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Abstract. We demonstrate shape analyses that can achieve a state space reduc-
tion exponential in the number of threads compared to the state-of-the-art analy-
ses, while retaining sufficient precision to verify sophisticated properties such as
linearizability. The key idea is to abstract the global heap by decomposing it into
(not necessarily disjoint) subheaps, abstracting away some correlations between
them. These new shape analyses are instances of an analysis framework based on
heap decomposition. This framework allows rapid prototyping of complex static
analyses by providing efficient abstract transformers given user-specified decom-
position schemes. Initial experiments confirm the value of heap decomposition in
scaling concurrent shape analyses.

1 Introduction

The problem of verifying concurrent programs that manipulate heap-allocated data
structures is challenging: it requires considering arbitrarily interleaved threads manipu-
lating unbounded data structures. Both heap-allocated data structures and concurrency
can introduce state explosion. Their combination only makes matters worse. This paper
develops new static analysis algorithms that address the state space explosion problem
in a systematic and generic way. The result of these analyses can be used to automati-
cally establish interesting properties of concurrent heap-manipulating programs such as
the absence of null dereferences, the absence of memory leaks, the preservation of data
structure invariants, and linearizability [7].

The Intuition. Typical programs manipulate a large number of (instances of) data
structures (possibly nested within other data structures). Each individual data structure
can usually be in one of several different states (even in an abstract representation). This
can lead to a combinatorial explosion in the number of distinct abstract states that can
arise during abstract interpretation.

The essential idea we pursue is that of decomposing the heap into multiple subheaps
and abstracting away some correlations between the subheaps. Decomposition allows
reusing subheaps that were decomposed from different heaps, thus representing a set of
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heaps more compactly (and more abstractly). For example, consider a program main-
taining k disjoint lists. A powerset-based shape analysis such as the one in [14] uses
a lattice whose height is exponential in k. An abstraction that ignores the correlations
between the k lists reduces the lattice height to be linear in k, leading to exponentially
faster analysis. (The savings come from not maintaining the correlations between dif-
ferent states of the different lists, which we observe are often irrelevant for a specific
property of interest.) Similar situations arise in the kind of multithreaded programs dis-
cussed earlier, where the size of the state space is a function of the number of threads
rather than the number of data structures. In this paper, we allow decomposing the heap
into non-disjoint (i.e., overlapping) subheaps, which is important for handling programs
with fine-grained concurrency (where different threads can simultaneously access the
same objects) in a thread-modular way.

Fine-Grained Concurrency. Fine-grained concurrent heap-manipulating programs al-
low multiple threads to use the same data structure simultaneously. They trade the sim-
plicity of the single-thread-owning-a-data-structure model, which is at the heart of the
coarse-grained concurrency approach, to achieve a higher degree of concurrency. How-
ever, the additional performance comes with a price: these programs are notoriously
hard to develop and prove correct, even when the manipulated data structures are singly-
linked lists (see, e.g., [3]).

It is hard to employ thread-modular approaches that exploit locking [5] to ana-
lyze fine-grained concurrent programs because they have intentional (benign) data-
races. Thus, state-of-the-art shape analyses capable of verifying intricate properties of
fine-grained concurrent heap-manipulating programs, e.g., linearizability (explained in
Sec. 3), track all correlations between the states of all the threads [1]. This makes these
analyses hard to scale. For example, the shape analysis in [1] handles at most 3 threads.

It is interesting to observe, however, that it is often the case that although proving
properties of these programs requires tracking sophisticated correlations between every
thread and the part of the heap that it manipulates, the correlations between the states of
different threads is often irrelevant. Intuitively, this is because fine-grained concurrent
programs are often written in a way which attempts to ensure the correct operation
of every thread regardless of the actions taken by other threads. This programming
paradigm makes these programs an ideal match with our approach explained below.

The Conceptual Framework. To permit the use of heap decomposition in several
settings, we first present it as a parametric abstraction that can be tuned by the analysis
designer in three ways:

Decomposition: Specify along what lines a concrete heap should be decomposed
into (possibly overlapping) subheaps. One of the strengths of the specification mech-
anism is that the decomposition of a heap depends on its properties. This allows us,
for example, to decompose the state of a concurrent program based on the association
between threads and data-structures in that state, which is usually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from concrete
subheaps (which are unbounded). Subheap abstractions can be obtained from existing
whole-heap abstractions that satisfy certain properties.

