F is generated by some element γ ∈ K (i.e. K = F(γ)) .

Moreover it can be arranged that the map ψ : X 7→ Y is just a linear map. That is, each

unknown yj of Y is expressed as a linear combination of the variables xi of X. The degree of

the variety X is then defined to be the degree of the hypersurface Y birationally equivalent

to X.

6.2.1 Examples

Example: The algebraic set X defined by the polynomials

f1(x, y, z) = (x+ y + z)(x+ 2y + z)

and f2(x, y, z) = (x− y)(x+ y − z)

is the irredundant union of four lines -

line L1 :(x+ y + z) = (x− y) = 0,

line L2 :(x+ y + z) = (x+ y − z) = 0,

line L3 :(x+ 2y + z) = (x− y) = 0,

and line L4 :(x+ 2y + z) = (x+ y − z) = 0.

Generalization. In general, for polynomials f1(x̄), . . . , fm(x̄) ∈ F[x1, . . . , xn] where

each polynomial fi(x̄) is the product of di linear polynomials in general position, the

corresponding algebraic set defined by these polynomials is the irredundant union of

(
∏m

i=1 di) hyperlines of dimension (n−m).

Example: The algebraic set X defined by the polynomials

f1(x, y, z) = (x− y)(x+ y + z)(x+ 2y + z)

and f2(x, y, z) = (x− y)(x+ y − z)

is the irredundant union of a plane

plane P1 :(x− y) = 0

and two lines

line L1 :(x+ y + z) = (x+ y − z) = 0

and line L2 :(x+ 2y + z) = (x+ y − z) = 0.

89

Generalization. We can generalize this example a little. Suppose that X is an algebraic

set defined by the polynomials

f1(x, y, z) = f2(x, y, z) = 0,

where both f1 and f2 are products of linear polynomials. Moreover, suppose that

Deg(f1) = d1, Deg(f2) = d2 and Deg(gcd(f1, f2)) = d. Then the closed set X is the

irredundant union of d planes and (d1 − d) · (d2 − d) lines.

Example: The algebraic closed set X in 3 variables x1, x2, x3 defined by the equations

x2
1 − x3 = x2

2 − (x3 + 1) = 0

is an irreducible one-dimensional closed set birational to the planar curve Y

y4 − 2(2x+ 1)y2 + 1 = 0

via the map

ψ : X 7→ Y, ψ : (x1, x2, x3) 7→ (x3, x1 + x2)

The inverse map φ is given by

φ : Y 7→ X, φ : (x, y) 7→ ((
1
2
)(y3 − (4x+ 1)y), (−1

2
)(y3 − (4x+ 3)y), x).

In this example both ψ and φ happen to be well-defined everywhere.

Generalization. More generally: Suppose that X is an algebraic closed set in (n + 1)

variables x1, x2, . . . , xn+1 with defining equations

x2
1 − (xn+1 + a1) = x2

2 − (xn+1 + a2) = . . . = x2
n − (xn+1 + an) = 0.

Suppose further that the ai’s are all distinct. Then the closed set X is irreducible and

birational to a planar curve of degree 2n.

Further Generalization. Now suppose that X is an algebraic closed set in (n + 1)

variables x1, x2, . . . , xn+1 with defining equations f1(x̄) = . . . = fn(x̄) = 0 where each

fi(x̄), 1 ≤ i ≤ n is of the form:

fi(x1, . . . , xn, xn+1) =
d∏

j=1

(x2
i − (xn+1 + aij)).

Suppose further that the aij ’s are all distinct. Then the closed set X is a union of dn

irreducible closed sets, each irreducible component being birational to a planar curve of

degree 2n.

90

Example: We now give an example of a reducible one-dimensioal closed set X being bira-

tional to a (reducible) planar curve. Suppose that f1(y), f2(y), g1(y), g2(y) are univariate

polynomials. The algebraic closed set X in [x1, x2, y]-space defined by the equations:

(x1 − f1(y))(x1 − f2(y)) = (x2 − g1(y))(x2 − g2(y)) = 0

is reducible and is the union of four irreducible one-dimensional closed sets. X is birational

to the planar curve Y in [z, y]-space defined by the equation:

(z − f1(y)− g1(y))(z − f1(y)− g2(y))(z − f2(y)− g1(y))(z − f2(y)− g2(y)) = 0

via the map

ψ : X 7→ Y, ψ : (x1, x2, y) 7→ (x1 + x2, y).

The inverse map φ is given by

φ : Y 7→ X, φ : (z, y) 7→ (B1(z, y), B2(z, y), y)

with B1(z, y)
def= A11f1(y) +A12f1(y) +A21f2(y) +A22f2(y)

and B2(z, y)
def= A11g1(y) +A12g2(y) +A21g1(y) +A22g2(y),

where the coefficient polynomial Aij ’s are defined as follows. For 1 ≤ i, j ≤ 2 define the

polynomial hij(u, y) as

hij(u, y)
def=

g(u, y)
(u− fi(y)− gj(y))

.

Then for 1 ≤ i, j ≤ 2 the coefficent polynomial Aij is

Aij
def=

hij(z, y)
hij(fi(y) + gj(y), y)

.

6.2.2 Notation

• For an ideal I ⊆ Fq[x̄], we will denote by Rad(I) the radical (square-free part) of

the ideal I defined as

Rad(I) def= {f(x̄) ∈ Fq[x̄] | f(x̄)m ∈ I for some m ≥ 1}.

• By the term total degree of a rational function ψ(x̄) = F (x̄)
G(x̄) ∈ F(x̄), we will mean

the sum of the total degrees of the numerator and the denominator. We denote it

by Deg(ψ). That is,

Deg(ψ) def= Deg(F (x̄)) + Deg(G(x̄))

91

6.3 Algorithm Description

6.3.1 Overview

In this section we describe in words the proposed algorithm. Our aim is to determine if

a given algebraic closed set X over a given field Fq has any Fq-rational point or not. (The

set X is specified to us by means of polynomial equations with coefficients from Fq). The

basic idea is to decompose the given closed set X into a union of (possibly reducible) closed

sets Xi, each Xi being birational to a hypersurface Yi of the appropriate dimension. We

then use the partial factoring algorithm developed in the previous chapter to determine,

for each i, the existence of an Fq-rational point on the set Xi.

We flesh out this basic idea in more detail through the rest of this section. We first

describe precisely the output of the (deterministic) decomposition algorithm and show how

to use our partial factoring algorithm for determining the existence of a rational point on

the components of the decomposition. We then describe the decomposition algorithm

itself in more detail. Finally, we remark how to improve the parallel time-complexity of

the algorithm.

6.3.2 The output of the decomposition and rational points on hypersur-

faces

Input: A finite field Fq and a set of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn] of
total degree at most d.

Output: True if ∃ an Fq-solution to the system f1 = . . . = fm = 0, False
otherwise.

begin1

let cn := 2n2

if q ≤ 105n3d10cn then3

Check if any of the qn points in Fn
q is a common solution to the given4

equations and return accordingly.
Let Y be the hypersurface defined by g(y1, . . . , yn) := Rad(f1(y1, . . . , yn)), ψ be5

the trivial map ∀i ∈ [n], ψ : yi 7→ xi and φ be its inverse. Let X ⊂ Fn
q be

X := 〈(n− 1), Y, ψ, φ〉
return Solvability(X, f2(x̄), . . . , fm(x̄)).6

end7

Algorithm 1: SolvabilityMain : Determine the existence of an Fq-rational point.

92

Input: A finite field Fq, a component X ⊂ Fn
q and a set of polynomials

f1, . . . , fm ∈ Fq[x1, . . . , xn].
Output: True if ∃ an Fq-rational point ā ∈ Fn

q which satisfies ā ∈ X and
f1(ā) = . . . = fm(ā) = 0. False otherwise.

begin1

Call Decompose(X, f1(x̄), . . . , fm(x̄)) to obtain a list (X1, . . . , Xt) of2

subcomponents of X.

foreach component Xi := 〈`, Yi, ψ, φ〉 do3

Let the equation of Yi be g(y1, . . . , y`+1) = 04

if g(ȳ) has any absolutely irreducible Fq-factor then return True5

else6

for j ← 1 to (`+ 1) do7

Compute hj(x̄) := ψ(∂g(ȳ)
∂yj

) ∈ Fq[x1, . . . , xn].8

Then the closed set X′i (Xi,9

X′i
def= Xi ∩

`+1⋂
j=1

{ā ∈ Fn
q |hj(ā) = 0}

 ,

consists of points P ∈ Xi such that ψ(P) ∈ Yi is a singular point.
Recursively determine existence of Fq-rational point on X′i by calling
Solvability(Xi, h1(x̄), . . . , h`+1(x̄))

if X′i contains a rational point then return True10

return False11

end12

Algorithm 2: Solvability : Determine the existence of an Fq-rational point.

93

The number of variables is n. We will denote by cn a constant that depends on n alone

and is of size 2O(n). Our algorithm is interesting only for large values of q; for if the size q

of the given field is small (q = O(poly(dcn))), we simply do a brute force search over all

possible Fq-rational points (qn many of them) and check if any of them belongs to X. In

what follows we shall assume that q is large (q � dcn).

We break the given algebraic set X into a union of uniform-dimensional algebraic sets

Xi: X =
⋃
Xi. These Xi’s we call the components of X. We represent a component Xi of X

by a four-tuple 〈`, Yi, ψ, φ〉. where:

• ` is the dimension of Xi and of Yi,

• Yi is a hypersurface with equation g(y1, . . . , y`+1) = 0 for some squarefree g(ȳ) ∈
Fq[ȳ].

• ψ : Xi 7→ Yi is a rational map,

• and φ : Yi 7→ Xi is the inverse rational map of ψ.

Note that now X contains a Fq-rational point if and only if some Xi contains a Fq-rational

point. This computation of the decomposition of X satisfies the following properties:

P-i). Neither Xi nor Yi contains any singular (repeated) varieties.

P-ii). The map ψ : Xi 7→ Yi is an Fq-rational map and so is φ : Yi 7→ Xi. That is the

coefficients of all the rational functions occuring in ψ and φ are from Fq. In particular

this means that Fq-rational points on Xi get mapped to Fq-rational points on Yi and

vice-versa.

P-iii). The map ψ : Xi 7→ Yi is well-defined on all points of Xi. This happens because the

corresponding ring homomorphism ψ : Rfr
Yi
7→ Rfr

Xi
is actually a linear map, mapping

each generator yi of RYi to a linear combination of the generators xj ’s in RXi .

P-iv). On the other hand, the map φ : Yi 7→ Xi is well-defined everywhere except possibly

at the singular points of Yi.

These properties ensure that if there is a Fq-rational point on Xi then there is one on

Yi as well. In the other direction, if there is no Fq-rational point on Yi and there is also

no singular point on Yi then Xi does not contain any Fq-rational point as well.

