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ABSTRACT
Extracting entities (such as people, movies) from documents and identi-
fying the categories (such as painter, writer) they belong to enable struc-
tured querying and data analysis over unstructured document collections.
In this paper, we focus on the problem of categorizing extracted entities.
Most prior approaches developed for this task only analyzed the local doc-
ument context within which entities occur. In this paper, we significantly
improve the accuracy of entity categorization by (i) considering an entity’s
context across multiple documents containing it, and (ii) exploiting existing
large lists of related entities (e.g., lists of actors, directors, books). These
approaches introduce computational challenges because (a) the context of
entities has to be aggregated across several documents and (b) the lists of
related entities may be very large. We develop techniques to address these
challenges. We present a thorough experimental study on real data sets that
demonstrates the increase in accuracy and the scalability of our approaches.

Categories and Subject Descriptors
H.2.8 [Database Application]: Data Mining; I.5.4 [Pattern
Recognition]: Text Processing

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
Information extraction from large document collections has re-

ceived significant amount of attention recently. A variety of extrac-
tion tasks have been considered: identifying and extracting named
entities from documents [4], detection of topics/themes [20], ex-
traction of customer preferences [5], etc. The extracted information
is used in a variety of ways, e.g., to provide business analytics or to
answer more sophisticated queries [8]. Entity extraction technol-
ogy has matured and commercial technology (from Verity, Inxight,
etc.) is available for identifying various types of entities such as
people, organizations, locations. In addition, a large number of so-
lutions to this task have been proposed in research [3, 11].

One particular area of recent interest has been the automatic ex-
traction of unary relations (such as is-a-painter, is-a-researcher,
or is-a-camera) and binary relations (such as is-a-painter-of, is-
author-of) between named entities (e.g., [1, 6, 15, 23]). Here,
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we differentiate between two approaches: “open” relation extrac-
tion [6] where arbitrary relations are extracted and targeted relation
extraction where only a small number of known target relations
(e.g., actors, painters, electronic products) are extracted.

In this paper, we focus on the extraction of targeted relations.
We view the targeted relation extraction as that of categorizing
named entities, into a set of target classes such as painters, re-
searchers, etc. Henceforth, we use the terms unary relation ex-
traction and entity categorization interchangeably.

1.1 Multi-Context Extraction
Most approaches for unary relation extraction from large docu-

ment collections base their extraction decisions on the “context” of
an entity – a window of words around the entity occurrence – within
a single document, using rules or machine-learning models to map
a context to an extracted target relation. Once an extraction deci-
sion has been made, the context information is discarded [3]. While
this approach is fast, as only a single traversal through the docu-
ment corpus is required, accuracy of the extraction is limited by the
fact that only very limited information is taken into account before
extraction. To illustrate why this is the case, consider the example
scenario where we simply want to classify person names into two
classes: is-a-researcher and is-non-researcher. Approaches that
consider one context at a time are limited to triggering extraction
rules on contexts that allow us to identify a person as a researcher
with high confidence from a single context, e.g.,

“[Entity] works in research” → ([Entity],is-a-
researcher).

Because the context is lost once an extraction decision has been
made, any further decision regarding the reliability of a given ex-
traction then has to be based on the number of times a particular
extraction has been made , and cannot take into account which con-
texts were used to give rise to an extraction.

In contrast, first aggregating all contexts for a specific entity al-
lows us to think of each individual context as generating one or
more features of this entity, allowing us to subsequently combine
several less predictive features to arrive at a high-confidence extrac-
tion. For example, we can use the combination of features such as
“[Entity] presents results” and “[Entity] publishes”, each of which
is not sufficiently predictive by itself to allow extraction of the tu-
ple (Entity,is-a-researcher) (after all, companies present results and
newspapers publish), but which – when combined – make it very
likely that the entity in question is a researcher.

In this paper, we build upon the above insight. We propose that
the contexts within which an entity occurs across multiple docu-
ments be “aggregated” and then used to categorize an entity. In-
formally, the aggregated context is the union of all contexts within
which an entity occurs. We identify features from this aggregated



context, which an underlying machine-learning model then uses to
categorize the entity. As we illustrated above, aggregation across
multiple documents allows us to also leverage several low confi-
dence features instead of using only high confidence features.

1.2 Leveraging Existing Entity Lists
In many scenarios lists of entities related to the target relation are

readily available. We can exploit these lists to significantly improve
the accuracy of relation extraction by using features that reflect the
existence of these related entities in the context of an entity we seek
to classify. For example, consider the task of categorizing people
as athletes and an example document “Yao Ming is drafted by the
National Basketball Association.” The input entity recognizer may
recognize “Yao Ming” as a person name. If we have the list of sports
organizations then recognizing the occurrence of one of its mem-
bers “National Basketball Association” is a very useful feature for
classifying Yao Ming as an athlete. We refer to such features that
reflect the co-occurrence between entites we want to classify and
lists of “known” entities as list-membership features. The required
lists can often be obtained from structured data sources (such as
Wikipedia or IMDB) or can be derived from the training data itself.

The main reason why these features make an impact is that the
lists allow us to aggregate many instances of a category list into a
single feature; while many individual entries in these known lists
occur too rarely in documents to become important features in a
classifier individually, the resulting list-membership features are
sufficiently common to do so. For example, a feature which says
that authors are likely to be mentioned along with a book is more
likely to be applicable than several different features corresponding
to instances of specific books.

