
Recovering Data Models Via Guarded Dependences

Raghavan Komondoor
IBM India Research Lab
rkomondo@in.ibm.com

G. Ramalingam
Microsoft Research India∗

grama@microsoft.com

Abstract

This paper presents an algorithm for reverse engineering
semantically sound object-oriented data models from pro-
grams written in weakly-typed languages like Cobol. Our
inference is based on a novel form of guarded transitive
data dependence, and improves upon prior semantics-based
model inference algorithms by producing simpler, easier to
understand, models, and by inferring them more efficiently.

1 Introduction

Legacy applications written in weakly-typed languages
like Cobol can be difficult and time-consuming to update in
response to changing business requirements. Reasons for
this difficulty include a lack of modern abstraction mecha-
nisms in legacy languages and legacy data-stores (such as
files), and the deterioration of the structure of code and data
due to repeated ad-hoc maintenance activities. As a result,
the logical structure of legacy applications and the data they
manipulate is often not apparent from the program text.

In this paper, we focus on the problem of recovering
object-oriented logical data models from weakly-typed pro-
grams via static analysis. These models provide a better un-
derstanding of the logical relationships among data entities
in data-stores as well as in programs, and can facilitate a va-
riety of program understanding and maintenance activities,
such as migration of legacy data (e.g., stored in files) to rela-
tional databases, generation of wrappers around legacy files
to give a modern (e.g., relational) interface to them [23],
field expansion, migration of applications to modern object-
oriented languages, identifying and extracting web services
from monolithic applications (e.g., see [6]), etc. See [27, 4]
for more about applications of such logical data models.

Our key contributions are (a) a novel form of guarded
(i.e., conditional) data dependence, which provides infor-
mation about conditional value flow in a program, including
transitive value flow through one or more copy statements,
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(b) a polynomial-time path-sensitive dataflow analysis to
compute the above data dependences, (c) an efficient algo-
rithm to infer an object-oriented logical data model from
a program using the above data dependences, and (d) an
implementation of our algorithm and its preliminary evalu-
ation. One key aspect of our inference algorithm is that it is
semantics-based: the inferred model may be interpreted as
certain assertions about the execution behavior of the pro-
gram (particularly with respect to dataflow).

While we illustrate our ideas using Cobol, they are ap-
plicable to other weakly-typed languages (e.g., C, PL/I, and
4GLs) also. Several aspects of the problem we study show
up in the context of analysis of binary code as well (see [1]).

1.1 A motivating example

We will use the example program shown in Fig. 1
to illustrate key deficiencies of Cobol1 that hinder pro-
gram understanding, as well as our inference algo-
rithm. The program reads an input value into variable
CARD-TRANSACTION-REC in statement /1/. The declaration of
CARD-TRANSACTION-REC earlier indicates that it is a record
with four fields. Each field is declared to be a string of cer-
tain length: e.g., the third field CARD-INFO is declared to be
a string 23 bytes long. However, there is more structure to
the data stored in this field, which is revealed by the pro-
gram logic in statements /5/ through /7/.

If the first byte of CARD-INFO, referred to in statement /5/
using Cobol’s subrange notation2 as CARD-INFO[1:1], con-
tains a ’C’, the rest of CARD-INFO contains credit card de-
tails, consisting of a credit card number and expiry date,
which are extracted using the subrange notation in state-
ment /6/. Otherwise, the rest of CARD-INFO contains debit
card details, and the debit card number is extracted and writ-
ten out in statement /7/.

Similarly, the data stored in LOCATION-DETAILS is also
structured, as revealed by statements /2/-/4/ and /8/-/10/.
(Here, auxiliary variables with named fields are used, in-

1We use Cobol with slightly modified syntax for purposes of clarity.
2Though Cobol represents ranges as [starting-offset,length], we will

use the notation [starting-offset,ending-offset] in this paper.



01. CARD-TRANSACTION-REC.
05. LOCATION-TYPE PIC X.
05. LOCATION-DETAILS PIC X(20).
05. CARD-INFO PIC X(23).
05. AMOUNT PIC X(4).

01. ATM-DETAILS.
05. ATM-ID PIC X(5).
05. ATM-ADDRESS X(12).
05. ATM-OWNER-ID PIC X(3).

01. MERCHANT-DETAILS.
05. MERCHANT-ID PIC X(8).
05. MERCHANT-ADDRESS PIC X(12).

/1/ READ CARD-TRANSACTION-REC.
/2/ IF LOCATION-TYPE = ’M’
/3/ MOVE LOCATION-DETAILS TO MERCHANT-DETAILS

ELSE
/4/ MOVE LOCATION-DETAILS TO ATM-DETAILS

ENDIF
/5/ IF CARD-INFO[1:1] = ’C’
/6/ WRITE CARD-INFO[2:17], CARD-INFO[18:23],

AMOUNT TO CREDIT-CARD-CHARGES-FILE
ELSE

/7/ WRITE CARD-INFO[2:17], AMOUNT TO DEBIT-CARD-CHRGS-FILE
ENDIF

/8/ IF LOCATION-TYPE = ’M’
/9/ WRITE MERCHANT-ID, AMOUNT TO MERCHANT-PAYMENTS-FILE

ELSE
/10/ WRITE ATM-ID, ATM-OWNER-ID TO ATM-STATS-F.