94

Now consider one such algebraic closed set Yi of dimension `. Let the equation of Yi

be

g(y1, y2, . . . , yl, y`+1) = 0.

We first handle the zero-dimensional case (` = 0). In this case the components of Yi are

simply individual points. Moreover, by the second property, there are no singular points

on Yi. Thus, in this case Xi has a rational point if and only if the univariate g(y1) = 0 has

an Fq-root, or equivalently, if and only if g(y1) has an absolutely irreducible Fq-factor (see

the remark at the end of the defintion of absolute irreducibility 5.1.1).

Now consider the case when ` ≥ 1. We use the partial factoring algorithm described

in the previous chapter to determine if g(ȳ) ∈ Fq[ȳ] contains any absolutely irreducible

factors or not. If g(ȳ) does have an absolutely irreducible Fq-factor, then from Weil’s

theorem we can deduce that there does exist an Fq-rational point on Yi. Indeed, Weil’s

theorem says that any absolutely irreducible polynomial contains a lot of (Θ(q`), provided

q is large enough in comparison to the degree of the polynomial) rational points. Thus if

g(ȳ) has an absolutely irreducible Fq-factor g1(ȳ) then the hypersurface g1(ȳ) = 0 has a

lot of Fq-rational points. Moreover, most of these points are non-singular. There is also a

partial converse to Weil’s theorem: if g(ȳ) = 0 has no absolutely irreducible factors then

any rational point on g(ȳ) = 0, if it exists, is a singular point.

Thus if g(ȳ) has an absolutely irreducible factor we deduce that Xi, and hence X,

contains a Fq-rational point and we stop. Otherwise any rational point on Xi, if it exists,

must map to a singular point on Yi under ψ. Now the set of points on Xi that can map to

a singular point on Yi under ψ is a closed algebraic subset of Xi of dimension strictly less

than `. We compute the equations of this subset and then repeat the process to determine

if this smaller dimensional set has a rational point or not. This process continues until

the Xi’s that we get are zero-dimensional.

6.3.3 Description of the decomposition algorithm.

The most general form of the algebraic set decomposition problem is the following -

Algebraic Set Decomposition Problem. Consider a set of polynomials

f1(x̄), . . . , fm(x̄) ∈ Fq[x̄] of total degree d in n variables over the finite field Fq.

Decompose the algebraic set defined by

f1(x̄) = f2(x̄) = . . . = fm(x̄) = 0

95

into Fq-irreducible components, representing each of them by a birational

hypersurface over Fq, together with a map from the component to the hyper-

surface and an inverse rational map from the hypersurface to the component.

Lacking an efficient algorithm for completely factoring univariate polynomials, we

cannot solve this most general form of the decomposition problem. We do solve this

problem partially and as we shall see, this partial solution is good enough for deciding

solvability.

Input: A finite field Fq, an algebraic closed set X over Fq, and polynomials
f1, . . . , fm ∈ Fq[x1, . . . , xn] .

Output: A list 〈X1, . . . , Xt〉 of (possibly reducible) components of the closed set
X ∩

(⋂m
i=1{ā ∈ Fn

q |fi(ā) = 0}
)
.

begin1

Initialize a list L with the single component X.2

for i← 1 to m do3

Initialize L′ to be the empty list.4

forall X̂ := 〈`, Y, ψ, φ〉 in the list L do5

6

Let F def= Fq(y1, . . . , y`), Rfr
Y := F[y`+1]/〈g(y1, . . . , y`+1)〉,

fφ
i (y1, . . . , y`+1) := φ(fi(x1, . . . , xn)) =

h1(y1, . . . , y`+1)
h2(y1, . . . , y`)

∈ Rfr
Y

where h1 and h2 are polynomials in the yj ’s.

We now have two hypersurfaces g(ȳ) = 0 and h1(ȳ) = 0 in the ambient7

[y1, . . . , y`+1]-space. Compute the intersection of these two hypersurfaces
and obtain two components Ŷ1 := 〈`, Z1, ψ1, φ1〉 and
Ŷ2 := 〈`− 1, Z2, ψ2, φ2〉.
if Ŷ1 6= ∅ then8

add the component X̂1 := 〈`, Z1, ψ1 ◦ ψ, φ ◦ φ1〉 to L′.9

if Ŷ2 6= ∅ then10

add the component X̂2 := 〈`− 1, Z2, ψ2 ◦ ψ, φ ◦ φ2〉 to L′.11

L← L′12

Output the list L13

end14

Algorithm 3: Decompose - Compute the decomposition of an algebraic set.

96

Input: A finite field Fq and two `-dimensional hypersurfaces
Y1 : g1(y1, . . . , y`+1) = 0 and Y2 : g2(y1, . . . , y`+1) = 0.

Output: The decomposition of (Y1 ∩ Y2) as the union of two component closed
subsets Ŷ1 := 〈`, Z1, ψ1, φ1〉 and Ŷ2 := 〈`− 1, Z2, ψ2, φ2〉.

begin1

g1(ȳ)← Rad(g1(ȳ)), g2(ȳ)← Rad(g2(ȳ))2

By making a suitable linear transformation σ on the variables y1, . . . y`+1,3

ensure that both σ(g1(ȳ)) and σ(g2(ȳ)) are monic and seperable polynomials
with respect to y`+1.

4

Let F def= Fq(y1, . . . , y`−1), R := F(y`)[y`+1]/〈σ(g1(ȳ)), σ(g2(ȳ))〉.

Compute5

h(ȳ) := gcd(σ(g1(ȳ)), σ(g2(ȳ))), h1(ȳ) :=
σ(g1(ȳ))
h(ȳ)

, h2(ȳ) :=
σ(g2(ȳ))
h(ȳ)

.

Note that h(ȳ), h1(ȳ), h2(ȳ) ∈ Fq[ȳ] are all monic polynomials in y`+1. The ring
R then decomposes into the direct sum of two rings:

R =
(
R1

def= F(y`)[y`+1]/〈h(ȳ)〉
)
⊕
(
R2

def= F[y`, y`+1]/Rad(〈h1(ȳ), h2(ȳ)〉)
)

Let π1 : R 7→ R1 and π2 : R 7→ R2 be the projection maps. Also let ρ1 : R1 7→ R
and ρ2 : R2 7→ R be the natural inclusion maps.

if Deg(h(ȳ)) = 0 then Ŷ1
def= ∅ else6

Ŷ1
def= 〈`, Z1 := {ā ∈ F`+1

q | h(ā) = 0}, σ−1 · ρ1, π1 · σ〉7

Viewing R2 as an algebra over F, use the primitive element theorem to obtain a8

ring Rfr
Z := F[z]/〈g̃(z)〉 such that φ : R2 7→ Rfr

Z is an isomorphism with inverse
ψ. Here Z := {ā ∈ F`

q | g̃(ā) = 0} is the algebraic closed set corresponding to
Rfr
Z .

if Z = ∅ then Ŷ2 = ∅ else Ŷ2
def= 〈`− 1, Z, σ−1 · ρ2 · ψ, φ · π2 · σ〉9

return 〈Ŷ1, Ŷ2〉.10

end11

Function Intersect - Compute the intersection of two hypersurfaces.

97

We now delve a little deeper and describe in more detail the process of computing the

components together with their birationally equivalent hypersurfaces.

Let X[i] be the closed set defined by the first i equations:

f1(x̄) = f2(x̄) = . . . = fi(x̄) = 0.

Corresponding to the closed set X[i] we have the ring

R
[i]
X := Fq[x̄]/〈f1(x̄), . . . , fi(x̄)〉.

Starting with i = 1, our algorithm successively computes the decomposition of X[i] for

i = 2, 3, . . . ,m until we get the decomposition of X[m] = X. Our algorithm ensures that

at each stage the components that we get are all ‘square-free’, i.e. each variety in the

component occurs with multiplicity 1.

In order to get the decomposition of the closed set X[i+1] from that of X[i], we compute

the intersection of each component of X[i] with the hypersurface Z defined by fi+1(x̄) = 0.

Consider one such component X̂ of X[i], of dimension `. Then X̂ ∩ Z is the union of two

components X̂1 and X̂2. X̂1 is the union of those `-dimensional varieties in X̂ that are a

subset of Z. Each of the remaining varieties in X̂− X̂1 give a collection of (`−1)-dimensional

varieties upon intersection with Z, the union of which is the set X̂2. In this way intersecting

a component of X[i] with the hypersurface fi+1(x̄) = 0 gives, in general, two components

of X[i+1]. Continuing in this manner we get the decomposition of X = X[m]. It remains for

us to describe how to compute the intersection of a component with a hypersurface.

Computing the intersection of a component X̂ := 〈`, Y, ψ, φ〉 with a hyper-

surface fi(x̄) = 0. The component X̂ is birational to a `-dimensional hypersurface Y

with defining equation g(y1, . . . , y`+1) = 0. We ‘project’ the constraint fi(x̄) = 0 into the

ambient [y1, . . . , y`+1]-space of Y by using the map φ : Rfr

X̂
7→ Rfr

Y . Thus the problem now

boils down to computing the intersection of two hypersurfaces g1(ȳ) := g(ȳ) and g2(ȳ) :=

φ(fi(x̄)). After some initial preprocessing, we compute h(ȳ) = gcd(g1(ȳ), g2(ȳ)) and this

captures all the varieties common to both g1(ȳ) = 0 and g2(ȳ) = 0. The hypersurface

h(ȳ) = 0 then gives us the representation of X̂1. After removing these common varieties

from both g1(ȳ) = 0 and g2(ȳ) = 0, our problem boils down to computing an (` − 1)-

dimensional hypersurface birational to the intersection of two ‘disjoint’ `-dimensional

hypersurfaces. We solve this problem by using the primitive element theorem as described

in the next section and upon composing the relevant maps we obtain a hypersurface-

representation of X̂2 as well.

98

In summary, we obtain the decomposition of the given set by introducing the con-

straints one by one and at each stage computing the intersection of every component with

the newly introduced constraint. This completes the description of the sequential version

of our algorithm.

Time complexity of the algorithm.

The computation of the decomposition of the given algebraic set X can be viewed in terms

of a binary tree of depthm where the nodes at depth i correspond to the components in the

decomposition of the closed set X[i]. We will observe that the degree of any hypersurface

is bounded by dcn . Also, the total degree of every rational function that occurs in the

map from the given set X to the hypersurfaces that occur during the computation process

is also bounded by dcn . From this it follows that the total number of Fq-field operations

that we require is poly(dcn · km) where km is the number of components output by the

decomposition algorithm. Finally, km is itself upper-bounded by dcn thereby implying an

overall time complexity of poly(dcn ·m) field operations over Fq. Note that both the degree

and the number of components of X are bounded by dcn , a quantity that, remarkably, is

independent of m.

Parallelizing the algorithm.

Consider once again the binary tree corresponding to the computation of the decomposition

algorithm as mentioned in the previous section.