1.3 Challenges
The use of multi-document contexts and list-membership fea-

tures can benefit extraction accuracy significantly, but it also intro-
duces new challenges. Generally, the document corpus we extract
from is significantly larger than the available main memory. This
means in turn that during extraction we most likely have to con-
sider very large numbers of combinations of entities and their con-
texts, all of which we cannot store in main memory either. Further,
the relevant lists of “known” entities themselves, which we need
to identify list-membership features, may also require more space
than is available in main memory. This issue is acerbated when
extracting many relationships in parallel.

Straight-forward implementations of unary relation extraction
thus require either (i) multiple passes over the document corpus,
invoking the potentially expensive entity extraction multiple times
for each document, or (ii) need to materialize significant amounts of
entity-context on disk. Both of these processing strategies may be
very expensive computationally. Our approach avoids these costs
by leveraging knowledge of the underlying feature semantics and
statistical properties of large document corpora.

The remainder of the paper is organized as follows: In Section 2,
we review related work. In Section 3, we describe the problem
of unary relation extraction in detail. We then describe techniques
for efficiently extracting features over the aggregated context (Sec-
tions 4 and 5). Extensions are discussed in Section 6. We present an
experimental evaluation in Section 7, and conclude in Section 8.

2. RELATED WORK
A large amount of recent work has focused on extracting entities

and relations from large document collections (e.g., [1, 6, 15, 23]).
While these techniques vary in the amount of processing they per-
form for a given occurrence of an entity (e.g., they determine parts
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Figure 1: Overview of our approach

of speech of the words around the entity, label head nouns, and of-
ten look up dictionaries), most of these techniques only analyze the
context of an entity within an individual document when extracting
a relation. Our approach is novel in that it exploits the contexts of
entities that span multiple documents.

Recently, a large number of techniques have been proposed for
speeding up the processing of large document collections in rela-
tion extraction (see [1] for an overview), including (heuristic) fil-
tering of documents [2], the use of very simple extraction patterns
and specialized index structures [9]. These approaches are orthog-
onal to ours and may be combined with it.

The problem of computing the list-membership and cross-
document features also has strong similarity to the processing
of join and aggregation queries in database systems, where such
queries have been studied extensively (see [16] for an overview).
Our problem scenario differs in that the extraction of features
from documents itself is a central part of the problem statement,
something that is currently not supported by relational DBMS.

Our techniques to scale the feature extraction leverage statisti-
cal properties found in large corpora of natural language text. As
shown recently in [17] for different but related tasks, using the un-
derlying statistical properties of skewed or even heavy-tailed dis-
tributions can result in much improved processing strategies when
processing large document data sets.

3. ENTITY CATEGORIZATION
In this section, we will study the problem of scalable extraction

of unary relations from very large text corpora, when using both
aggregated contexts as well as list-membership features for classi-
fication. For this purpose, we will first define the necessary notation
and subsequently set up the problem of unary relation extraction.

3.1 Definitions and Notation
Throughout the paper, we will use the following notation. Let
D = {d1, . . . , dm} be the set of input documents. Within these
documents, we recognize entities using an entity recognizer gE ,
i.e., gE takes a document d ∈ D and returns all named entities
of the desired type (say, persons, organizations, or locations) oc-
curring in d. Let E =

⋃
d∈D gE(d) denote the set of all entities,

which is unknown when we begin processing the documents. Our
approach is not tied to any specific entity recognition technique –
we can use any approach capable of recognizing occurrences of
named entities in a document based on the document and other do-
main information (e.g., [19, 25]).
Surface forms vs. canonical forms of entities: When referring
to entities we need to differentiate between the entity itself and its
various surface forms (i.e., the different ways to refer to this partic-
ular entity in a document). For example, “Bill_Gates” “William H.
Gates” and “William Gates III.” all refer to the same person. The
problem of mapping entity surface forms to entities has been stud-
ied in various domains (e.g., [24]); a detailed discussion of such
techniques is beyond the scope of the paper. Henceforth, we as-
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sume that each entity identified is also converted to its canonical
representation. In the above example, the representations “William
H. Gates” and “William Gates” would be converted to their nor-
malized canonical form, say, Bill_Gates.
Document context and aggregated context: In the context of en-
tity categorization, we identify the features occurring in the “doc-
ument context” of an entity. In general, the document context of
an entity may involve many aspects of the document such as title,
paragraph headers, and the words around the entity occurrence. In
this paper, we only consider a window of words around an entity’s
occurrence. Suppose an entity e (with a surface form se of length
|se| words) occurs in a document d at position p. The size-K con-
text of an entity e with respect to d and position p is the window
wp−K , . . . , wp−1, wp+|se|+1, . . . , wp+|se|+K of words around the
entity occurrence. The union of all size-K contexts of an entity e
within a document d form the document context for e with respect
to d. Suppose the entity Picasso occurs in a document containing
one sentence: “The painting by Picasso adorns the main hall of the
Museum of Art in New Delhi.” Then, the size-3 context of Picasso
is: “the painting by [Entity: Picasso] adorns the main.” The size-K
aggregated context for an entity e with respect to D is the union of
all size-K document contexts of e in all d ∈ D in which e occurs.
Classifiers and features: We denote the set of all classifiers we
use for unary relation extraction as C = {c1, . . . , cl}. Each clas-
sifier ci is trained to extract one specific relation from the aggre-
gate context of an entity. Specifically, each classifier ci takes as
input a set of features Features(ci), which are extracted from the
appropriate aggregated context. We denote the set of all features
F =

⋃
c∈C Features(c). We distinguish 2 types of features.