Combiner Sets: The framework is parametric with respect to transformers. Com-
puting sound and precise transformers for statements is quite challenging with a heap
decomposition. Transforming each subheap independently can end up being very
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imprecise (or potentially incorrect, if not done carefully), especially when subheaps
overlap. At the other extreme, combining subheaps together into a full heap prior to
transforming it can be very inefficient and defeats the purpose of using heap decom-
position. Achieving the desired precision and efficiency, without compromising sound-
ness, can be tricky. Our framework allows the analysis designer to specify only which
subheaps should be combined together for a given transformer, called combiner sets.
The framework automatically generates a corresponding sound transformer, letting the
analysis designer easily explore alternatives without worrying about soundness.

HeDec. We implemented our conceptual framework for the family of canonical ab-
stractions [14] in a system called HeDec (for Heap Decomposition), which is publicly
available. This implementation retains the parametricity of the conceptual framework,
which allows analysis designers to rapidly prototype different shape analysis algorithms
by defining heap decomposition schemes.

Instances of the Framework. We have used our framework to develop several shape
analyses, including the following, and have implemented these analyses in HeDec.

(a) A shape analysis for sequential programs manipulating singly-linked lists that
abstracts away the correlations between disjoint lists . The resultant shape analysis al-
gorithm emulates the algorithm of [9], with some interpretative overhead. Unlike the
tedious proof of soundness of [9], the soundness of this instance immediately follows
from the soundness of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manipulating singly-linked lists
and trees by abstracting away the correlations between segments which do not contain
an element pointed-to by a variable. We confirmed that it is precise enough to prove
memory safety and preservation of data-structure invariants. This is encouraging for
scaling shape analysis for programs with densely connected heaps.

(c) A shape analysis for fine-grained concurrent programs with a bounded number
of threads which is precise enough to prove memory safety and preservation of data-
structure invariants. Here, we obtain exponential speed-up in terms of time and space,
in comparison to similar whole-heap analysis without decomposition. Our algorithm
goes beyond [5] by supporting fine-grained concurrency and handling programs with
intentional data races.

(d) A shape analysis algorithm for concurrent programs with a bounded number of
threads that manipulate singly-linked lists, which proves linearizability. The resultant
algorithm is exponentially faster than the one in [1], being polynomial in the number
of threads. Our initial empirical results confirm that our algorithm is able to prove lin-
earizability with 20 threads, ten times more than in [1].

Main Results. The contributions of this paper can be summarized as follows:
1. We present a generic analysis framework (in an abstract interpretation setting) for

exploiting state decomposition effectively. The main technical contributions are in
introducing a family of sound abstract transformers that admit flexibly exploring
the efficiency/precision spectrum.

2. We propose scalable analyses for several interesting problems involving coarse-
grained as well as fine-grained concurrency, including proving linearizability.
These algorithms scale much better (e.g., polynomially) over the number of threads
than the previous algorithms for these problems.
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3. The implementation of the framework for canonical abstraction is publicly avail-
able, together with the above mentioned analyses, as well as other benchmarks,
which show the benefit of the approach.

Outline of the Paper. In Sec. 2, we demonstrate heap decomposition for fine-grained
concurrent programs. In Sec. 3, we describe an analysis based on heap decomposition
for proving linearizability of non-blocking data structures. In Sec. 4 we present the
technical details of our abstract domain and its transformers. In Sec. 5 we report on our
experiments with HeDec. In Sec. 6, we discuss related work, and in Sec. 7, we conclude
the paper.

An accompanying technical report [10] contains proofs and further details.

2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for performing shape analysis of
fine-grained concurrent programs and show that HeDec can be used to automatically
obtain shape analysis implementations that are precise enough to prove the desired
properties of programs (the absence of null pointer dereferences, absence of memory
leaks, and data structure invariants) while scaling up to a large number of threads. The
material in this section is presented informally, deferring formal definitions and techni-
cal details to Sec. 4.