The fundamental operations involved in the decomposition algorithm are computing

the gcd of two polynomials, solving a set of linear equations and computing the char-

acteristic polynomial of a matrix. All of these are all well-studied operations known to

be efficiently parallelizable. Thus, by doing an efficient parallel implementation of these

fundamental operations and a parallel traversal of the aforementioned computation tree,

we get a parallel time complexity of poly(cn ·log d·m·log q). To make the dependence poly-

logarithmic in m also we need one more idea. The idea is simply to divide the given set

of m equations into two sets of size m
2 , compute the decomposition of the closed algebraic

set induced by each set of equations recursively in parallel and then take the intersection

of each pair of components to get the decomposition of the original algebraic set X. Let X̂

be the algebraic closed set corresponding to the equations

f1(x̄) = f2(x̄) = . . . = fm
2
(x̄) = 0

99

and X̃ be the algebraic closed set corresponding to the rest of the equations

fm
2

+1(x̄) = fm
2

+1(x̄) = . . . = fm(x̄) = 0.

We recursively compute the decomposition of X̂ and X̃ in parallel. Let X̂ =
⋃

i X̂i and

X̃ =
⋃

j X̃j be the decomposition of X̂ and X̃ respectively. Then the decomposition of X

is given simply by X =
⋃

i,j(X̂i ∩ X̃j). The intersection of every pair of sets X̂i and X̃j is

computed again in parallel and computing one such intersection again involves elementary

linear algebraic operations which are also efficiently parallelized. Overall, this gives a

parallel time complexity of poly(cn · log d · logm · log q).

6.3.4 The Primitive Element Theorem

We now come to the main technical section of our algorithm - computing the intersection

of two hypersurfaces. In this subsection we give a very constructive version of the well

known primitive element theorem (cf. Lang [Lan94]), along with explicit bounds on the

sizes of the involved quantities, as required for our purposes.

Consider polynomials

f1(z1, . . . , zn, x) ∈ Fq[z1, . . . , zn, x, y] and f2(z1, . . . , zn, y) ∈ Fq[z1, . . . , zn, x, y].

Let f1(z̄, x) and f2(z̄, y) be squarefree polynomials of total degree d1 and d2 respectively

over Fq. Moreover, suppose that f1(z̄, x) is monic and separable with respect to the

variable x while f2(z̄, y) is monic and separable with respect to the variable y.

Remark. If f1 and f2 are not monic and separable then a random linear transformation

σ on the variables makes them monic and separable so that in this case we apply the

appropriate linear transform on the variables and work with these new polynomials instead.

See [Kal82] for a proof of the bivariate case. The proof of the general case in n variables

is an easy generalization of the bivariate case. Moreover, when the number of variables is

bounded such a transformation σ can be computed efficiently [Kal82].

Let F be the rational function field F def= Fq(z1, . . . , zn). Let R be the ring

F[x, y]/〈f1(x), f2(y)〉. Thus R is an algebra of dimension d1 · d2 over the field F with

basis

B1
def= {xiyj | 0 ≤ i < d1, 0 ≤ j < d2}.

100

We want to express R as a ring of the form F[z]/〈g(z)〉. We will see that choosing g(z)

to be the minimal polynomial of some element α ∈ R of the form α = x+ ty with t ∈ Fq

works for us.

Suppose that in the algebraic closure F of F, f1 and f2 factor as:

f1(x) =
d1∏
i=1

(x− αi),

f2(y) =
d2∏

j=1

(x− βj).

By the squarefreeness and separability of f1 the αi’s are all distinct. Similarly the βj ’s are

all distinct.

Now for some t ∈ Fq, consider the element α ∈ R defined as α def= (x + ty). Then the

characteristic polynomial of α over F is

g(z) def= charpolyα/F(z) =
d1∏
i=1

d2∏
j=1

(z − (αi + tβj)).

Let A ⊂ F be the set

A
def= {(αi1 − αi2)/(βj1 − βj2) | i1, i2 ∈ [d1], j1 6= j2 ∈ [d2]}.

Then for t /∈ A, the roots of g(z) are all distinct. Fix any such t /∈ A. Then since the

characteristic polynomial g(z) of α is squarefree and separable, it is in fact also the minimal

polynomial of α. Therefore R = F(α) = F[z]/〈g(z)〉. Choosing any t ∈ (Fq \ A) gives a

suitable α. Note that | A |< d2
1d

2
2 and therefore there are at least | (Fq \ A) |≥ (q − d2

1d
2
2)

suitable choices of t.

We now adopt a slightly different viewpoint of the above matter. The discussion

above explicitly exhibits an isomorphism ψ from the ring R1
def= F[z]/〈g(z)〉 to the ring

R
def= F[x, y]/〈f1(x), f2(y)〉 given by ψ : z 7→ (x+ty), where g(z̄, z) ∈ Fq[z̄, z] is the minpoly

of the element (x + ty) ∈ R. Let φ : R 7→ R1 be the inverse of ψ. Clearly then φ can

be viewed as a map from the set of points Y on g(z̄, z) = 0 to the set of points X on

f1(z̄, x) = f2(z̄, y) = 0. ψ then maps the points on X to points on Y and by the linear

nature of the map, ψ is well-defined everywhere.

We now investigate the well-definedness of φ as a map from points in Y to points in

X. For P = (z̄, z) let φ(P) = (z̄, φ1(P), φ2(P)). Over the algebraic closure F of F, we

101

can obtain an explicit expression for φ1 as a polynomial in z. Indeed this expression is

remniscient of polynomial interpolation for the following reason. If x = φ1(z) ∈ F[z] is the

expression for x in terms of z then we want it to satisfy φ1(αi + tβj) = αi for all i ∈ [d1]

and j ∈ [d2]. Let gij(z)
def= g(z)

z−(αi+tβj)
∈ F[z]. Its easy to verify that

φ1(z) :=
∑
i,j

gij(z)
gij(αi + tβj)

αi

works. It turns out the rhs of the above equation is actually in F[z] itself. From the above

expression, we can deduce that φ1(P) is well defined for all non-singular points P on Y.

Similarly, it can be shown that φ2(P) is also well-defined for all non-singular points P on

Y.

Let us summarize the above discussion far as a theorem.

Proposition 6.3.1. (Primitive Element Theorem.) Let Fq be a finite field. Let

f1(z1, . . . , zn, x) ∈ Fq[z1, . . . , zn, x, y] and f2(z1, . . . , zn, y) ∈ Fq[z1, . . . , zn, x, y] be square-

free polynomials of degree d1 and d2 respectively over Fq. Moreover, f1(z̄, x) is monic and

separable with respect to the variable x while f2(z̄, y) is monic and separable with respect

to the variable y. Let F be the rational function field F def= Fq(z1, . . . , zn). Let R be the ring

F[x, y]/〈f1(x), f2(y)〉. Thus R is an algebra of dimension d1 · d2 over the field F. Then R

is isomophic to the ring R1 := F[z]/〈g(z)〉, where g(z) ∈ Fq[z1, . . . , zn, z] is a polynomial

of degree (d1 · d2) and is monic in z. The map ψ : R1 7→ R, ψ : z 7→ (x + ty) for some

t ∈ Fq is a ring isomorphism. Let φ : R 7→ R1 be the inverse of ψ. Then φ maps points on

the closed set of g(z̄, z) = 0 to points on the closed set of f1(z̄, x) = f2(z̄, y) = 0 in such a

way that it is well-defined on all non-singular points on g(z̄, z) = 0.

Moreover the ring R1 together with the maps ψ and φ can be constructed in determin-

istic polynomial time (i.e. time polynomial in the size of the input and output).

6.3.5 Intersection of two hypersurfaces.

Now suppose that we are given two (n+ 1)-dimensional hypersurfaces

f1(z1, . . . , zn, x, y) = 0 and f2(z1, . . . , zn, x, y) = 0

over the field Fq. Moreover assume that f1 and f2 have no common varieties, i.e. the

polynomials f1(z̄, x, y) and f2(z̄, x, y) are coprime. We want to compute an n-dimensional

hypersurface g(z̄, z) = 0 birational to their intersection

f1(z̄, x, y) = f2(z̄, x, y) = 0.

102

Equivalently, we want to compute a ring R1 of the form

R1 = Fq(z̄)[z]/〈g(z)〉

that is Fq(z̄)-isomorphic to the given ring

R = Fq(z̄)[x, y]/Rad(〈f1(z̄, x, y), f2(z̄, x, y)〉).

We do this as follows:

1. Compute

h1(z̄, x) = Rad(Resultanty(f1(z̄, x, y), f2(z̄, x, y))) 6= 0

and h2(z̄, y) = Rad(Resultantx(f1(z̄, x, y), f2(z̄, x, y))) 6= 0.

Then over the field F = Fq(z̄), since h1(x) and h2(y) ∈ 〈f1(x, y), f2(x, y)〉, we have

R = (F[x, y]/〈h1(x), h2(y)〉)/〈f1(x, y), f2(x, y)〉.

2. Let S def= F[x, y]/〈h1(x), h2(y)〉. Using the primitive element theorem described

previously obtain a ring S′ of the form S′ = F[z]/〈g1(z)〉 along with isomorphisms

φ : S 7→ S′ and ψ : S′ 7→ S.

3. Viewing f1(x, y) and f2(x, y) as elements of S, compute

f ′1(z) = φ(f1(x, y)) ∈ S′, f ′2(z) = φ(f2(x, y)) ∈ S′.

Then R ⊆ S is isomorphic to S′/〈f ′1(z), f ′2(z)〉 = F[z]/〈g(z)〉 where g(z) =

gcd(g1(z), f ′1(z), f
′
2(z)). The restriction of the map φ to R ⊆ S provides the

isomorphism from R to R1 := F[z]/〈g(z)〉 ⊆ S′.

Clearly all these computations are in deterministic polynomial time. Finally, when ψ

and φ are viewed as mappings from one algebraic closed set to another, ψ is well defined

at all points whereas φ is well-defined at all non-singular points. We summarize this as a

theorem.

Proposition 6.3.2. Let Fq be a finite field. Let f1(z1, . . . , zn, x, y) ∈ Fq[z1, . . . , zn, x, y]

and f2(z1, . . . , zn, x, y) ∈ Fq[z1, . . . , zn, x, y] be squarefree polynomials of degree d1 and d2

respectively over Fq. Let F be the rational function field F def= Fq(z1, . . . , zn). Let R be

103

the ring F[x, y]/〈f1(x), f2(y)〉. Then R is isomophic to the ring R1 := F[z]/〈g(z)〉, where

g(z) ∈ Fq[z1, . . . , zn, z]. The map ψ : R1 7→ R, ψ : z 7→ (x+ ty) for some t ∈ Fq is a ring

isomorphism. Let φ : R 7→ R1 be the inverse of ψ. Then φ maps points on the closed set

of g(z̄, z) = 0 to points on the closed set of f1(z̄, x) = f2(z̄, y) = 0 in such a way that it is

well-defined on all non-singular points on g(z̄, z) = 0.