Text n-gram features: One set of features we consider are occur-
rences of word n-grams, which are identified during the training
phase of the classifier to be highly correlated with the target cate-
gory. For example, the phrase “painting by” may be very correlated
with the painters category. All n-gram features we consider in this
paper are binary, i.e., only the absence/presence of an n-gram in an
aggregate context is indicated, but not its frequency; however, our
techniques can be extended to non-binary features as well.
List-Membership features: The second set of features we con-
sider are the list-membership features discussed earlier. To iden-
tify these, we use a set of lists L = {L1, . . . , Lf}, where each
Li is a list of known entities. Regarding list-membership features,
we also primarily consider only binary features in this paper; how-
ever, it is possible to extend our techniques to list-membership fea-
tures that are sensitive to the number of occurrences. Note that
the width (K2) of the context size around each entity for generat-
ing list-membership features may be different than that (K1) for
n-gram features. Since it is usually clear which aggregate context
we refer to we usually drop the prefixes (K1 or K2) while referring
to aggregated contexts.

We can now define the problem of unary relation extraction.
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Relation Extraction Problem Given a set D of documents, an en-
tity recognizer gE , a set C of classifiers trained on a set F of fea-
tures, a set of existing lists L, the task of unary relation extraction
is to classify all e ∈ E using the classifiers contained in C.

3.2 Our Approach
We decompose the relation extraction problem into two compo-

nents as shown in Figure 1. The first component, Entity-Feature
materialization, generates the set of features, both n-gram and list
membership features, grouped by the corresponding entities across
all documents. The second component, Classification, takes this
set of features as an input and then applies the classifiers in C. A
large number of different classifiers has been proposed for catego-
rization in research – in this paper, we do not take a position on the
particular classification models used. Instead, we will focus on the
extraction of features and their materialization, which is challeng-
ing due to the sheer volume of data involved.

Conceptually, the task of list-membership feature computation is
to compute the bipartite graph GE,L between entities and the lists
Li. GE,L contains a node for each entity e ∈ E and a node for
each list Li ∈ L. GE,L contains an edge (e, i) whenever there
exists a list-member l ∈ Li that occurs in the K2-context of e in a
document d ∈ D containing e. Figure 2 shows an example bipartite
graph. We refer to edges in GE,L as entity-list edges.

Similarly, the task of n-gram feature materialization is to com-
pute a bipartite graph GE,F between entities and n-gram text fea-
tures (Figure 3). GE,F contains a node for each entity e ∈ E and a
node for each n-gram feature f ∈ F . GE,F contains an edge (e, f)
whenever the feature f occurs in the aggregated context of e across
all documents inD. We refer to these edges as entity-feature edges.

Figure 4 gives an overview of our architecture. It has four com-
ponents: list-membership extraction, n-gram feature extraction, ag-
gregation, and classification. The list-membership extraction com-
ponent materializes GE,L; the n-gram feature extraction compo-
nent materializes GE,F . The aggregation component groups all
features by each entity. The classification component processes
each group per entity applying each classifier in C over the set of
features in the group. The output of this component consists of
entities and their recognized categories.

The main challenge for the materialization of GE,L and GE,F

is scalability: both D and L are very likely to exceed in size the
main memory available during unary relation extraction, meaning
we cannot retain one of them in memory while scanning the other.
We will formalize the resulting challenges and describe how to ad-
dress them in the following two sections.

4. PROCESSING LIST-MEMBERSHIP
In this section, we describe techniques for the computation of

list-membership features, i.e., materialization of GE,L. For the
purpose of list-membership processing, we model each document
d ∈ D as a set of entity, list-member pairs: d ⊆ E × L, with d



containing a pair (e, l) if a list-member l is contained in the K2-
context of e in document d. A straight-forward approach to im-
plement this functionality would be to scan the documents while
keepingL in main memory, extracting entities and list-membership
features from each document. The combinations of entities and
list-membership features would then be written to disk; after pro-
cessing all of D, all such features would be grouped together for
each entity. However, this approach has two main issues.

First, the set of lists Lmay be too large to fit into memory during
the document processing. For example, lists of actors (useful for
identifying categories such as directors, producers, or even movies)
or paper-titles (which – when grouped by area or conference – can
be very useful for categorizing researchers into areas) are readily
available from web sources and contain more than a million dis-
tinct entries. Also, we want to apply multiple classifiers from C in
parallel, each of which may require different lists of known entities,
all of which compete for the limited main memory.

Second, this approach for materializing will produce many iden-
tical (and thus redundant) edges in the graph GE,L. For example, a
popular athlete such as “Michael Jordan” may be mentioned a large
number of times along with many members (such as NBA) in a list
of sports organizations.