2.1 Decomposing Non-blocking Implementations

A Running Example. Fig. 1 shows a simple running example of a non-blocking stack
implementation from [15]. Producers push elements onto the stack by allocating an
element, copying the current global pointer to the top of the stack, connecting the new
element to that copied top, and then using CAS (Compare And Swap) to atomically
check that the top of the stack has not changed and replace it with the new element.
Consumers pop elements from the stack by copying the current global pointer to top
and recording its next element and then using CAS to atomically check that the top

#define EMPTY -1
typedef int data type;
typedef struct node t {

data type d;
struct node t *n

} Node;
typedef struct stack t {

struct node t *Top;
} Stack;

[1] void push(Stack *S, data type v){
[2] Node *x = alloc(sizeof(Node));
[3] x->d = v;
[4] do {
[5] Node *t = S->Top;
[6] x->n = t;
[7] } while (!CAS(&S->Top,t,x));
[8] }

[9] data type pop(Stack *S){
[10] do {
[11] Node *t = S->Top;
[12] if (t == NULL)
[13] return EMPTY;
[14] Node *s = t->n;
[15] data type r = t->d;
[16] } while (!CAS(&S->Top,t,s));
[17] return r;
[18] }

Fig. 1. A non-blocking stack implementation
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of the stack has not changed and replace it with the new top, i.e., the recorded next
element. In both cases, a failed CAS results in a restart.

The goal here is to prove the absence of null pointer dereferences, absence of mem-
ory leaks, and the preservation of data structure invariants, i.e., that stack points to an
acyclic list.

Concrete Execution. Fig. 2(a) shows an example of two states occurring in the non-
blocking implementation shown in Fig. 1; for now ignore the corr annotations (which is
used by the linearizability analysis in the next section). The figure shows two consumer
threads and two producer threads. Both cons1 and prod1 can succeed with the CAS
if they are the next threads to be scheduled. Concrete states are depicted by graphs.
To avoid clutter the data field is not shown. Hexagonal nodes denote thread objects
and square nodes denote list elements. The program label of every thread is written
inside the hexagon. Edges from text labels to nodes correspond to global pointers (Top).
Labeled edges from thread nodes to list nodes denote thread-local pointer variables (t
and x). Edges between list nodes, labeled by n correspond to the next field of the list.

Exponential State Space. There are several sources of exponential explosion in the
state space exploration of the stack algorithm. The first one is the correlation between
the program locations of the different threads. The second source is the next pointers of
the just allocated elements. The stack can grow after the next pointer has already been
set, but before the CAS, thus the next pointers of the different producers can point to
all possible stack elements and have all possible aliasing between each other. The third
source of state-space explosion is the recorded next pointer of the consumer threads.
Note that the state space explosion occurs even if the list has a bounded number of ele-
ments. This is a general problem when maintaining correlations between the properties
of different threads. Exponential blow-ups also occur in sequential programs because
of aliasing. However, for the purpose of our analysis, these correlations are unimportant
and tracking them is pointless and only reduces the efficiency of the analysis.

Heap Decomposition Abstraction. We reduce the size of the state space by decompos-
ing the heap into a set (or tuple) of subheaps and abstractly interpreting the program
over the subheaps.

For each subheap to be used in the decomposition, a user of HeDec specifies the part
of the heap it should include. This is done by defining a location selection predicate,
which specifies the subset of the nodes in the state for which abstract properties (such as
aliasing, heap-reachability, etc.) are maintained. For each location selection predicate,
the program state is projected onto the nodes satisfying that predicate, thus obtaining a
substate of the original state. We refer to the domain of substates pertaining to a location
selection predicate pt as the subdomain of pt.

The Decomposition Scheme. For the purpose of our analysis, we define for each thread
t the location selection predicate pt[t] that holds for: (a) the thread object of t, (b) the
objects pointed-to by its local variables (t and x), and (c) the objects pointed-to by the
global variables (Top). In addition, we define the location selection predicate Globals,
which holds for the objects reachable from global variables.

Fig. 2(b) shows the result of applying the decomposition scheme explained above
to the states in Fig. 2(a). Notice that different location selection predicates may
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Fig. 2. (a) Two concrete states in the non-blocking stack implementation shown in Fig. 1; and (b)
The decomposed states abstracting the full states in (a). The names of the sub-domains appear
above the substates.

occasionally overlap. For example, in the decomposition explained above, the objects
reachable from the global variables appear in each subheap.