Moreover the ring R1 together with the maps ψ and φ can be constructed in determin-

istic polynomial time (i.e. time polynomial in the size of the input and output).

6.3.6 Proof of Correctness

We now prove the correctness of our algorithm. The main subroutine involved in the de-

composition is computing the intersection of two hypersurfaces. The important properties

of this intersection algorithm and its proof of correctness has already been discussed. So

we can assume that the decomposition algorithm works correctly and returns a list of

components of the given algebraic set. Now consider a uniform-dimensional component

Xi := 〈`, Yi, ψ, φ〉 in the list of components returned by the decomposition algorithm. Our

algorithm then consists of two cases.

Case I: Yi contains an absolutely irreducible hypersurface. We will make use

of the following two results by Schmidt [Sch74].

Theorem 6.3.3. Suppose g(y1, . . . , y`+1) is an absolutely irreducible polynomial of total

degree d > 0, with coefficients in the finite field Fq. Let A be the number of Fq-rational

points on

g(y1, . . . , y`+1) = 0.

Suppose

q > 104`3d5P 3(4 blogdc),

where P (1) = 2, P (2) = 3, . . . is the sequence of primes. In particular P (x) ≈ x log x, and

hence the right hand side of the above inequality is O(`3d5+ε) for every ε > 0. Then

A > q` − (d)(d− 1)q`−(1/2).

Theorem 6.3.4. Suppose g1(y1, . . . , y`+1), . . . , gm(y1, . . . , y`+1) are polynomials of degree

≤ d with coefficients in Fq and without a common factor. Then the number of Fq-rational

points on

g1(y1, . . . , y`+1) = . . . = gm(y1, . . . , y`+1) = 0

is ≤ 2`d3q`−1.

104

Combining these two theorems we prove the following:

Theorem 6.3.5. Suppose that g(y1, . . . , y`+1) ∈ Fq[y1, . . . , y`+1] is a squarefree polynomial

of total degree d having at least one absolutely irreducible Fq-factor. If q ≥ 105`3d10, then

there exists at least one non-singular Fq-rational point on the hypersurface

g(y1, . . . , y`+1) = 0.

Proof. If d = 1 then g(ȳ) is simply a hyperplane of dimension (`) and thus all the q`

Fq-rational points on g(ȳ) are non-singular. So now assume d ≥ 2.

Since g(ȳ) is squarefree, therefore it must be coprime to at least one of its partial

derivatives
(

∂g
∂yi

)
(ȳ). So by theorem 6.3.4 the system of equations

g(ȳ) =
(
∂g

∂y1

)
(ȳ) = . . . =

(
∂g

∂y`+1

)
(ȳ) = 0

has at most 2`d3q`−1 solutions. In other words the number of Fq-rational singular points

on g(ȳ) is upper bounded by 2`d3q`−1.

Let g1(ȳ) ∈ Fq[ȳ] be an absolutely irreducible Fq-factor of g(ȳ). Combining the lower

bound of 6.3.3 on the number of Fq-rational points on g1(ȳ) = 0 with this upper bound on

the number of singular points on g(ȳ) = 0, we get that there exists at least one non-singular

Fq-rational point on g(ȳ) = 0.

We need to bound the number and degree of the components of various dimensions

obtained as our algorithm s. We bound it as follows.

Lemma 6.3.6. During the execution of the algorithm, the degree of any `-dimensional

component is at most d2n−1−`
.

Proof. We proceed by induction on s def= n− `.
Base case s = 1. Any (n− 1) dimensional component of X simply corresponds to an

Fq-factor of the polynomial f1(x̄) and thereofore its degree is bounded by d, as required.

Induction step. Now any (` − 1)-dimensional component Xi of X is obtained by the

intersection of a component X̂ (obtained reviously during the computation) of dimension

at most ` and a hypersurface h(x̄) = 0. The hypersurface h(x̄) is either one of the original

input hypersurfaces fi(x̄) = 0 or is of the form ψ(∂g
∂yj

(ȳ)) for some birationally equivalent

hypersurface g(ȳ) = 0. In either case, the induction hypothesis implies that the degree dh

105

of the hypersurface h(x̄) = 0 is bounded by dh ≤ 2ds
. By induction hypothesis the degrees

d̂ of X̂ is bounded by d̂ ≤ d2s
. By Bezout’s theorem, the degree of Xi which is a component

in their intersection is bounded by

dh · d̂ ≤ d2s · d2s

= d2s+1
,

as required.

Suppose that the corresponding birational hypersurface g(ȳ) = 0 contains an abso-

lutely irreducible Fq-factor. Then the claim here is that Xi does indeed contain a rational

point. If the dimension ` is zero, then the absolutely irreducible Fq-factors of g(y1) are

nothing but Fq-points on g(y1) = 0. The components output by the decomposition

algorithm do not contain any singular varieties and thus no such point P is a singular

point of Yi and therefore φ(P) gives an Fq-point on Xi as desired. If ` ≥ 1, then by

theorem 6.3.5, Yi contains a non-singular rational point P and therefore φ(P) gives a

rational point on Xi as claimed.

Case II : Yi has no absolutely irreducible Fq-factors. We make use of the

following lemma from the previous chapter.

Lemma 6.3.7. Suppose that h(ȳ) ∈ Fq[ȳ] is Fq-irreducible and it splits into absolutely

irreducible factors h1(ȳ), . . . , ht(ȳ) over some extension field Fqd of Fq. Then its absolutely

irreducible factors hi(ȳ)’s are all Fq-conjugates of each other.

Now consider a rational point P on the hypersurface g(ȳ) = 0. Then P must be the

zero of some Fq-irreducible factor h(ȳ) of g(ȳ). That is h(P) = 0. Suppose h(ȳ) splits

completely over the extension field K) Fq into factors h1(ȳ), . . . , ht(ȳ) ∈ K[ȳ]. Then

P must be a rational point on some factor, say h1(ȳ), of h(ȳ). Let σ ∈ GalK/Fq
be an

automorphism of K mapping h1(ȳ) to h2(ȳ). Then since P is an Fq-rational point, we

have σ(P) = P . So P is also a zero of h2(ȳ) and hence P is a singular point on the surface

h(ȳ) = 0. Consequently P is also a singular point on the surface g(ȳ) = 0.

Now a point P on g(ȳ) = 0 is singular if and only if it is the common zero of the closed

subset Y′ (Yi with defining equations

g(ȳ) =
(
∂g

∂y1

)
(ȳ) = . . . =

(
∂g

∂y`+1

)
(ȳ) = 0

106

By imposing the constraints hi(x̄) = ψ(
(

∂g
∂y1

)
(ȳ)) on the algebraic set Xi, our algorithm

computes the preimage X′ (X of Y′. In this case then there is an Fq-rational point P in X

if and only if there is one in X′, which our algorithm determines recursively, as required.

This completes the proof of correctness of our algorithm. We summarize it as a

theorem.

Theorem 6.3.8. Algorithm 1 is a deterministic algorithm which decides Solvability on an

input consisting of a finite field Fq and polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn] of

total degree bounded by d in time poly(dcn ·m · log q), where cn is a constant that depends

on n alone and is of size nO(n).

Discussion

In this chapter we devised a deterministic algorithm for determining the existence of a

rational point on a variety by using Weil estimates for the number of rational points on an

absolutely irreducible curves and the deterministic factoring algorithm of the last chapter.

The major open problem in this direction now is to deterministically compute a rational

point if it exists and to count their number efficiently.

Chapter 7

A blackbox derandomization of

Primality Testing

Summary: We present a deterministic polynomial-time algorithm that

determines whether an input number n is prime or composite.

7.1 Introduction

The primality testing problem is to determine whether an input number n is prime or

composite. It is one of the fundamental problems in algorithmic number theory with

important applications in cryptography and elsewhere. An unconditional deterministic

polynomial time algorithm for primality testing was first presented in [AKS04]. In this

chapter, we present a variant of the AKS algorithm for testing primality. The basis of

the AKS algorithm [AKS04] is an identity which prime numbers and only prime numbers

satisfy.

Identity. An integer n ≥ 2 is prime if and only if

(x− 1)n = (xn − 1) (mod n)

The variant of the AKS algorithm [AKS04] that we present in this chapter is motivated

by the connection between derandomization of identity testing and proving arithmetic

circuit lower bounds. Agrawal [Agr05], following the work of Kabanets and Impagliazzo

[IK03], observed that a black-box derandomization of the identity testing problem is equiv-

alent to proving arithmetic circuit lower bounds.

107

108

7.1.1 Black-box derandomization in general.

To understand the notion of black-box derandomization, recall that a randomized algo-

rithm A for a language L ⊆ {0, 1}∗ takes as input a pair of strings 〈x, r〉 and accepts with

high probability (over the random choice of r) if and only if x ∈ L. It is known that for

any n ≥ 1, there exists a set S of size poly(n) of strings {r1, r2, . . . , rt} such that for any

x ∈ {0, 1}∗ of length n,

x ∈ L iff Majority(A(x, r1),A(x, r2), . . . ,A(x, rt)) = 1.

A black-box derandomization of the algorithm A is an explicit (deterministic polynomial

time) computation of such a set S.

7.1.2 Black-box derandomization of identity testing.

The underlying randomized algorithm for identity testing is the well-known Schwarz-Zippel

algorithm which evaluates the given polynomial at a randomly chosen point P . Then the

black-box derandomization problem for identity testing is the following problem: for a fixed

field F, given an integer s ≥ 1 construct a set A of points of size poly(s) in deterministic

polynomial time so that any circuit of size s over F computes the zero polynomial if and

only if it evaluates to zero at all points in the set A (the coordinates of each of the points

in A are allowed to lie in some small (poly(s)-dimensional) ring extension R of F). In

this chapter, we give an explicit construction of the set A of evaluation points which

derandomizes the identity for primality testing.

7.2 A randomized algorithm for primality

A randomized algorithm for primality was proposed by Agrawal and Biswas [AB03] and it

was based on the following identity which prime numbers and only prime numbers satisfy.
1 For any natural number n let

Pn(x) def= (x− 1)n − (xn − 1)

Identity. An integer n ≥ 2 is prime if and only if

Pn(x) = 0 (mod n) (7.1)
1The algorithm we present here is a minor variation of the algorithm of Agrawal and Biswas [AB03].

109

Proof. For 0 < i < n, the coefficient of xi in Pn(x) = ((x− 1)n − (xn − 1)) is (−1)n−i
(
n
i

)
.

Now if n is prime,
(
n
i

)
≡ 0(mod n) and hence all the coefficients are zero.

If n is composite: consider a prime q that is a factor of n and let qk||n. Then qk does not

divide
(
n
q

)
and hence the coefficient of xq is not zero (mod n). Thus ((x− 1)n − (xn − 1))

is not identically zero over Z/nZ.