4.1 The Need for Large Lists
While it is easy to establish that L may indeed contain a large

number of related list members, we also need to ensure that the
large number of list members actually makes a difference in classi-
fication; otherwise, a simple strategy such as reducing |L| by only
retaining the most important list members may suffice. To test if
this is the case, we set up the following experiment. Using a known
set of directors (as E) and a list of actors (as L) and 3.2 million
documents from Wikipedia, we measured the number of entities
e ∈ E that co-occur with at least one member of L. Note that all
such entity/member pairs would result in an edge in GE,L. We
compare this to the number of entities that co-occur when subsets
of the most frequent members (in the corpus) of L are used. We
consider subsets of sizes 1%, 2%, 5% and 10% of |L| here.

We observed that using a subset ofL sharply reduces the number
of entities for which we see (at least one) co-occurrence: in case of
a list containing the 1% most frequent members, we “miss” about
44% of such entities, i.e., the missed entities do not have a list-
membership feature indicating that their context in some document
contains a known actor. The number of missed entities becomes
38% when we consider the 2% most frequent members, 30% when
we consider 5% most frequent members, and 25% when we con-
sider 10% most frequent members. Since – as we will show in Sec-
tion 7.2.1 – list-membership features have a significant impact on
accuracy, this experiment illustrates the requirement for all mem-
bers in L to be considered.

4.2 Extracting Members from Large Lists
There are a number of execution strategies available to us when

computing GE,L for lists L larger than the main memory available:
Multi-Scan Approach: A straight-forward approach to address the
issue of space when computing GE,L for largeLwould be to divide
L into k sublists (e.g., via hashing), each of which is sufficiently
small to fit in the available memory and then to iterate k times over
D, each time keeping a different sublist of L in memory. This strat-
egy has two problems. (1) The document collectionD itself is very
large, meaning that we have to read in a significant amount of text
multiple times. (2) This strategy also requires multiple invocations
of the potentially expensive entity-extractor gE

1, as well as all ex-
1A test run using a commercial extractor required 14 hours to process a
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ecuting all the required preprocessing (such as tokenizing, parsing,
etc.).

As a consequence, this multi-scan approach is typically too ex-
pensive in practice and we will not consider this execution strategy.
Scanning D once: A simple strategy that avoids multiple scans of
D would be to scan D and write all out pairs of entities and their
contexts to disk for further processing. However, this strategy is
not efficient, due to (a) the large amount of data written and (b) the
fact that the vast majority of contexts are not expected to contain
an entity that is a member of a list in L, meaning that most of the
written contexts are irrelevant.
Our Approach: Our solution instead writes out a significantly
smaller subset of contexts by constructing smaller, approximate
set-representations – which we call filters – of each Li ∈ L (e.g.,
a Bloom Filter) which together fit in main memory. These approx-
imate set representations allow us to test substrings in entity con-
texts for being members of Li with no false negatives (but some
false positives), allowing us to prune most substrings and contexts
right away. We refer to the substrings that are accepted by at least
one of the filters and subsequently written to disk as candidate con-
texts. However, the existence of false positives means that we have
to “verify” if such a candidate context does contain a list member.

This leads to the processing strategy described in Figure 4: we
process each document d ∈ D using the filters to identify all
entities with candidate contexts which may contain a list mem-
ber. Because of false positives, the candidate contexts then un-
dergo a subsequent verification-step that identifies all contexts con-
taining members of L and writes out all resulting entity and list-
membership feature pairs. As part of the document processing, we
also extract n-gram text features from each document (which we’ll
describe in detail in Section 5). Finally, all features found (i.e., both
list-membership features and n-gram features) are grouped per en-
tity (we refer to this as the aggregation-step) and then submitted to
the classifiers in C.
Challenges: To make the above processing strategy efficient, we
have address two challenges: (a) efficiently identifying all candi-
date contexts in each document and (b) minimizing the number of
“redundant” candidate contexts and features written out. We will
describe these challenges and how we address them in detail in the
following two sections. We first describe the processing of individ-
ual documents using filters (Section 4.3) and then the pruning of
redundant contexts and features (Section 4.4); finally, we describe
the implementation of the verification step itself (Section 4.5).

million Wikipedia documents while it just takes a few minutes to scan them.



4.3 Detection of Candidate List Members
Identifying list members within an entity’s context corresponds

to identifying whether sub-strings in the context match with any
member of a list in L.2 Therefore, recognizing list-membership
features within an entity’s context is similar to the multi-pattern
matching problem in the string matching literature [21]. Most prior
techniques for solving the multi-pattern matching problem (e.g.,
the Aho-Corasick algorithm) build a trie over all list members. The
trie is used to significantly reduce the number of comparisons be-
tween subsequences of words in an input document and patterns.

Recall that we use filter-structures, based on bloom filters [7],
which are compact probabilistic structures for representing set S
of elements. Given an element e, bloom filters allow us to prob-
abilistically check whether or not e belongs to S. If e ∈ S, then
the bloom filter returns true. However, if e /∈ S it may still re-
turn true with a low probability. Let FilterLi denote bloom-filter
representation of the list Li.

For a substring c in a document we write c ∈ FilterLi if c
is accepted by the filter. We can trade off the required memory-
footprint for the expected false positive rate of the filter, thereby
ensuring that the FilterLi structures can all fit in main memory.
Document Processing using Filters: Straight-forward usage
would be to check all substrings in entity contexts against each
filter. In order to reduce the number of these membership checks
against each filter, we also maintain a token table TTLi , which
consists of all tokens (e.g., single words) occurring in any member
of the list Li. We then further sub-divide a given context c into hit
sequences, which are sequences of tokens present in TTLi . We
now need to evaluate membership of token sub-sequences against
the filters for these hit sequences only, as opposed to all substrings
of the context. Similar to Bloom Filters, the token table can be
compressed by hashing, allowing us to trade off memory against
additional membership checks.