Intuitively, the meaning of a substate M , decomposed by a location selection predi-
cate p(v), is the set of all full states that contain M and any disjoint substate M ′, such
that the objects in M satisfy p(v) and the objects in M ′ do not satisfy p(v). A sequence
of sets of substates {M1, M5}×{M2, M6}×{M3, M7}×{M4, M8}×{M9} represents
the set of full states obtained by choosing one structure from each subdomain and inter-
secting their meanings. For example, composing the substates {M1, M2, M3, M4, M9}
together yields S1 and composing the substates {M5, M6, M7, M8, M9} together yields
S2. The loss of precision by the abstraction can be observed by the fact that other com-
positions, such as {M1, M6, M7, M8, M9} yield full states other than S1 and S2.

State Space Savings. In general, for n threads, if the set of objects reachable from a
thread is bounded, then the number of substates resulting from the reachability-based
decomposition is linear in n (even though the number of full states generated by the
program is exponential in n). Although we do not show the state space reduction in
the figures, one can imagine how running the program with n threads generates states
similar to the ones in Fig. 2(a). By permuting the thread ids between producers threads
and between consumer threads, we obtain an exponential number of full states that are
all reachable by the program execution. Decomposing these states results in a number
of substates that is linear in n.
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Transformers. HeDec is guaranteed to be sound, in the sense that when the analysis
terminates all reachable concrete states are represented by some abstract state.

While the abstraction ignores correlations between substates, transforming substates
in isolation using an “independent-attribute” style of analysis [13] leads to debilitating
loss of precision. For example, the analysis executes the statement 6: x->n=t where
thread prod1 is scheduled. Substate M3 does not contain information about the local
variables of thread prod1. Therefore, M3 also represents a state Sbad in which the local
variables t and x of thread prod1 point to the first cell and to the last cell of the list,
respectively. Thus, a conservative transformer of 6: x->n=t must emit a warning
about a possible creation of a cyclic list.

To avoid this kind of loss of precision, a user of HeDec can specify which substates,
obtained from different location selection predicates, should be (temporarily) com-
posed by the transformer. This is done in terms of combiner sets, which are subsets of
node selection predicates. In this example, for the transformer of 6: x->n=t, we can
specify the combiner sets {pt[prod1], pt[prod2]}, {pt[prod1], pt[cons1]}, {pt[prod1],
pt[cons2]}, and {pt[prod1], pt[Globals]}. Then, the generated transformer composes,
separately, the substates {M1, M5} with each of the sets of substates {M2, M6}, {M3,
M7}, {M4, M8}, and {M9}. For the substates composed with M5 (which is the only
substate in the prod1-subdomain that can execute 6: x->n=t) the transformer up-
dates the n field appropriately, avoiding the false alarm. Finally, the transformer de-
composes the substates again into each one of the subdomains. The resulting abstract
substates are the same as in Fig. 2, except that M5 has an n-link between the object
pointed-to by t and the object pointed-to by x and its program counter is 7.

This example shows how, by combining a small number (linear in the number of
location selection predicates, in this case) of substates decomposed by different pred-
icates, the transformer is able to increase precision without incurring an unreasonable
time/space blow-up.

A Methodology for Combiner Sets. We now briefly discuss the issue of choosing
combiner sets for a transformer (which is done by the analysis designer in our frame-
work). Every transformer can be thought of as having a frame as well as a footprint.
The frame identifies the part of a program state that is completely irrelevant to the
transformer. Thus, it contains no information that is either used or modified by the trans-
former. The footprint is the complement and contains adequate information to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of an operation affecting
several subdomains is combining all the affected subdomains. Unfortunately, this ap-
proach might be too expensive. We apply a more efficient approach, which according
to our experience is precise enough. Specifically, for each operation we choose a set of
core subdomains which contain the heap objects and variables that participate in the op-
eration. We compute the core footprint by combining the core subdomains (in practice,
there are usually no more than two). We then independently combine the core footprint
with the other affected subdomains. For example, the core subdomains for a statement
of the form “x->f = g”, where x of thread t is a local variable and g is a global vari-
able, are the subdomains containing thread t and the subdomain of the global variable
g. The affected subdomains are any subdomains which may alias these variables.

Conditional branches pose an interesting puzzle. Note that because the condition
essentially filters states it can affect all subdomains. Thus, for a conditional
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“if (x == g)”, we identify the core subdomains to be the ones containing (the
nodes pointed-to by) x and g. However, we will independently combine them with
all other subdomains.