ENDIF

Figure 1. Running example

stead of subranges, to extract data.) Thus, CARD-INFO and
LOCATION-DETAILS are both polymorphic: their types can
be one several subtypes, each with its own structure.

The key point to note here is that the program logic re-
veals quite valuable information about the type of the data
that is read, which is missing or is not explicit in the variable
declaration. The algorithm presented in this paper exploits
the program logic to recover a logical data model for the
program that makes explicit the data abstractions that are
implicit in weakly-typed programs.

Our algorithm recovers an OO data model for each “in-
put” datum coming into a program (e.g., via a parameter, or
via a READ statement). Fig. 2 shows the inferred model for
the data read into CARD-TRANSACTION-REC in statement /1/.
The model is drawn as a UML class diagram: each box is
a class, with its name at the top, and the list of typed fields
below. Each class inherits from zero or more classes (its
base classes), with inheritance relationships shown as ar-
rows from the subclass to the base class. Classes such as
LocType, AtmID3, which have no explicit fields, are called
atomic classes. They represent scalar values (i.e., primitive
types). The following aspects of the inferred model illus-
trate its value.

Record structure of a declared scalar. In our example,
CARD-INFO was declared to be a scalar variable. This vari-
able, however, is represented in our inferred model by the

3Our algorithm does not automatically generate meaningful names for
classes and fields. The names in Fig. 2 were supplied manually for ex-
pository purposes; however, heuristics can be used to generate such names
automatically from variable names, e.g., see [27].
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Figure 2. Object-oriented model inferred by
our algorithm for the example in Fig. 1

two fields cardType and cardDtls of CardTran, reflecting
the way CARD-INFO is used in the program.

Implicit subtyping. Furthermore, the model indicates
that the type of cardDtls is the class CardDetails, which
has two subtypes (derived classes) CreditCardDtls and
DebitCardDtls. This naturally captures the implicitly poly-
morphic use of the variable CARD-INFO in the program.

Independently polymorphic variables. Note that the
LOCATION-DETAILS and CARD-INFO are independently poly-
morphic: the (runtime) type of (or logical structure of the
data stored in) one has no correlation to the type of the other.
Multiple independent polymorphic variables are common
in real programs, and a key strength of our approach is the
ability to model this idiom compactly and naturally.

1.2 Guarded Dependences

One of the central aspects of our work is the use of
guarded transitive data-dependences to perform model in-
ference. Informally, these dependences capture informa-
tion about value flow in the program, including the condi-
tions under which such flow exists. E.g., a single depen-
dence can capture the fact that bytes 2 through 9 of the
value read in statement /1/ (i.e., the first 8 bytes of field
LOCATION-DETAILS) reach the occurrence of MERCHANT-ID

in statement /9/, under the condition that byte 1 (i.e.,
LOCATION-TYPE) contains the character ’M’. (Note that this
value flow occurs via the copy statement /3/.)

In this paper, we present an efficient (polynomial
time) algorithm for computing guarded transitive data-
dependences, and show how the set of dependences can be
distilled into an OO data model. Thus, the model inferred
by our algorithm may also be viewed as a compact repre-
sentation of data-dependences in the program.



AtmDetails
atmId : AtmID

atmOwner: OwnerID

MerchantDetails
mercId : MerchantID

LocType AtmID

CardTran

locType : LocType

cardType: CardType

amount: Amount

CreditCardDtls
num : CreditCdNum

expiry: Expiry

DebitCardDtls
num : DebitCdNum

OwnerID MerchantID CardType CreditCdNum Expiry

DebitCdNumAmount

AtmCredit AtmDebit MerchantCredit MerchantDebit

Figure 3. Model inferred by the algorithm of
[18] for the example in Fig. 1

1.3 Our contributions and related work

Our first contribution is the notion of guarded transitive
dependence (as well as efficient algorithms for computing
these dependences). These dependences are similar to the
notion of “value-point” equivalence [15], in that both track
value flows through copy statements. The key difference is
that value-point equivalence does not employ guards (predi-
cates), and hence captures less information than guarded de-
pendences. Our notion of guards is similar to the concept of
path-conditions discussed by Snelting et al. [21], but differs
in incorporating transitivity and addressing aspects relevant
to languages such as Cobol. Our algorithms for computing
these dependences are very different from the Snelting et al.
approach as well.