4.4 Pruning Redundant Output
We now introduce some notation. The output of the document

processing described in the previous section is a list of pairs of en-
tities and candidate contexts, which are accepted by one or more of
the filters. We use GE,C to denote the bipartite graph between en-
tities and candidate contexts. Conceptually, GE,C contains a node
for each entity e ∈ E and a node for each candidate string in an
entity context which is accepted by a filter. GE,C contains an edge
(e, c) whenever the candidate context c is accepted by some filter
FilterLi and occurs in the K2-context of e in a document d ∈ D.
We refer to these (e, c) edges as entity-candidate edges and denote
the list of all such edges that we materialize to disk during the pro-
cessing as Edges(GE,C). After a single pass over D, all members
of Edges(GE,C) undergo a verification-step to identify all candi-
date contexts that actually contain a member of L (see Section 4.5).
All entity-list combinations (e, i) ∈ GE,L identified during the
verification are written to disk; we use Edges(GE,L) to denote the
list of these combinations.
Problem Statement: Given a document collection D and a set of
lists L = {L1, . . . , Lf}, compute the set of all co-occurrences
of entities and (members of) lists in L : GE,L = {(e, i) ∈
E × {1, . . . , |L|}|∃l ∈ Li : (e, l) ∈ D} using the minimal over-
head under the constraints that (a) each document in D can only
be processed once, (b) during the processing only a limited amount
of state (bounded by a threshold M ) may be retained in memory.
2Note that our approach can generalize to allow approximate matches be-
tween sub-strings in a document context and list members to identify entity-
list edges. We can adopt recently developed approximate matching tech-
niques for this purpose (e.g., [10]).
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In our processing framework, the overhead is closely tied to the
amount of disk I/O required. Hence, in order to minimize the
overhead of the processing, we need to minimize (a) the num-
ber of redundant (e, c) entity-candidate pairs (i.e., the pairs that
do not result in a new (e, i)-edge in Edges(GE,L)) written to
Edges(GE,C) and (b) the number of redundant edges written to
Edges(GE,L).

In the following, we will describe two different pruning strate-
gies, based on the observed skew in the number of occurrences
in list members and entities themselves, that allow us to avoid
writing a significant number of edges to Edges(GE,C) and to
Edges(GE,L), thereby reducing the processing overhead signifi-
cantly.

4.4.1 Leveraging Skew in List-Member Frequencies
Looking at list-member distributions within Wikipedia for a

number of entity categories, we observed that the distribution of
entities in large corpora is similar to that of the word distribution
found in natural-language text corpora: both (approximately) ex-
hibit a power-law. Figure 5 illustrates the distribution of named
entities found in a large corpus of Wikipedia documents. Only
a small fraction of list members occur very frequently in docu-
ments, whereas most occur rarely. Furthermore, documents con-
taining members of a list Li often contain more than one member.
Many list-members frequently co-occur with one of the few fre-
quent members in their list.

We can leverage these properties as follows: during the scan of
D, we keep small sets PruneLi ⊆ Li, each containing a subset
of members from Li that frequently occur in D. To determine the
most frequent list members, we use a sample of D to estimate their
relative frequencies. Because of the significant skew of the under-
lying distribution, a small sample ofD is likely to be sufficient for a
high-confidence estimate of the most frequent entities. Now, when
processing a document d containing an element l ∈ PruneLi in
the document context of an entity e, we can write out the resulting
(e, i) tuple directly to Edges(GE,L), while avoiding writing any
(e, c) tuples for any c ∈ FilterLi and the document context.

The key question for this optimization becomes if a small num-
ber of frequent entities can make a big difference with regards to
pruning. To understand this, we set up the following experiment:
Using a set of 1.7 million known actors, and a corpus of docu-
ments D from Wikipedia, we first compute the set of all members
of L contained in D. Then we selected subsets of the 1%, 2%, 5%
and 10% most frequent members of L and measured for each the
fraction of candidates (using filters without false positives for this
experiment) that are pruned by having the corresponding PruneL
list available during processing; we use the entire size of each doc-
ument as the size (K2) of the entity-context for list-membership
extraction. The results are plotted in Figure 6; note that we vary
both the size |D| of the document corpus used as well as the size
|PruneL| of the pruning set. Even small sizes of PruneL result in
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Figure 6: Small sets of frequent entities result in significant pruning.

significant pruning. For example, selecting the 10% most frequent
list-members means that more than half of the candidate edges are
pruned. Note that the relative pruning effectiveness increases with
the size of the document corpus.