3 Using Decomposition to Prove Linearizability

Linearizability [7] is one of the main correctness criteria for implementations of concur-
rent data structures. Informally, a concurrent data structure is said to be linearizable if
the concurrent execution of a set of operations on it is equivalent to some sequential ex-
ecution of the same operations, in which the global order between non-overlapping op-
erations is preserved. The equivalence is based on comparing the arguments and results
of operations (responses). The permitted behavior of the concurrent object is defined
in terms of a specification of the desired behavior of the object in a sequential setting.
Linearizability is a widely-used concept, and there are numerous non-automatic proofs
of linearizability for concurrent objects.

Verifying linearizability is challenging because it requires correlating any concurrent
execution with a corresponding permitted sequential execution. Verifying linearizabil-
ity for concurrent dynamically allocated linked data structures is particularly challeng-
ing, because it requires correlating executions that may manipulate memory states of
unbounded size. Interestingly, proving linearizability does not require directly prov-
ing safety properties such as preservation of data structure invariants. Instead, one can
first prove that the sequential implementation satisfies the required safety properties
and then prove that the concurrent implementation is linearizable, thereby, satisfies the
safety property. Finally, linearizability of complex systems can be shown by separately
proving the linearizability of each of the individual data structure implementations.

Intuitively, we verify linearizability by representing, in the concrete state, both the
state of the concurrent program and the state of the reference sequential program. Each
element entered into the data structure is correlated at linearization points with the
matching object from the sequential execution. This works well under abstraction when
the differences between the heaps of the sequential and concurrent implementations are
bounded. The details are described in [1].

In order to guarantee that the shape analysis scales-up in the number of threads, in
HeDec we have defined a decomposition scheme that abstracts away the correlations
between the threads (as in Sec. 2). Also, there is no need to track reachability from
program variables. Instead, the subheap abstraction tracks elements whose values in the
sequential and the concurrent implementations are correlated.

3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by decomposing the heap
into n+1 components where n is the number of threads: (i) For each thread the objects
pointed-to by local variables of the thread and objects pointed-to by global variables.
This captures the relationships between local pointer variables and global pointer vari-
ables. Each subheap abstracts away the values of the local variables of the other threads.
(ii) A separate subheap with the objects pointed-to by global variables and the part of
the heap already correlated with the sequential execution. Here, the values of the local
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Fig. 3. The decomposed states abstracting the full state S1 in Fig. 2(a). The names of the sub-
domains appear above each substate.

variables of all the threads are abstracted away. We call this the corr subdomain as it
represents the correlated elements. Fig. 3 shows the effect of applying this decomposi-
tion to the full state S1 in Fig. 2(a).

Intuitively, this decomposition is appropriate for verifying linearizability for the pro-
gram in Fig. 1 because of the following. The list consisting of correlated objects changes
locally when a thread executes a successful CAS operation. In fact, successful CAS op-
erations are the linearization points for this program. Precisely interpreting these op-
erations (CAS(&S->Top,t,x) and CAS(&S->Top,t,s)) in the analysis requires
tracking correlations between local and global variables, which we do in the subheap
we decompose for each thread.

The subheap captured by the corr subdomain is important only during successful
CAS operations, which is when a (non-correlated) node allocated by a thread is passed
into the list. Maintaining the subheap of the corr subdomain for each thread is wasteful,
and thus we separate these correlations into different subdomains.

The important thing to notice is that all the exponential explosion in the state space
that is due to the number of threads in the full heap is eliminated by this decomposition.
The number of possible subheaps of each thread becomes independent of the number
of threads in the system (for more than two threads).

Transformers. The combiner sets used in the transformers of the analysis are the ap-
plication of the methodology described in Sec. 2.1 to this decomposition scheme. For
example, copying a global variable into a local variable does not require decomposition
as the executing thread has all the needed information. Copying a local variable into a
global variable combines the subdomain of the executing thread with each of the other
subdomains. Other operations that change the global state such as changes to pointer
fields and performing CAS operations behave the same. Dereferencing a pointer re-
quires composing the subdomain for the current thread and the corr subdomain as the
information on the next element of the stack is not available in the thread’s subdomain.

4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heap abstraction and a family of
sound abstract transformers.
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4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of decomposed heaps. (See the
technical report [10] for an illustration of the concepts defined below.)