Our next contribution is an algorithm for reverse-
engineering an OO data model from programs, using these
dependences. This algorithm differs from and improves
upon our previous data model inference algorithm [18], re-
ferred to as the RKFS algorithm below, as follows.

Delegation vs. inheritance. Our new approach infers
models that differ from the models inferred by the RKFS
algorithm. The model inferred by the RKFS algorithm for
our running example is shown in Fig. 3. Notice that in
this multiple-inheritance based model, four derived classes,
AtmCredit, AtmDebit, MerchantCredit, and Merchant-
Debit describe all the combinations of data that can be
stored in a CardTran. In contrast, our new algorithm cap-
tures the same information using a class with two polymor-
phic fields, where each field can independently take on one
of two types. Thus, the new inference algorithm produces
delegation-based models, while the RKFS algorithm pro-
duces inheritance-based models.

Delegation has been suggested as the better approach for
most object-oriented design settings (e.g., by the “Gang of
Four” [10]). In particular, when there are multiple indepen-
dent polymorphic variables, delegation can result in drasti-
cally smaller models, with no loss of precision. In fact, this
is also the intuition behind why our approach is scalable.

Efficiency. Our new algorithm is polynomial time, while

the RKFS algorithm always takes time exponential in the
number of independent polymorphic variables. Note that a
large number of independent polymorphic variables is com-
mon in Cobol programs.

Komondoor et al [12] describe an approach to compute
guarded dependent types, which serves as the basis for the
RKFS algorithm. This analysis takes time exponential in
the number of independent polymorphic variables.

Other related work. There has been previous work by
others in recovering OO data models [2, 25] and other kinds
of data abstractions [7, 16, 8, 17, 3, 1] from weakly-typed
programs. Some of these approaches [7, 2, 3] are based
mainly on heuristics and the declared structure of data (as
opposed to code analysis), Such approaches do not offer any
correctness characterization or semantic properties. Sev-
eral other approaches are based on code analysis. Most of
these [16, 8, 17, 1] handle the idiom of polymorphic vari-
ables (variables that store data of different types) impre-
cisely. This imprecision stems from the underlying anal-
yses, which do not exploit the order in which statements ex-
ecute or the conditions under which statements execute. van
Deursen and Moonen’s algorithm [25] infers a subtype re-
lation between the source and target of an assignment state-
ment and a union type for Cobol redefinitions. However,
their algorithm does not exploit the order in which state-
ments execute or the conditions under which statements ex-
ecute either. Other publications describe applications of
such inferred models [13, 27] and describe empirical evalu-
ation of the techniques [26].

Tip et al [24] and Snelting et al [22] present algorithms
for analyzing and specializing existing class hierarchies
in programs in object-oriented languages, but do not ad-
dress the issues in inferring models from weakly-typed lan-
guages. Jhala et al [11] consider a given union type in a C
program and check whether it is used safely; i.e., whether
for each variant of the union there is a specific condition
under which this variant is always referred to, such that the
conditions governing the different variants are disjoint.

Fisher et al. [9] describe the wide prevalence of ad hoc
data formats, and the advantages of formal descriptions of
such data, including the ability to generate applications that
can analyze data in the specified format. Our techniques
can be used to infer such data formats automatically, from
programs that consume the data. Lim et al [14] describe
an approach to recover file formats from object code; their
focus is on recovering the order in which entities occur in a
file, whereas our focus is on recovering the record structure
within and subtyping relationship between the entities.

The rest of this paper is organized as follows. Section 2
introduces terminology. Section 3 provides an informal out-
line of the algorithm, while Sections 4 through 6 provide the
details. Section 7 describes a prototype implementation; fi-
nally, Section 8 mentions future work opportunities.



2 Terminology and Notation

A data-source is a statement that creates a new value in
an executing program, e.g., a READ statement. Note that
during program execution, values are generated by data-
sources, and then copied around by MOVE statements. A
program’s variables occupy a statically fixed number of lo-
cations (bytes). A range is a closed interval [i : j], and rep-
resents bytes i through j (inclusive). (On the other hand, the
notation VAR[I:J] inside a Cobol program refers to bytes
I through J within variable VAR.) Each variable occupies a
certain range of memory locations. We will often use a pro-
gram variable in places where a range is required. A data-
reference is a specific occurrence of a program variable, or
a reference to a range of memory locations, in a program
statement. We will use the notation [i : j]@S to indicate
a data reference to locations [i : j] in a statement S. Two
predicates are said to be disjoint iff their conjunction equals
false; otherwise, they are said to overlap.

3 Algorithm Outline

In this section, we present an informal outline of our al-
gorithm. Details appear in subsequent sections.