4.4.2 Leveraging Skew in the Entity Distribution
A second observation we leverage uses the skew of the entity-

distribution. If we know that (e, i) is in Edges(GE,L), any can-
didate context c ∈ FilterLi (that passes none of the other filters)
occurring in the context of e can only result in a redundant edge
(e, i). Therefore, we can ignore such candidates, saving the cor-
responding entity-candidate edges. For this reason we maintain in
memory the most frequently occurring entities identified by gE .
For each of these entities we maintain all list-ids for which we have
observed a list-member (using the PruneLi structures) in the con-
text of e. We refer to this set of entities as PruneE ; now, when
we encounter a string c ∈ FilterLi in the context of an entity e
for which (e, i) ∈ PruneE , we can ignore this observation. How-
ever, one challenge is that we cannot compute (an estimation) of
the entities’ frequencies a priori, as E is not known. Recall that we
only have an entity extractor gE as input which when applied to
documents extracts entities.
Estimation of entity frequency: Keeping exact frequency-
information for all entities identified in documents requires
a significant amount of main memory. Therefore, we resort
to a very space-efficient hash-based approximation scheme to
track entity frequencies. We employ a sketching technique
called Count-Min Sketch (CM-Sketch) [12]. A CM-Sketch is
a 2-dimensional array of counters with width w′ and depth
d′: f_count[1, 1] . . . f_count[d′, w′] and d′ hash functions
h1, . . . , hd′ : E 7→ {1, . . . , w′}. All counters are set to 0 ini-
tially. Whenever gE extracts an entity e within a document,
we iterate over all hash functions hi(e)i=1...d′ and increase
f_count[i, hi(e)] by 1. We disregard multiple occurrences of an
entity within a single document.

Using these structures, we estimate the frequency of an entity e

as ˆfrq(e) := minj∈{1,...,d′} f_count[j, hj(e)]. This estimate will
not be exact because multiple entities may map to the same bucket
due to hash-collisions. Further, the entity frequency estimates are
only based on the subset of documents we observed at any point
during processing. As is standard in many online estimation sce-
narios, we assume that “current” frequency is indicative of the fre-
quency over the entire input collection. We are primarily interested
in identifying highly frequent entities and CM-sketches have been
shown to perform well for the task of identifying such outliers [13].
Allocating memory between structures: The fact that the filter
structures as well as PruneLi and PruneE compete for the same
limited main memory available during the document processing
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makes the tuning of their sizes an interesting research challenge.
We leave this as a challenge for future work.

4.5 Verification
We eliminate all false positives edges in GE,C as follows. Note

that each edge consists of the entity and the candidate string which
potentially equals a list member. Therefore, we join (equi-join in
SQL) L with Edges(GE,C) in order to obtain all list member val-
ues which equal a candidate string in Edges(GE,C). In fact, if
the lists L and Edges(GE,C) are both stored in a database, it is
straightforward to remove the false positives through a SQL query,
which can be executed efficiently by the database system. For every
member of a list Li found, we write the corresponding (e, i)-tuple
to the materialized list Edges(GE,L).

5. EXTRACTION OF TEXT FEATURES
Unlike the listsL, we expect the number of n-gram features used

in the classifiers to be small enough to retain a trie of the n-grams
used to identify feature occurrences in main memory during the
document processing. While processing a document d we match
any n-gram features occurring in the document context of an entity
e and write the corresponding (e, f) pairs to Edges(GE,F ).

This means that processing of n-gram features only requires a
single pass over D. However, many entity-feature edges may be
written to disk multiple times from different documents. We found
the distribution of the occurrences of the n-grams associated with
the n-gram features over large corpora of documents to resemble
a power-law as well. To illustrate this, we have plotted the total
occurrence-frequencies (for the entire corpus of Wikipedia) of the
32K text n-grams which were most common adjacent to entities
(in training data) in Figure 7. This distribution implies that a small
subset of entity-feature combinations is likely to be extremely fre-
quent. By processing each of these combinations in isolation, we
would create many copies of identical (and thus redundant) edges in
Edges(GE,F ). If instead we we were to store the frequent entity-
feature combinations in memory during the document processing
and only write them out at the end of processing once, we would
be able to significantly reduce the number of redundant copies of
edges are written to Edges(GE,F ).
Problem Statement: n-gram Feature Extraction Given a
document-corpus D and a set of n-gram features F , com-
pute the respective bipartite graph GE,F containing each edge
(e, f) ⊆ E × F for each entity-feature pair occurring within D
(and those edges only), while minimizing the number of redundant
entity-feature edges generated.

The main issue is that there is a constraint Magg on the space we
can allocate to entity-feature pairs in memory. In the following, we
denote the space required to store an entity e by size(e), whereas
we assume unit size to store a feature ID. Now, in a static formula-
tion where we know all frequencies frq(e, f) a priori, the problem



of minimizing the number of redundant edges would be to find a set
R of entity-feature pairs that satisfy the memory-constraint Magg

and maximizes the number of times these pairs occur, since every
occurrence beyond the first one corresponds to a redundant edge.

argmax
R⊆E×F∑

e∈Entities(R)
size(e)+|R|≤Magg

∑
(e,f)∈R

frq(e, f). (1)

However, we do not know which (e, f) pairs will be observed as
we process documents in the input collection. Hence, we cannot
solve the static problem formulation, but need to optimize the ex-
pected benefit of the entity-feature pairs we keep in memory dy-
namically. Techniques of this kind have been studied extensively
in the context of main memory caching algorithms. However, our
problem scenario is somewhat different because the objects that are
“cached” (i.e., the entity-feature pairs) are so small that the space-
requirement of retaining statistics on each them is difficult to jus-
tify. To maximize the utility of the available memory, we evaluated
two different classes of approaches.
Write-on-Full: At any point in time, we add each entity-feature
pair seen to the available main memory (without storing any dupli-
cate features). Once the main memory store fills up, we write all
(e, f) pairs contained in it to Edges(GE,F ) and start over. The
advantages of this algorithm are its simplicity and robustness.
Leveraging frequency estimation: In addition, we evaluated a
number of techniques that estimate frequencies of entities (using
a CM-sketch similar to the one used in list-membership process-
ing) and those of features (using a small sample of D). For this
purpose, we evaluated a number of different heuristics to decide
which pairs to retain, including (i) keeping the features of the most
frequent entities, (ii) retaining the most frequent entity-feature pairs
themselves and (iii) maximizing the expected benefit per entity rel-
ative to the required storage space (which favors retaining frequent
entities with many features). Due to space constraints, we omit the
details of the algorithms we evaluated.