Thus given an n as input, one could compute whether the congruence (7.1) is satisfied

or not. However, this takes time Ω(n) because we need to evaluate n coefficients in the

LHS in the worst case. Therefore, to make it feasible we evaluate (7.1) modulo a randomly

chosen polynomial Q(x) of degree r = (log n)2. Our algorithm then consists of verifying

congruences of the form

Pn(x) = 0 (mod Q(x), n). (7.2)

From the Identity 7.2, it is immediate that all primes n satisfy the above congruence for

all choices of Q(x); however some composites n may also satisfy congruence (7.2) for a

few choices of Q(x). The above congruence takes O(r2 log3 n) time for verification (lhs is

evaluated by repeated squaring), or even better O(r log2 n) if Fast Fourier Multiplication

[Knu81] is used.

Algorithm: Randomized Primality test

Input: integer n > 1

1. pick a random monic Q(x) 6= 0 ∈ (Z/nZ)[x] of degree r = 16(log n)5.

2. if ((x− 1)n 6≡ (xn − 1)) (mod x15 ·Q(x), n)) output COMPOSITE;

3. output PRIME;

The running time of the algorithm is clearly poly(log n). The next theorem bounds

the error probability of the algorithm.

Theorem 7.2.1. If the input n to the above algorithm is prime then our algorithm outputs

PRIME. If n is composite then the algorithm outputs PRIME with probability at most 2
3 .

Proof. If n is prime then by identity 7.2, it satisfies

(x− 1)n 6≡ (xn − 1)) (mod Q(x), n))

110

for all polynomials Q(x) and hence the algorithm outputs PRIME. Now assume that n is

composite. Let

Pn(x) def= (x− 1)n − (xn − 1)

We first observe that n cannot have any prime factors smaller than 15.

Claim 7.2.1.1. If n the algorithm outputs PRIME then n cannot have any proper prime

factors less than 15.

Proof of Claim 7.2.1.1. Suppose if possible a prime q ≤ 15 divides n. Since the algorithm

returns PRIME, we must have:

(x− 1)n ≡ (xn − 1) (mod x15, n).

This happens if and only if

(−1)i

(
n

i

)
≡ 0 (mod n) ∀1 ≤ i < 15.

Setting i := q < n, we get (
n

q

)
≡ 0 (mod n)

As in the proof of Identity 7.2 this cannot happen for if qa is the largest power of q which

divides n, then
(
n
q

)
is divisible by qa−1 but not by qa. Therefore

(
n
q

)
6≡ 0 (mod qa) which

implies
(
n
q

)
6≡ 0 (mod n), a contradiction. �

Let p be a prime divisor of n such that pa exactly divides n. Then by the proof of

identity 7.2, there exists a polynomial A(x) 6= 0 ∈ Fp[x] of degree less than n such that

Pn(x) ≡ p` ·A(x) (mod pa)

for some ` < a. Thus we have

Pn(x) ≡ 0 (mod Q(x), n) ⇒ A(x) ≡ 0 (mod Q(x), p)

Now the analysis of [AB03] applies so that the probability that the algorithm outputs

COMPOSITE is at least 2
3 .

111

7.3 Derandomization of Primality Testing Algorithm.

We give a derandomization of the randomized algorithm for primality mentioned in the

previous section. Ours is a black box derandomization of the randomized test presented

above in the sense that we specify a set R of polynomials,

R = {(x+ a)r − b : 1 ≤ r ≤ 16(log n)5, 0 ≤ a ≤ 8(log n)7/2, 0 ≤ b ≤ 1}

so that by letting Q(x) run over the set of polynomials in R, for composite n, the

congruence 7.2 fails to hold at least once. The deterministic primality test then is very

simple and is given below. Here and henceforth, we shall denote by [n] the set of first

(n+ 1) non-negative integers {0, 1, . . . , n}. 2

Algorithm: Deterministic Primality test

Input: integer n > 1

1. let R = {(x+ a)r − b : r ∈ [16(log n)5], a ∈ [8(log n)7/2], b ∈ {0, 1}}.

2. for all Q(x) ∈ R do

if ((x− 1)n 6≡ (xn − 1) (mod x15 ·Q(x), n)) output COMPOSITE;

3. output PRIME;

Clearly, this is a deterministic polynomial time algorithm. In the remainder of this

chapter, we establish its correctness through a sequence of lemmas. That is, we will

establish the following theorem -

Theorem 7.3.1. The algorithm above returns PRIME if and only if n is prime.

Lemma 7.3.2. If n is prime, the algorithm returns PRIME.

Proof: When the input n is a prime, by Identity 7.2, we have that

(x− 1)n ≡ (xn − 1) (mod Q(x), n)
2The algorithm and its proof are based on a talk given by Manindra Agrawal

at the American Institute of Mathematics. The transcript is available at
http://www.aimath.org/WWN/primesinp/articles/html/41a/ .

112

holds for all Q(x) and hence our algorithm outputs PRIME as expected.

The converse of the above lemma requires somewhat more work. For the purpose of

subsequent analysis assume that n is a composite. We first observe that our algorithm

works correctly for very small n (≤ 20).

Lemma 7.3.3. For n ≤ 20, the algorithm above returns PRIME if and only if n is prime.

Proof: If n ≤ 20 then it holds that n ≤ 16(log n)5. For n that small, the degree of the

polynomial ((x−1)n− (xn−1)) is smaller than that of the largest quotienting polynomial

Q(x) and hence for such a Q(x),

(x− 1)n ≡ (xn − 1) (mod Q(x), n)

implies that

(x− 1)n ≡ (xn − 1) (mod n).

By Identity 7.2 this happens if and only if n is prime.

Having shown this, for the rest of the analysis we can assume that n > 16(log n)5.

Next we observe that n cannot have any small (� (log n)5) prime factors.

Lemma 7.3.4. If the algorithm outputs PRIME, then n does not have any prime factors

smaller than 16(log n)5.

Proof: Suppose if possible q ≤ 16(log n)5 divides n. Let r = 16(log n)5. Since the

algorithm returns PRIME, (picking a = b = 0) we must have:

(x− 1)n ≡ (xn − 1) (mod xr, n).

This happens if and only if

(−1)i

(
n

i

)
≡ 0 (mod n) ∀1 ≤ i < r.

Setting i := q, we get (
n

q

)
≡ 0 (mod n)

As in the proof of Identity 7.2 this cannot happen for if qa is the largest power of q which

divides n, then
(
n
q

)
is divisible by qa−1 but not by qa. Therefore

(
n
q

)
6≡ 0 (mod qa) which

implies
(
n
q

)
6≡ 0 (mod n), a contradiction.

Next we show that n must be square-free.

113

Lemma 7.3.5. If the algorithm outputs PRIME, then n must be square-free. 3

Proof: Suppose if possible that for some prime p, p2|n. Since the algorithm outputs

PRIME, we have

(x− 1)n ≡ (xn − 1) (mod xr − 1, n) ∀1 ≤ r ≤ 16(log n)5

Substituting xk for x in

(x− 1)n ≡ (xn − 1) (mod xr − 1, n),

we get

(xk − 1)n ≡ (xkn − 1) (mod xkr − 1, n).

But (xr − 1)|(xkr − 1) and so we have

(xk − 1)n ≡ (xkn − 1) (mod xr − 1, n).

Multiplying we get

r−1∏
k=1

(xk − 1)n ≡
r−1∏
k=1

(xkn − 1) (mod xr − 1, n),

so that

rn ≡ r(mod n) for all r ≤ 16(log n)5 (7.3)

Then by Lemma 7.3.4 we have p > 16(log n)5. So by equation 7.3, for all r ≤ 16(log n)5

we have:

rn−1 ≡1 (mod p2)

Also, since the group (Z/p2Z)∗ has order p(p− 1) we have

rp(p−1) ≡1 (mod p2)

And so

rgcd(n−1,p(p−1)) ≡ 1 (mod p2)

⇒ rp−1 ≡ 1 (mod p2)

3This lemma is based on a proof by Hendrik Lenstra Jr. showing that a number which passes Fermat’s
test for primality: an = a (mod n), for a few small values of a, has to be square-free.

114

Thus all the r’s between 1 and 16(log n)5 are roots of the polynomial (xp−1−1) ∈ Z/p2Z[x].

Now the polynomial xp−1 − 1 viewed over the field Z/pZ is squarefree and so by the well-

known Hensel lifting lemma, every root of (xp−1 − 1) in Z/pZ lifts to a unique root of

(xp−1 − 1) in Z/p2Z. Consequently it has exactly (p− 1) distinct roots in Z/p2Z.

Also observe that if r1 and r2 satisfy xp−1 ≡ 1 (mod p2) then so does their product

r1 · r2. This means that all the (16 log5 p)-smooth numbers are solutions of

xp−1 ≡ 1 (mod p2).

However, by the bound in [CEG83], there are more than p numbers smaller than p2 which

are (16 log5 p)-smooth. This gives us a contradiction. n must therefore be squarefree.

We will be needing the following simple fact about the lcm of first m numbers (cf.

[Nai82] for a proof).

Lemma 7.3.6. Let Lcm(m) denote the lcm of first m numbers. For m ≥ 8:

Lcm(m) ≥ 2m.

We next show the existence of a small r such that the order of n modulo r, or(n) is

large.

Lemma 7.3.7. There exist an r ≤ 16 log5 n such that gcd(n, r) = 1 and or(n) > 4 log2 n.

Proof. Let r1, r2, . . ., rt be all numbers coprime to n such that ori(n) ≤ 4 log2 n. Each of

these numbers must divide the product

4 log2 n∏
i=1

(ni − 1) < n16 log4 n = 216 log5 n.

By Lemma 7.3.6, the lcm of first 16 log5 n is at least 216 log5 n and moreover by lemma 7.3.4

they are all coprime to n. Therefore there must exist a number r ≤ 16 log5 n such that

gcd(r, n) = 1 and or(n) > 4 log2 n.

Since or(n) > 1, there must exist a prime divisor p of n such that or(p) > 1. Since

(n, r) = 1 (by lemma 7.3.4), p, n ∈ Z∗
r . Numbers p and r will be fixed in the remainder

of this section. Also, let ` = 8(log n)7/2.

115

For Q(x) of the form (x+a)r−1, the algorithm verifies ` equations. Since the algorithm

does not output COMPOSITE in this step, we have:

(x− 1)n = xn − 1 (mod (x+ a)r − 1, n)

Substituting (x− a) for x throughout we get

(x− a− 1)n = (x− a)n − 1 (mod xr − 1, n)

for every a, 1 ≤ a ≤ `. Via induction on a, this implies that

(x− a)n = (x)n − a (mod xr − 1, n)

for every a, 1 ≤ a ≤ `. This implies:

(x− a)n = xn − a (mod xr − 1, p) (7.4)

for 1 ≤ a ≤ `. By the Identity 7.2, we have:

(x− a)p = xp − a (mod xr − 1, p) (7.5)

for 1 ≤ a ≤ `. Thus n behaves like prime p in the above equation. We give a name to this

property:

Definition 7.3.8. For polynomial f(x) and number m ∈ N , we say that m is introspective

for f(x) if

[f(x)]m = f(xm) (mod xr − 1, p).