Let (Σ, �, ⊗) be a semilattice, where elements of Σ represent (total and partial)
states, � is a partial ordering on Σ capturing the “is a substate of” relation, and ⊗ is
the join operation with respect to � (which composes substates together). We extend
⊗ to sets of states as follows. Let X1 ⊆ Σ and X2 ⊆ Σ. We define X1 ⊗ X2 =
{σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2}. For purposes of abstraction, we shall also make use of
the information ordering defined by σ � σ′ iff σ′ � σ.

Let (P(Σ), �) denote the powerset domain of Σ with the Hoare ordering: i.e., for
every X, Y ⊆ Σ, we write X � Y iff ∀x ∈ X : ∃y ∈ Y : x � y.

A substate extraction function is a function η : Σ → Σ that satisfies η(σ) � σ.
Assume we have a sequence of k substate extraction functions η1 to ηk . We use the
k-fold product P(Σ)k = P(Σ) × · · · × P(Σ) as our domain of abstract states. The
abstraction function α : P(Σ) → P(Σ)k is defined by:

α(S) = (η̂1(S), . . . , η̂k(S)) (1)

where η̂i is the pointwise extension of ηi defined by:

η̂i(S) = {ηi(σ) | σ ∈ S} (2)

We define the meaning, or concretization, of a tuple I1, . . . , Ik ∈ P(Σ)k by

γ(I1, . . . , Ik) = I1 ⊗ · · · ⊗ Ik. (3)

Example 1. Let S denote the set of states {S1, S2} shown in Fig. 2(a). For any thread
t, we define the predicate pt[t] to be true for: (a) the thread object of t, (b) the objects
pointed-to by its local variables (t and x), and (c) the objects pointed-to by the global
variables (Top). In addition, we define the location selection predicate Globals, which
holds for the objects reachable from global variables. Given any predicate p, the substate
extraction function δp maps a state σ to the substate consisting only of the locations
satisfying p. We define η1 to be δpt[prod1], η2 to be δpt[prod2], η3 to be δpt[cons1], η4 to
be δpt[cons2], and η5 to be δGlobals. Now, η1(S1) = M1, η2(S1) = M2, η3(S1) = M3,
η4(S1) = M4, and η5(S1) = M9.

4.2 Abstract Transformers

We now turn our attention to the more challenging aspect of decomposition: computing
sound abstract transformers.

The semantics of a program statement is given by a function τ : Σ → P(Σ). We
make the standard assumption that the transformer is monotonic in the information
order, i.e., if σ1 � σ2 then τ(σ1) � τ(σ2). We extend this function pointwise to τ :
P(Σ) → P(Σ), by defining τ(S) =

⋃
{τ(σ) | σ ∈ S}. (Note that the extended

transformer is monotone in the information order as well.) For purposes of abstract
interpretation, we need to define a corresponding sound abstract transformer on P(Σ)k.
Given an input value I = (I1, . . . , Ik), the abstract transformer needs to compute the
output value O = (O1, . . . , Ok).
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A straightforward sound transformer is the pointwise transformer τpw defined as
follows:

τpw(I1, . . . , Ik) = (η̂1(τ(I1)), . . . , η̂k(τ(Ik))). (4)

Example 2. While the pointwise transformer is simple and efficient, it can lead to im-
precise results when the transformer has to update a substate that does not have all the
relevant information. Recall the example from Sec. 2, and consider the substate M3.
Substate M3 does not contain information about the local variables of other threads.
Therefore, M3 also represents a state Sbad in which the local variables t and x of
thread prod1 point to the first cell and to the last cell of the list, respectively. Thus, a
conservative transformer of 6: x->n=t, when prod1 serves as the scheduled thread,
must emit a warning about a possible creation of a cyclic list. As explained in Sec. 2, we
can avoid this imprecision by composing substate M3 with other substates (M1) to pro-
duce a more precise substate that can be transformed without making such worst-case
assumptions. This motivates the following definitions.

A combiner set is a set R ⊆ {1, . . . , k} identifying a set of subheap domains. We
define the partial concretization function γR, which combines the information from the
specified set of subdomains R = {j1, . . . , jm}, as follows:

γR(I1, . . . , Ik) =
⊗

r∈R

Ir = Ij1 ⊗ Ij2 · · · ⊗ Ijm . (5)

One-Level Composition. We define the partial transformer τ1[R, i], which computes
the substate corresponding to the i-th subdomain using the subdomains identified by R,
by

τ1[R, i](I) = η̂i(τ(γR(I))). (6)

We use the term one-level transformer to indicate that combining (or composing) infor-
mation from a set of subdomains (identified by R above) occurs in one step.