6. EXTENSIONS
Combined n-gram and list-membership features: One interest-
ing extension we are considering for future work is to combine
the two types of features considered in this paper to form features
such as born_in_[European_City] or works_for_[Tech_Company]
where the text in brackets denotes a list whose members we match
to obtain the features (e.g., the first feature would match text strings
such as “born in Paris”). We can extend our technology easily to
process these additional features as well.
n-ary relation extraction: Due to space constraints we did not de-
scribe or evaluate the extraction of n-ary relationships (for n > 1)
in detail. However, it is possible to extend our techniques to this
scenario. We need to extend the notion of an entity’s context to
contexts of a set of entities (i.e., a set of entities occurring within a
limited window of words within a document d); the corresponding
notions of document- and aggregate context follow directly. Re-
garding the processing strategies, we need to use the corresponding
set of entities as the key for grouping features (instead of a single
entity) and for purposes of list-member co-occurrence.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
For our experiments, we use linear support vector machine

(SVM) models as the underlying classifier. The training algo-
rithm we use for our experiments is Sequential Minimal Optimiza-

tion [22]. All experiments were executed on an 2.4Ghz Intel dual-
core 660 Processor with 4GB of main memory. We used a SQL
Server 2005 database as the underlying storage engine. We use 3.2
million page Wikipedia dataset as the document corpus D.

7.2 Evaluation of Impact on Accuracy
To study the impact of aggregate context and list-membership

features in entity-categorization, we compare our approach to
single-context rule-based extractors similar to several state-of-
the-art techniques used for fast relation extraction from docu-
ments. The classification task is to correctly categorize differ-
ent classes of people (writers, actors, painters, etc.) based on
Wikipedia documents. To generate training and test data, we used
Wikipedia documents that contain lists of instances of the respec-
tive category (e.g. http://en.wikipedia.org/wiki/-
List_of_painters_by_name), from which instances of the
category were extracted using specialized extraction-script. For
purposes of repeatability, we – instead of using custom entity ex-
traction code gE – matched entities in D by simply finding these
names within each document. To compute the n-gram features, we
extracted all n-grams in the size-4 document context for each oc-
currence of an entity, using the presence/absence of the 10K most
frequent (i.e., occurring in the largest number of contexts within
the training data) n-grams among them as features. For the list-
membership features, we used the entire document an entity e oc-
curs in as e’s aggregate context, using a 10% sample of the entities
in the training data for each category as the corpus L.

To instantiate the single-context rule-based classifier with extrac-
tion patterns that are highly indicative of the different categories,
we used the same document contexts as above as training data and
used the algorithm described in [18] (Section 3.2) to determine the
100K most frequent text patterns (which may include gaps) that
are highly correlated to the entity type. An example of such a pat-
tern containing a gap would be “ ’s . . . novel”, which would match
strings such as “’s latest novel” or “’s acclaimed novel” which may
be highly correlated to instances of the class writer. Note that the
algorithm is exhaustive, in the sense that it outputs the most fre-
quent patterns that have high correlation to a class over the space
of all possible patterns. When we have two patterns in our result
set where one pattern is a substring of the other, we prune the more
complex pattern, avoiding large numbers of similar extraction rules.

Now, we compare the precision/recall tradeoff for the resulting
classifiers. To measure precision/recall for our approach, we ap-
plied the classifier to held out test data and varied the distance from
the decision surface we required to assign a category label. Entities
that were “too close” to the decision surface were not labeled.

In unsupervised or weakly supervised rule-based extraction, the
frequency (also referred to as redundancy) of extraction has com-
monly been used to assess the confidence assigned to an extracted
relation (e.g., [6, 14]). Hence, we use the following approach to
obtain precision/recall data for the single-context classifier: we set
a threshold on the number of extractions we have to have seen for a
specific (entity, category) pair, before we accept it. By sliding this
threshold across the domain of extraction frequencies, we can gen-
erate a similar precision/recall graph for the rule-based extraction.

Figure 8 shows the results for two example target classes –
painters and presidents. We can see that the rule-based classifier
generates rules with high accuracy, but cannot guarantee high re-
call: many of the entities in our training data do not exhibit a single
instance of a frequent high-confidence pattern. Overall, the classi-
fiers based on aggregate contexts perform better, in particular the
ones that leverage list-membership features. We consistently saw
these gains across all target classes. For the rule-based classifiers,
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Figure 8: Accuracy of various techniques

we also varied the minimum correlation to the target label that was
required for a rule to be output – our graphs show the results for two
settings (60% and 80%). Requiring lower correlation reduces ac-
curacy, but results slightly higher recall; even so, there is no cross-
over point with the classifiers using aggregate context features.