It is clear from equations (7.4) and (7.5) that both n and p are introspective for (x−a)
for 1 ≤ a ≤ `.

The following lemma shows that introspective numbers are closed under multiplication:

Lemma 7.3.9. If m and m′ are introspective numbers for f(x) then so is m ·m′.

Proof. Since m is introspective for f(x) we have:

[f(x)]m·m′
= [f(xm)]m

′
(mod xr − 1, p).

Also, since m′ is introspective for f(x), we have (after replacing x by xm in the equation):

[f(xm)]m
′

= f(xm·m′
) (mod xm·r − 1, p)

= f(xm·m′
) (mod xr − 1, p) (since xr − 1 divides xm·r − 1).

116

Putting togather the above two equations we get:

[f(x)]m·m′
= f(xm·m′

) (mod xr − 1, p).

For number m, the set of polynomials for which it is introspective is also closed under

multiplication:

Lemma 7.3.10. If m is introspective for f(x) and g(x) then it is also introspective for

f(x) · g(x).

Proof. We have:

[f(x) · g(x)]m = [f(x)]m · [g(x)]m

= f(xm) · g(xm) (mod xr − 1, p).

The above two lemmas togather imply that every number in the set I = {ni ·pj | i, j ≥
0} is introspective for every polynomials in the set P = {

∏`
a=1(x − a)ea | ea ≥ 0}. We

now define two groups based on these sets that will play a crucial role in the proof.

The first group is the set of all residues of numbers in I modulo r. This is a subgroup

of Z∗
r since, as already observed, (n, r) = (p, r) = 1. Let G be this group and |G| = t. G

is generated by n and p modulo r and since or(n) > 4 log2 n, t > 4 log2 n.

The second group is the set of all residues of polynomials in P modulo h(x) and p

where h(x) is an irreducible factor of xr−1
x−1 over Fp of degree > 1 (such an h will always

exist since or(p) > 1 by our choice of p). Let G be this group. This group is generated by

x− 1, x− 2, . . ., x− ` in the field F = Fp[x]/(h(x)) and is a subgroup of the multiplicative

group of Fp[x]/(h(x)).

If n is not a power of p then the size of G is effectively determined by the size of G as

shown by the lemmas below.

Lemma 7.3.11. |G| ≥ min{2t − 1, 2`}.

Proof. We show that any two distinct polynomials of degree less than t in P will map

to different elements in G. Let f(x) and g(x) be two such polynomials in P . Suppose

117

f(x) = g(x) in the field F. Let m ∈ I. We also have [f(x)]m = [g(x)]m in F. Since m is

introspective for both f and g, we get:

f(xm) = g(xm)

in F. This implies that xm is a root of the polynomial Q(y) = f(y)−g(y) for every m ∈ G.

Since the size of G is t there will be t distinct such roots of Q(y) in F. However, the degree

of polynomial Q(y) is less than t by the choice of f and g. This is a contradiction and

therefore, f(x) 6= g(x) in F.

If t ≤ ` then there exist at least 2t − 1 polynomials of degree less than t in P (all

subsets of first t (x− a)’s except the one containing all of them). And if t > ` then there

exist at least 2` such polynomials (all subsets of ` (x− a)’s).

Lemma 7.3.12. If n is not a power of p then |G| < n2
√

t. 4

Proof. Consider the following subset of I:

Î = {ni · pj | 0 ≤ i, j ≤
√
t}.

If n is not a power of p then the set Î has more than t distinct numbers. Since |G| = t, at

least two numbers in Î must be equal modulo r. Let these be m1 and m2 with m1 > m2.

So we have:

xm1 = xm2 (mod xr − 1).

Let f(x) ∈ P . Then,

[f(x)]m1 = f(xm1) (mod xr − 1, p)

= f(xm2) (mod xr − 1, p)

= [f(x)]m2 (mod xr − 1, p).

This implies

[f(x)]m1 = [f(x)]m2

in the field F. Therefore, f(x) ∈ G is a root of the polynomial Q′(Y) = Y m1 − Y m2 in the

field F.As f(x) is an arbitrary and non-zero element of G, we have that the polynomial

Q′(Y) has at least |G| distinct roots in F . The degree of Q′(Y) is m1 ≤ (np)
√

t < n2
√

t

(since n > p). This shows |G| < n2
√

t.
4This version of the proof is due to Adam Kalai, Amit Sahai and Madhu Sudan. It makes the proof for

both the upper and lower bounds for G similar.

118

Armed with the estimates on the size of G, we are now ready to prove the correctness

of the algorithm:

Lemma 7.3.13. If the algorithm returns PRIME then n is prime.

Proof. Suppose that the algorithm returns PRIME. Lemma 7.3.11 implies that for t = |G|
and ` = 2

√
φ(r) log n:

|G| ≥ min{2t − 1, 2`}

= min{2t − 1, n8(log n)5/2}

≥ min{2t − 1, n2
√

t} (since t < r ≤ 16(log n)5)

≥ min{22
√

t log n, n2
√

t} (since t > 4 log2 n)

≥ n2
√

t.

By Lemma 7.3.12, |G| < n2
√

t if n is not a power of p. Therefore, n = pk for some k > 0.

By lemma 7.3.5, n is squarefree. Therefore, k ≤ 1 and n = p.

This completes the proof of theorem.

7.4 Summary

In this chapter, we presented a variant of the deterministic primality test of [AKS04].

The running time of the algorithm even though polynomially bounded is larger than the

running time of [AKS04]. However the algorithm presented is a black-box derandomization

of its corresponding randomized algorithm.

Chapter 8

Conjectures and Open Problems

“ As long as a branch of science offers an abundance of problems, so long is it

alive; a lack of problems foreshadows extinction or the cessation of independent

development. Just as any human undertaking pursues certain objects, so also

mathematical research requires its problems. It is by the solution of problems

that the investigator tests the temper of his steel; he finds new methods and new

outlooks, and gains a wider and freer horizon.”

- David Hilbert, Mathematical Problems, ICM Paris, 1900.

8.1 Introduction

For the benefit of the interested researcher looking for some elegant (and approachable)

problems to work on, we note down some open problems in this chapter. The reader is also

referred to the open problems paper by Adleman and McCurley [AM94] for an excellent

collection of elegant, well-studied open problems in algorithmic number theory. We avoid

open-ended problems and in doing so, present some algorithmic problems as conjectures,

where appropriate. For the sake of clarity we chose to state a specific version of a problem

rather than a general one. For example questions about curves have natural generalizations

to arbitary dimensional varieties, questions for algebras have natural generalizations to

arbitary rings, complexity-theoretic questions over finite fields have natural recursion-

theoretic analogs over the field of rationals Q and conversely, questions and conjectures

over rationals have natural analogs for the rational function field Fp(y) over Fp and so on.

119

120

We begin with problems related to work presented in this thesis and then go on to

describe some other elegant problems in algorithmic number theory/algebra which are

open.

8.2 Identity testing

Recall from chapter 1 that the identity testing problem is the following: given a field F
and an arithmetic circuit C over F, determine if the polynomial computed by it is the

identically zero polynomial. Identity Testing is arguably the most important derandom-

ization problem. Several interesting special cases remain unresolved. These special cases

are obtained by placing appropriate restrictions on the input circuit C.

Case-1. Multilinear Formula Identity Testing: An arithmetic circuit C is said to be

a formula if the fanout of every gate is one. An arithmetic formula is said to be

multilinear if the polynomial computed by each gate of the formula is multilinear.

Open Problem. ([Raz04]): Devise a deterministic sub-exponential time algorithm

for identity testing of multilinear formulas.

Case-2. Identity Testing for Bounded Depth Circuits:

Open Problem. For a fixed d ≥ 3, devise a deterministic polynomial-time algo-

rithm for identity testing of arithmetic circuits of depth d.

In this connection we reproduce the following conjecture by Agrawal [Agr05] which if

true would derandomize bounded depth identity testing and would moreover imply

the strongest lower bound known yet.

Conjecture. [Agr05]: Let F be a field and C(x1, . . . , xn) be an arithmetic circuit

of size s and depth d computing a polynomial in n variables over F. Let r ≥ s4d be

a prime. Then C computes the identically zero polynomial over F if and only if

C(yk0
, yk1

, . . . , ykn−1
) = 0 (mod yr − 1) ∀k ∈ [r]

121

Remark. Agrawal [Agr05] shows that if the above conjecture is true it would

imply the following arithmetic circuit lower bound: for every ε > 0 there exists a

multilinear polynomial computable in E that cannot be computed by a nonuniform

family of arithmetic circuits with unbounded fanin addition gates of size sd−ε and

depth (d− ε) log s.

In this connection, we mention that the best arithmetic circuit lower bounds are

that of Karpinski and Grigoriev [GK98] which shows that for a fixed finite field Fp,

computing the determinant of an n× n matrix requires exponential size Fp-circuits.

For algebraically closed fields, we do not have lower bounds even for depth-3 circuits

and in particular the following problem is open.

Conjecture. Computing the determinant of an n×n matrix requires exponential

size C-circuits of depth three.

There is also a very interesting conjecture due to Dvir and Shpilka [DS05] regarding

the structure of ΣΠΣ identities.

Conjecture. (Dvir and Shpilka, [DS05]) Let C be a ΣΠΣ circuit over the field

C of complex numbers. We will call C to be minimal if no proper subset of the

multiplication gates of C sums to zero. We say that C is simple if there is no linear

function that appears in all the multiplication gates (up to a multiplicative constant).

Rank of C is the rank of the linear forms appearing in C. If C computes the the

identically zero polynomial then the rank of C can at most be linear in the fanin k

of the topmost addition gate.

8.3 Computing rational points on curves and varieties over

a finite field.

Open Problem: Given a finite field Fq and a bivariate polynomial f(x, y) ∈ Fq[x, y]

compute an Fq-rational point, if it exists, on the curve f(x, y) = 0 in deterministic

polynomial time.

Remark.

i. This problem has a natural generalization to higher dimensional varieties over finite

fields.

122

ii. This problem admits a random polynomial-time algorithm (cf. [dW06]).

iii. Adleman and McCurley [AM94] posed this problem for the particular case of elliptic

curves. Christiaan Van Der Woestijne [dW06] recently settled this for elliptic curves.

8.4 Quantified Formulae in bounded number of variables

over Fq

Understanding the structure of the solution space of a system of polynomial equations

over a finite field is a fundamental number-theoretic problem. In particular consider the

following general problem: Let Fq be a finite field and f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]

be a collection of m polynomials where for each polynomial the total degree is at most

d. Let Q1, Q2, · · · , Qn be some sequence of quantifiers, i.e. each Qi is either ”∃” or ”∀”.