We define a one-level transformer specification TS to be a tuple (TS1, . . . , TSk)
where each TSi ⊆ {1, . . . , k}. We define the transformer τ1[TS] by

τ1[TS](I) = (τ1[TS1, 1](I), . . . , τ1[TSk, k](I)). (7)

Theorem 1. For any one-level transformer specification TS , the transformer τ1[TS] is
sound. That is, for every input value I ∈ P(Σ)k: τ(γ(I)) � γ(τ1[TS](I)).

Two-Level Composition. We now present a generalization of the above definition. As
motivation for this generalization, consider a situation where we want to compute an
output value Oj by combining the input values from a set of subdomains R1 or by
combining the input values from a set of subdomains R2 (but we are unable to say
which of these combinations to use statically). We could, of course, combine the input
values from the set of subdomains R1 ∪ R2, but this could be expensive. Instead, we
can utilize the two combinations independently of each other by using

(η̂j(τ(γR1 (I)))) � (η̂j(τ(γR2 (I))))
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as the desired output value. We call transformers derived in this fashion two-level trans-
formers, as the use of the meet operation � constitutes a second stage of combining
(composing) information.

Let Y be a set of combiner sets. We define the partial transformer τ2[Y, i], which
computes the substate corresponding to the i-th subdomain using the combiner sets in
Y independently, as follows:

τ2[Y, i](I) =
R∈Y

τ1[R, i](I) (8)

We define a two-level transformer specification TS to be a tuple (TS1, . . . , TSk)
where each TSi ⊆ P({1, . . . , k}). We define the transformer τ2[TS] by

τ2[TS](I) = (τ2[TS1, 1](I), . . . , τ2[TSk, k](I)). (9)

(Note that the computation of the above transformer involves a partial concretization for
every R in every TSi. In practice, different TSi and TSj may have common elements,
and it is sufficient for the transformer implementation to do the corresponding partial
concretization just once.)

Theorem 2. For any two-level transformer specification TS , the transformer τ2[TS] is
sound. That is, for every input value I ∈ P(Σ)k: τ(γ(I)) � γ(τ2[TS](I)).

5 Empirical Results

We implemented the HeDec system in Java on top of the TVLA system [8]. HeDec
allows analysis designers to rapidly prototype different shape analysis algorithms by
defining heap decomposition schemes. HeDec, however, is not a panacea — the de-
signer needs to carefully select suitable heap decompositions. Nevertheless, HeDec re-
lieves the designer from the task of developing and implementing the static analysis
algorithms, including the transformers.

Fig. 4 compares the results of our decomposition-based analysis with a full heap
analysis.1

Concurrent Benchmarks. We use the analysis of [1] as the underlying shape analysis.
Both analyses successfully prove linearizability and absence of null dereferences

for the three concurrent programs. For a given number of threads, t, the table shows
the time and the number of states resulting in the analysis of t threads invoking an
arbitrary sequence of operations on a single instance of the analyzed concurrent data
structure. Stack is the non-blocking stack example of Sec. 2.1. TLQ is the two-lock
queue implementation described in [12]. NBQ is a non-blocking queue implementation
from [4]. 2

Note that while [1] can analyze at most 3 threads, our approach, on the other hand,
runs for 15 threads or more. Furthermore, [1] runs out of memory when analyzing 3
threads manipulating a non-blocking-queue.

1 All benchmarks except NBQ were run on a 2.4 GHz E6600 Core 2 Duo processor with 2 GB
of memory running Linux.

2 This benchmark was run on a 2.66 GHz Quad Xeon with 16 GB of memory running Windows
XP 64 bit.
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Full Heap Decomposition
Example # of threads # of states secs. # of substates secs.
Stack 2 3,424 3 1,608 7

3 10,6296 71 4,103 13
4 MemOut - 7,728 22

20 - - 212,048 3,421
TLQ 3 8,783 12 8,911 30

5 44,285 35 23,585 90
8 MemOut - 58,796 307

15 - - 202,555 2,122
NBQ 2 39,583 69 20,646 263

3 MemOut - 57,065 694
15 - - 2,017,280 1 day

Full Heap Decomposition
Example # of states secs. # of substates secs.
6-list-prepend 17,496 16 557 5
6-list-join 37,689 40 1,282 6
4-tree-insert 43,031 44 5,316 29