7.2.1 Impact of List-Membership Features alone
To study the impact of list-membership features in scenarios

where there is no aggregation across many documents, we ran the
following experiment: using a set of 21K products from a exist-
ing shopping web site, we studied the task of classifying these into
the 7 categories , one of which each of them belonged to: CD &
DVD Drives, T-shirts, Laptop Computers, Books (Drama), Books
(Thriller), Books (History), Books (Romance). The motivation be-
hind this particular choice of categories was that some of these are
very “easy” to distinguish (e.g. t-shirts and laptops) whereas the
various subcategories of books are very difficult to classify accu-
rately. For classification, we used SVM-classifiers trained on: (a)
word n-grams extracted from the product names and descriptions
and (b) word n-grams plus seven list-membership features – one
for each category in the product description (as L, we used a sam-
ple of 10% of the entities in the training data), using Wikipedia as
the corpus from which we derived co-occurrences between entities
and list-members. Here, the second classifier increased the accu-
racy over all entities and categories from 93.8% to 95.5%.

Interestingly, while the precision-recall curves for the categories
CD & DVD Drives, T-shirts, Laptop Computers were nearly un-
changed for the two classifiers, we saw a significant increase in ac-
curacy for the book-categories, all of which were more difficult to
classify accurately. We plotted two of the resulting precision/recall
graphs in Figure 9. As we can see, the improvement in accuracy for
the Books - Drama category is very significant (whereas the ones
for t-shirts are slight), resulting in the overall gains.

7.3 Evaluation of List-Member Extraction
To evaluate the effect of our techniques for extraction of list-

membership features for large L, we use the similar setup as previ-
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Figure 9: List-Membership impacts “hard” classes significantly
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Figure 10: Reduction in total edges

ously, and use a corpus of 1.7 million known actors asL. For trans-
parency of the results, we “simulate” the accuracy of the FilterL
structure, using a rate of false positives to true matches of entities in
L of 4:1. First, we measured the number of edges in Edges(GE,C)
written to disk for different sizes of PruneE and PruneL, varying
the amount of space given to PruneE /PruneL between 1% and
10% of the space required to store all entities/list-members occur-
ring at least once in D. As the baseline, we use an approach that
writes all edges in Edges(GE,C) without any pruning (we do not
introduce any false positives for this baseline). Even retaining only
a small subset of frequent entities from E and L results in signifi-
cant reduction in the number of redundant edges (Figure 10).

To quantify the impact this has on execution times in practice
we measured the overhead of (a) the final aggregation and sort step
for all entity-feature edges in GE,F and GE,L, (b) the verification
step that matches all edges in GE,C withL and (c) the overhead im-
posed during the the iteration overD by writing out the edge-sets to
disk (measured by computing the difference in time to the process-
ing of D without persisting any edges), using a relational DBMS
for the aggregation and verification steps. The results are shown
in Figure 11. We can see that our techniques reduced the over-
head of verification by more than an order of magnitude and halved
the overhead of disk writes, reducing the overall processing cost
by over 80% compared to the baseline. The remaining overhead is
dominated by the cost of writing out the edges in Edges(GE,F )
and aggregating them, the reduction of which we will discuss next.
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Figure 11: Reduction in overhead
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7.4 Evaluation of n-gram Extraction
To assess the effectiveness of the techniques discussed in Sec-

tion 5, we used a single classifier using 10K n-gram features. To
choose the appropriate memory-size to use in these experiments,
we pre-computed the size required to store GE,F in its entirety
(without any duplicate edges) and set the memory size to a frac-
tion of this value (we used 1% and 2% in our experiments). Fig-
ure 12 shows the number of entity-feature pairs written for three
different strategies: Write-All, which is the baseline that uses no
additional memory, Write-on-Full which we described in Section 5
and the best of the more complex strategies utilizing statistical in-
formation on entity- and feature-frequency, which seeks to mini-
mize redundant edges by retaining the entities with the largest (es-
timated) benefit divided by the size required to store the entity and
all its features. We set the amount of storage given to the under-
lying CM-Sketch to 5% of the available memory. We can see that
both Write-on-Full as well as the more complex strategy reduce the
number of tuples written to disk by a factor of about 1/3. The main
reason for this result is the heavy skew of both the entity/feature
distribution: the most frequent pairs are so frequent that they will
re-occur (often many times) before Write-on-Full has to to write
the buffer to disk, meaning that we can realize most of the benefit
of the “caching” without frequency-statistics. One of the complex
strategies outperforms Write-on-Full slightly, but given its simplic-
ity and robustness Write-on-Full is still likely the method of choice
in practice. Moreover, Write-on-Full actually outperformed other
statistics-based approaches, such as retaining the entities that were
(estimated to be) most frequent.

8. CONCLUSIONS
Entity categorization within large text corpora is of importance

to a number of emerging applications such as structured querying
over unstructured data. For this task, we have shown that the use
of aggregate entity contexts and list-membership features in clas-
sification can improve accuracy significantly, when compared to

techniques using single contexts only. We have shown how to scale
up the processing of these aggregate features significantly by lever-
aging properties of the entity/feature distribution as well as entity
co-occurrence, identifying a number of effective techniques to min-
imize the amount of redundant data produced.
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