Determine the truth value of the following statement:

Q1x1Q2x2 · · ·Qnxn such that f1(x1, · · · , xn) = · · · = fm(x1, · · · , xn) = 0?

It is easy to see that this problem is PSPACE-complete. We pose the following problem:

What is the computational complexity of this problem when the number n of variables

(and hence also the number of quantifiers) is bounded? In this dissertation, we saw that

if all the quantifiers are existential than the problem is in P . For concreteness, we state

the problem for n = 2 variables.

Open Problem: Given a finite field and a polynomial f(x, y) ∈ Fq[x, y] determine if the

following statement is true:

∀(y ∈ Fq) ∃(x ∈ Fq) f(x, y) = 0.

Remark.

i. The Chebotarev density theorem over finite fields implies that this problem admits

an algorithm with running time poly(dd log q), where d is the degree of f(x, y).

ii. We do not know even a randomized polynomial-time algorithm for this problem.

iii. This problem has a natural analog over the field Q of rational numbers. We make

the following conjecture which if true would immediately imply an efficient algorithm

over rationals.

123

Conjecture: For a polynomial f(x, y) ∈ Z[x, y] which is monic in x the statement

∀(y ∈ Q) ∃(x ∈ Q) f(x, y) = 0

is true if and only if f(x, y) has a factor which is linear in x.

8.5 F-algebra isomorphism.

Open Problem. Given two algebras R1 and R2 of dimension d over a finite field Fp,

determine if the two algebras are isomorphic.

Remark.

i. Saxena [Sax06] shows that Graph Isomorphism reduces to F-algebra isomorphism

which in turn reduces to Equivalence of Cubic Forms.

ii. When the two algebras constitute finite fields, Hendrik Lenstra [Len91] gives a

deterministic polynomial-time algorithm that explicitly computes the isomorphism

φ : R1 7→ R2.

iii. We do not know of an efficient algorithm even when the algebras are represented

verbosely by their addition and multiplication tables. That is, we do not know of an

algorithm with running time poly(pd).

iv. This problem has a natural analogue over the field Q of rational numbers. We make

the following conjecture which if true would immediately imply a decidable algorithm

over rationals.

Conjecture. Local-Global principle for Q-algebra isomorphism: Let R1 and

R2 be two algebras of dimension d over Q, the field of rational numbers. Then R1 is

isomorphic to R2 if and only if R1 ≡ R2 over the field of real numbers and R1 ≡ R2 over

the field Qp of p-adic numbers for every prime p.

8.6 Recognizing Perfect Numbers.

We begin with the definition of perfect numbers. A positive integer n is said to be a perfect

number if the sum of all the divisors of n equals 2n. For example, the integers 6 and 28

are perfect numbers.

124

Open Problem. Devise a deterministic polynomial-time algorithm to determine if an

input number n is a perfect number or not.

Remark.

i. Bach, Miller and Shallit [BMS86] give a randomized polynomial time algorithm for

this problem.

ii. There is an old conjecture known as the odd perfect number conjecture which

asserts that there are no odd perfect numbers (cf. [Bur89, Hea94, Pom73]). If the

conjecture is correct, then the known classification (cf. [Bur89]) of even perfect

numbers together with our deterministic primality test gives an efficient algorithm

for recognizing perfect numbers.

8.7 Comparing two sums of square roots.

Open Problem. Is there a polynomial-time algorithm which on input two sets of non-

negative integers {a1, a2, . . . , an} and {b1, b2, . . . , bn} determines if∑
i∈[n]

√
ai ≥

∑
j∈[n]

√
bj ?

It is conjectured [ORo81] that if the input description requires s bits then Θ(s2) bits

of precision should suffice. That is if∑
i∈[n]

√
ai >

∑
j∈[n]

√
bj

then ∑
i∈[n]

√
ai −

∑
j∈[n]

√
bj > 2−Θ(s2),

where s =
∑

i(1 + dlog aie) +
∑

j(1 + dlog bje). It is easy to see that the above conjecture,

if true, would immediately give a polynomial-time algorithm for comparing two sums of

square roots.

Appendix A

Reduction of GI to Ring

Isomorphism

In this appendix we reproduce the construction of Saxena [Sax06] which reduces Graph

Isomorphism to isomorphism testing of local Fp-algebras. The construction works for any

p ≥ 5. For concreteness we set p = 5.

Let G be an undirected graph with n vertices and no self loops. The construc-

tion gives a local commutative F5-algebra. They associate variables to each vertex (x-

variable) and capture the “connectivity” of the graph by defining the edges-polynomial –∑
(u,v) is an edge xuxv – as zero in the ring.

Define the following commutative F5-algebra:

R(G) := F5[x1, . . . , xn]/I

where, ideal I has the following relations:

Case-1. x’s are nilpotents of degree 2, i.e., for all i ∈ [n]: x2
i = 0.

Case-2. the edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

xixj = 0.

Case-3. all cubic terms are zero, i.e., for all i, j, k ∈ [n] : xixjxk = 0.

Suppose (i0, j0) is an edge in G such that 1 ≤ i0 < j0 ≤ n. Then the additive structure

of the ring is:

(R(G),+) = F5 · 1⊕
⊕
i∈[n]

F5 · xi ⊕
⊕

i<j∈[n]
(i,j) 6=(i0,j0)

F5 · (xixj)

125

126

Thus, the dimension of the ring over F5 is
(
n+1

2

)
. Multiplication satisfies the associative

law simply because the product of any three variables (in any order) is zero. Also, R(G)

is a local commutative F5-algebra.

Observe that if G1
∼= G2 then any graph isomorphism φ induces a natural isomorphism

between rings R(G1) and R(G2). So we only have to prove the converse:

Lemma A.0.1. Let G and G′ be two undirected graphs having no self-loops. Further,

assume that graphs G and G′ are not a disjoint union of a clique and a set of isolated

vertices. Then, R(G) ∼= R(G′) implies G ∼= G′.

Proof. Suppose φ is an isomorphism from R(G)→ R(G′). Let

φ(xi) = ci,0 + ci,1x1 + . . .+ ci,nxn + (quadratic terms). (A.1)

where all ci,j ’s in the coefficients are in F.

By squaring the above we get:

0 = φ(x2
i) = φ(xi)2 = c2i,0 + (linear and quadratic terms)

which means that ci,0 = 0. The next observation about φ is that there is at most one

nonzero linear term in φ(xi). Let Ci = {j ∈ [n] | ci,j 6= 0} be of size > 1. Then φ(xi)2 = 0

gives: ∑
j<k∈Ci

(2ci,jci,k)xjxk = 0 in R(G′)

We know that in R(G′) the quadratic relations are x2
i = 0 and

∑
1≤i<j≤n

(i,j)∈E(G′)

xixj = 0. This

means that the above equation holds only if there is a λ ∈ F:∑
1≤j<k≤n

j,k∈Ci

(2ci,jci,k)xjxk = λ ·
∑

1≤i<j≤n
(i,j)∈E(G′)

xixj = 0

This equality interpreted in graph terms means that G′ is a union of a clique on Ci and a

set of (n −#Ci) isolated vertices (remember that 2 6= 0 in F). This we ruled out in the

hypothesis, thus size of Ci ≤ 1. If #Ci = 0 then for any j, φ(xixj) = 0 which contradicts

the assumption that φ is an isomorphism. Thus, for all i ∈ [n], #Ci = 1. Define a map

π : [n]→ [n] such that the nonzero linear term occurring in φ(xi) is xπ(i).

Suppose π is not a permutation on [n] then there are i 6= j such that π(i) = π(j). But

then there will exist a, b ∈ F∗ such that there is no nonzero linear term in φ(axi + bxj).

127

Whence, we get that φ(axixk +bxjxk) = 0 for all k ∈ [n] which contradicts the assumption

that φ is an isomorphism. Hence, π is a permutation on [n]. Now look at the action of φ

on the edges-polynomial:

0 = φ

 ∑
1≤i<j≤n
(i,j)∈E(G)

xixj


=

∑
1≤i<j≤n
(i,j)∈E(G)

φ(xi)φ(xj)

=
∑

1≤i<j≤n
(i,j)∈E(G)

ci,π(i)cj,π(j)xπ(i)xπ(j)

Since the above is a zero relation in the ring R(G′), we get that the polynomial∑
1≤i<j≤n

(i,j)∈E(G′)

xixj

divides the above. Hence, (π(i), π(j)) ∈ E(G′) if (i, j) ∈ E(G).

By symmetry this shows that π is an isomorphism from G→ G′.

References

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via

chinese remaindering. JACM: Journal of the ACM, 50, 2003.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In

R. Ramanujam and Sandeep Sen, editors, FSTTCS 2005: Foundations of Software

Technology and Theoretical Computer Science, 25th International Conference,

Hyderabad, India, December 15-18, 2005, Proceedings, volume 3821 of Lecture

Notes in Computer Science, pages 92–105. Springer, 2005.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of

Mathematics, 160(2):781–793, 2004.

[AM94] Adleman and McCurley. Open problems in number theoretic complexity, II. In

ANTS: 1st International Algorithmic Number Theory Symposium (ANTS), 1994.

[BD66] Enrico Bombieri and H. Davenport. On two problems of mordell. American

Journal of Mathematics, 88:61–70, 1966.

[Ber67] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System technical

Journal, 46:1853, 1967.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of

Computation, 24(111):713–735, July 1970.

[BGry] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search.

SIAM J. Comput., 23(1):97–119, 1994, February.

[BMS86] Bach, Miller, and Shallit. Sums of divisors, perfect numbers and factoring.

SICOMP: SIAM Journal on Computing, 15, 1986.

128

129

[BS84] Laszlo Babai and Endre Szemerédi. On the complexity of matrix group problems.

In Proceedings of the 25th Symposium on Foundations of Computer Science

(FOCS), pages 229–240. IEEE Computer Society Press, 1984.

[Bur89] D. M. Burton. Elementary Number Theory. Allyn and Bacon, 4th edition, 1989.

[CEG83] E. R. Canfield, Paul Erdos, and Andrew Granville. On a problem of oppenhein

concerning factorisatio numerorum. Journal of Number Theory, 17:1–28, 1983.

[CK00] Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational

numbers. SIAM J. Comput., 29(4):1247–1256, 2000.

[CM03] A. Cafure and G. Matera. Explicit estimates for the number of solutions of

polynomial equation systems over finite fields, February 04 2003.

[CM04] Antonio Cafure and Guillermo Matera. Improved explicit estimates on the number

of solutions of equations over a finite field, May 14 2004. Comment: 33 pages.

[Coh70] S. D. Cohen. The distribution of polynomials over finite fields. Acta Arithmetica,

17:255–271, 1970.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing, pages 151–158, New

York, 1971.