(a) (b)

Fig. 4. Empirical results for: (a) concurrent benchmarks, and (b) sequential benchmarks

Sequential Benchmarks. Both analyses successfully prove absence of null derefer-
ences, absence of memory leaks, and data structure invariants for the following sequen-
tial benchmarks: 6-list-prepend adds elements, non-deterministically, into one of
6 lists; 6-list-join joins 6 lists into one list; and 4-tree-insert inserts nodes,
non-deterministically, into one of 4 binary search trees.

6 Related Work

The framework of Cartesian abstraction via state decomposition we have presented is
relevant to a number of previous lines of work.

Heterogeneous Abstractions. Yahav and Ramalingam [19] defined a notion of het-
erogeneous abstractions. There, Cartesian abstractions are used as a way to achieve
decomposition (or separation, in the terminology of that paper). One contribution of
this paper is to show that that previous analysis is based on a (simple form of) Carte-
sian abstraction. On the other hand, in that work, heterogeneity was used only within
a single structure (to abstract the substructure of interest differently from its context),
where our framework supports different abstractions for different factors of the product,
yielding heterogeneity across different structures. Furthermore, while [19] relies on the
point-wise transformer, we introduce a generalized family of transformers that allow
(de)composition when transformers are applied. This generalization allows specifying
more precise transformers, and gives us dynamic separation/decomposition.

Region-based Heap Analyses. Like [19], [6] also decomposes heap abstractions to in-
dependently analyze different parts of the heap. There the analysis/verification problem
is itself decomposed into a set of problem instances, and the heap abstraction is special-
ized for each instance and consists of one subheap for the part of the heap relevant to
the instance, and a coarser abstraction of the remaining part of the heap, e.g. a points-
to graph. In contrast, we simultaneously maintain abstractions of different parts of the
heap and also consider the interaction between these parts. (E.g., our decomposition
dynamically changes as components get connected and disconnected.)

Partially Disjunctive Heap Abstraction. Manevich et al. [11] describe a heap abstrac-
tion based on merging sets of graphs with the same set of nodes into one (approximate)
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graph. The abstraction in this paper is based on decomposing a graph into a set of sub-
graphs. The abstraction in [11] is orthogonal to the one in this paper.

Handling Concurrency for an Unbounded Number of Threads. In [2], we use thread
quantification to analyze programs with an unbounded number of threads. Thread quan-
tification can be thought of as an unbounded variant of a particular decomposition strat-
egy, which we use to abstract away correlations between local variables of different
threads. In the thread quantification analysis, we report that using an additional heap de-
composition abstraction in order to abstract away correlations between values of some
local variables and global variables effects drastic state-space savings. This made the
analysis feasible in the example of proving linearizability of a non-blocking queue im-
plementation.

Proving Linearizability of Data Structures. Shape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. The analysis in [18] addresses
an unbounded number of threads by losing distinctions that cannot be made based on
thread-independent information. This analysis has been extended to verify linearization
[1] of programs with a bounded number of threads. Here we use the decomposition
abstraction to define an analysis that can be exponentially faster than that in [1].

Manual linearizability proofs using rely-guarantee have been given in [17], and
using a manual translation to automata followed by an interactive proof in PVS in [2].
Recently, [16] automatically verifies linearizability from manual specifications in a
combination of rely-guarantee and separation logic, using the proof technique of [1].

7 Conclusions

We present systematic and generic techniques for scaling up shape analyses using heap
decomposition, implemented in the HeDec system. A user of HeDec can quickly proto-
type a shape analysis by: (a) defining any heap decomposition she believes is appropri-
ate for the class of programs and properties of interest, and (b) supplying for every type
of program statement any (possibly empty) combiner set she believes supplies the right
balance between efficiency and precision. HeDec then automatically generates a sound
analysis.

Acknowledgements. We thank Noam Rinetzky, Greta Yorsh, Byron Cook, and
Thomas Ball for supplying us with helpful comments on early drafts of the paper. We
thank Daphna Amit for explaining and helping us use her linearizability analysis and
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