[CZ81] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over

finite fields. Mathematics of Computation, 36(154):587–592, 1981.

[DL63] H. Davenport and D.J. Lewis. Notes on congruences (i). Quaterly Journal of

Mathematics Oxford, 14:51–60, 1963.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and

polynomial identity testing for depth 3 circuits. In STOC, pages 592–601, 2005.

[dW06] Christiaan Van de Woestijne. Deterministic equation solving over finite fields.

PhD thesis, Universiteit Leiden, 2006.

[Gat89] Joachim Von Zur Gathen. Testing permutation polynomials (extended abstract).

In FOCS, pages 88–92. IEEE, 1989.

130

[Gat91] Joachim Von Zur Gathen. Tests for permutation polynomials. SIAM Journal on

Computing, 20(3):591–602, June 1991.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3

arithmetic circuits. In STOC, pages 577–582, 1998.

[GKL04] Shuhong Gao, Erich Kaltofen, and Alan G. B. Lauder. Deterministic distinct-

degree factorization of polynomials over finite fields. Journal of Symbolic

Computation, 38(6):1461–1470, December 2004.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon

and algebraic-geometry codes. IEEE Transactions on Information Theory,

45(6):1757–1767, 1999.

[Gur01] 1976-Venkatesan Guruswami. List decoding of error-correcting codes. PhD

thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and

Computer Science, 2001.

[Hay67] D. R. Hayes. A geometric approach to permutation polynomials over a finite field.

Duke Mathematics Journal, 34:293–305, 1967.

[Hea94] D. R. HeathBrown. Odd perfect numbers. Math. Proc. Cambridge Philos. Soc.,

115:191–196, 1994.

[Her75] I. N. Herstein. Topics in Algebra. John Wiley & Sons, New York, 2nd edition,

1975.

[HW96] Ming-Deh Huang and Yiu-Chung Wong. Solving systems of polynomial congru-

ences modulo a large prime (extended abstract). In 37th Annual Symposium on

Foundations of Computer Science, pages 115–124, Burlington, Vermont, 14–16

October 1996. IEEE.

[HW99] Ming-Deh A. Huang and Yiu-Chung Wong. Solvability of systems of polynomial

congruences modulo a large prime. Computational Complexity, 8(3):227–257,

1999.

[HW00] Huang and Wong. Extended hilbert irreducibility and its applications. ALGO-

RITHMS: Journal of Algorithms, 37, 2000.

131

[IK03] Impagliazzo and Kabanets. Derandomizing polynomial identity tests means

proving circuit lower bounds. In STOC: ACM Symposium on Theory of

Computing (STOC), 2003.

[IW97] Impagliazzo and Wigderson. P = BPP if E requires exponential circuits:

Derandomizing the XOR lemma. In STOC: ACM Symposium on Theory of

Computing (STOC), 1997.

[Kal82] Erich Kaltofen. A polynomial-time reduction from bivariate to univariate integral

polynomial factorization. In FOCS, pages 57–64, Chicago, Illinois, 3-5 November

1982. IEEE.

[Kal85] E. Kaltofen. Fast parallel absolute irreducibility testing. JSC, 1(1):57–67, March

1985.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Complexity of

Computer Computations, pages 85–103. Plenum Press, NY, 1972.

[Kay05] Kayal. Solvability of a system of bivariate polynomial equations over a finite

field. In ICALP: Annual International Colloquium on Automata, Languages and

Programming, 2005.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity

tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1–

46, 2004.

[Kla89] Andrew Klapper. Generalized lowness and highness and probabilistic complexity

classes. Mathematical Systems Theory, 22(1):37–45, 1989.

[Knu81] D. Knuth. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. Addison-Wesley, Reading, MA., 1981.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of

multivariate polynomials. In STOC, pages 216–223, 2001.

[KS05] Neeraj Kayal and Nitin Saxena. On the ring isomorphism and automorphism

problems. In IEEE Conference on Computational Complexity, pages 2–12. IEEE

Computer Society, 2005.

132

[KS06] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits.

In Proceedings of the twenty-first Annual IEEE Conference on Computational

Complexity (CCC), 2006.

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem.

Birkhäuser, 1993.

[Lan94] S. Lang. Algebra. Reading (MA): Addison-Wesley, 3. edition, 1994.

[Len91] H. W. Lenstra, Jr. Finding isomorphisms between finite fields. Mathematics of

Computation, 56(193):329–347, January 1991.

[Len04] Hendrik Lenstra. On rigid non-commutative rings. Private communication, 2004.

[LLL82] Lenstra, Lenstra, and Lovasz. Factoring polynomials with rational coefficients.

MATHANN: Mathematische Annalen, 261, 1982.

[LM83] Lidl and Muller. Permutation polynomials in RSA-cryptosystems. In CRYPTO:

Proceedings of Crypto, 1983.

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their

applications. Cambridge University Press, Cambridge, 1994.

[LV98] Daniel Lewin and Salil P. Vadhan. Checking polynomial identities over any field:

Towards a derandomization? In STOC, pages 438–447, 1998.

[Mac67] C. R. MacCluer. On a conjecture of davenport and lewis concerning exceptional

polynomials. Acta Arithmetica, 12:289–299, 1967.

[McD74] Bernard R. McDonald. Finite Rings with Identity. Marcel Dekker Inc., 1974.

[MG95] Ma and Von Zur Gathen. The computational complexity of recognizing

permutation functions. CMPCMPL: Computational Complexity, 5, 1995.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer

and System Sciences, 13(3):300–317, December 1976.

[Nai82] M. Nair. On chebyshev-type inequalities for primes. American Mathematical

Monthly, 89:126–129, 1982.

133

[ORo81] Joseph ORourke. Advanced problem 6369. American Mathematical Monthly,

88(10):769, 1981.

[Pom73] Carl Pomerance. Odd perfect numbers are divisible by at least seven distinct

primes. Acta Arithmetica, 25:265–300, 1973.

[Poo02] Bjorn Poonen. Computing rational points on curves. In M.A. Bennett et al,

editor, Number Theory For The Millenium III, pages 149–172, 2002.

[Pud94] Pavel Pudlák. Communication in bounded depth circuits. Combinatorica,

14(2):203–216, 1994.

[Raz04] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. In Proceedings of the thirty-sixth annual ACM Symposium on

Theory of Computing (STOC-04), pages 633–641, New York, June 13–15 2004.

ACM Press.

[Rei05] Omer Reingold. Undirected ST-connectivity in log-space. In Harold N. Gabow

and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on

Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 376–385.

ACM, 2005.

[RS01] Ran Raz and Amir Shpilka. Lower bounds for matrix product, in bounded depth

circuits with arbitrary gates. In STOC, pages 409–418, 2001.

[RS04] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-

commutative models. In IEEE Conference on Computational Complexity, pages

215–222, 2004.

[Sax06] Nitin Saxena. Automorphisms of rings and applications to complexity of problems.

PhD thesis, Indian Institute of Technology, Kanpur, 2006.

[Sch74] Wolfgang M. Schmidt. A lower bound for the number of solutions of equations

over finite fields. Journal of Number Theory, 6:448–480, 1974.

[Sch79] Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial

identities (invited). In EUROSAM, pages 200–215, 1979.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. J. ACM, 27(4):701–717, 1980.

134

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer

and System Sciences, 37(3):312–323, December 1988.

[Sha94] Igor R. Shafarevich. Basic algebraic geometry 1. Varieties in projective space.

Springer-Verlag, Berlin-Heidelberg-New York, 1994.

[Shp92] Shparlinski. A deterministic test for permutation polynomials. CMPCMPL:

Computational Complexity, 2, 1992.

[SW99] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic formulae over fields of

characteristic zero. In IEEE Conference on Computational Complexity, pages

87–, 1999.

[Wil68] K. S. Williams. On exceptional polynomials. Canadian Mathematical Bulletin,

11:279–282, 1968.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC ’79: Proc.

Int’l. Symp. on Symbolic and Algebraic Computation, Lecture Notes in Computer

Science, Vol. 72. Springer-Verlag, 1979. Zippel discusses probabilistic methods for

testing polynomial identities and properties of systems of polynomials.

Index

absolute irreducibility, 63

Additive generator, 11

Additive group, 8

Algebraic set, 85

decomposition, 94

algorithm

randomized, 1

Arithmetic Circuit, 48

birational

equivalence, 87

hypersurface, 87

black box, see derandomization

Chinese Remaindering, 52

circuit

of depth 3, 48

closed set, 85

dimension, 86

reducible, 86

Complexity Class

NP, 18

Complexity class, 12

AM, 13

Arthur, 13

Merlin, 13

prover, 13

verifier, 13

BPP, 1, 2

coNP, 13

fnAM, 15

fnNP, 15

FP, 15

intermediate, 15

low for, 15

NP, 12

PH, 14

collapse of, 15

Πk, 16

Σk, 14

ZPP, 16

Composition series, 7

cRA, 31

derandomization, 2

black box, 108

identity testing, 61, 108, 120

dimension, 86

uniform dimensional set, 86

Gauus lemma, 53

Graph isomorphism, 4, 29

Group, 6

GroupRA, 4, 19

lower bound, 21

upper bound, 30, 35

Groups, 6

Sylow subgroups, 7

135

136

Hensel lifting lemma, 12

Homomorphism

Representation of, 11

hypersurface, 86

intersection, 101

Ideal, 8

multiplication, 8

product, 8

radical of, 90

Identity testing, 4, 47, 48

open problems, 120

Integer factoring, 4

introspective number, 115

properties, 115

Lagrange’s Theorem, 7

Language, 12

leading coefficient, 50

leading monomial, 50

linear form, 53

map

birational, 87

Multiplicative group, 8

Oracle, 14

perfect number, 123

Permutation function, 83

polynomial

absolutely irreducible, 63

conjugacy, 67

coprimality, 71

nice, 66, 69

permutation, 83

sits above, 70

Polynomial factoring, 3, 62

uniform factoring, 64

Primality testing, 4

primality testing

deterministic algorithm, 111

randomized algorithm, 108

Primitive element theorem, 99, 101

primitive element theorem, 88

R∗, 8

RA, 18

algorithm, 41

#RA, 31

upper bound, 33

randomness, 1

rational map, 87

rational point, 81

computing, 121

Reducibility

many-one, 16

Turing, 16

Ring, 7

Basis representation, 11

decomposition, 23

homomorphism, 52

indecomposable, 9

isomorphism, 27

local, 9

Local ring, 8

local ring, 52

rigid, 37

ring of fractions, 53

structure theorem, 10

137

Ring Automorphism, 4

computing, 44

SAT, 13

singular

point, 86

subset, 86

Solvability, 3, 80

algorithm, 91

problem definition, 81, 82

Structure theorem

commutative rings, 9

groups, 7

total degree, 90

variety, 86

Weil theorem, 80, 84, 103