3.1 Guarded Dependence Analysis

The first step in our algorithm is the computation of
guarded transitive dependences. A guarded dependence of
the form g�r1@p1  r2@p2 indicates that the value stored
in a range of locations r1 at program point p1 may eventu-
ally (after being copied zero or more times) reside in a range
of locations r2 at program point p2 if the condition g is true
about the program state at p1. We present a formal defi-
nition of this dependence relation in Section 4. We utilize
a polynomial-time path-sensitive backward dataflow analy-
sis to compute all guarded transitive data dependences that
originate at a data-source statement and terminate at some
data-reference. Section 4 has the details of this analysis.

3.2 From Guarded Dependences to Cuts

The next step towards inferring an object-oriented model
is to identify what we call cuts at data-source statements.
A cut is an abstraction of a guarded data dependence that
retains information only about the source of the depen-
dence. Specifically, for each data-source statement st, and
for each guarded dependence g � r1@p1  r2@p2 orig-
inating at st (i.e., p1 is the program point following st)
and terminating at some data reference in the program (i.e.,
the statement that immediately follows program point p2

refers to range r2), we infer a cut g � r1 at st. Informally,
this cut signifies that the data stored in r1 by st is used
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Figure 4. Cuts inferred for running example.
p1 is the predicate “LOCATION-TYPE = ’M’”, and
p2 is the predicate “CARD-INFO[1:1] = ’C’”.

in a particular way by the program under a certain condi-
tion (as described by predicate g on the program-state at
p1). As an example, the guarded dependence mentioned
at the beginning of Section 1.2 identifies the following cut
at the data-source statement /1/: (LOCATION-TYPE = ’M’) �

CARD-TRANSACTION-REC[2:9]

3.3 The Cut-Structure Tree

Fig. 4 shows the set of all cuts inferred at statement /1/ of
our running example. (As we will explain soon, the cut c8

actually represents multiple inferred cuts.) The outermost
rectangle represents the entire data read at statement /1/,
while each inner rectangle represents a cut; the predicate of
each cut, and its range (relative to the outermost rectangle),
are written inside the cut’s representing rectangle.

The horizontal and vertical axis of each rectangle repre-
sents the range and predicate of the corresponding cut, re-
spectively. Cuts that occupy overlapping ranges, e.g., c2 and
c3, overlap horizontally; cuts that occupy non-overlapping
ranges, e.g., c1 and c2, do not overlap horizontally; and cuts
that have “disjoint” predicates, e.g., c2 and c3, do not over-
lap vertically. (However, ensuring the converse will compli-
cate the figure and so we do not attempt this; so cuts that do
not overlap in the vertical dimension may have overlapping
predicates; e.g., cuts c3 and c5.)

After inferring cuts at a data-source, our algorithm or-
ganizes them into a tree structure, which we call the cut-
structure tree. Fig. 4 shows this tree structure, using nest-
ing among the rectangles to represent parent-child relation-
ships. The tree satisfies the following properties:

• A cut p1�r1 is an ancestor of a cut p2�r2 iff p2 implies
p1 and r2 is equal to r1 or a subrange of r1.

• If a cut ci is not an ancestor or descendant of a cut cj ,
then either their predicates are disjoint or their ranges
are disjoint.

We say such a cut-structure tree is well-structured. In gen-
eral, the set of cuts initially generated for a data-source
may not form a well-structured tree of cuts. In such cases,
we merge certain cuts and widen the predicates of certain
cuts, as described in Section 5, and try to produce a well-
structured tree. This step will succeed unless there exist



e
1

e
0

e
2

Figure 5. The disjoint-union model strategy

cuts with overlapping predicates and improperly overlap-
ping ranges. Failure typically indicates that the predicates
of the cuts are not precise enough; this happens if the ab-
straction used for path-sensitivity (which is a parameter to
our analysis – see Section 4.2) is not precise enough.

In our running example, the three different references
to AMOUNT produce three different cuts at statement /1/,
all with the range [45 : 48] but with different predicates,
namely CARD-INFO[1:1] = ’C’, CARD-INFO[1:1] <> ’C’,
and LOCATION-TYPE = ’M’. Because the predicate for the
third cut overlaps the predicates for the other two cuts, the
three cuts are merged into the single cut c8 = true�[45 : 48],
producing a well-structured tree.

3.4 From Cuts to a Class Hierarchy

Cuts identify logically cohesive units of data. We cre-
ate a data model by creating classes to represent cuts in the
cut-structure tree with appropriate relations between these
classes, as shown below.

Atomic Data. An innermost cut (i.e., a leaf of the cut
structure tree), such as cut c10, represents atomic data: that
is, the program does not ever refer to any proper subse-
quence of the data represented by the cut. We represent
such cuts using atomic classes. These represent the prim-
itive logical types in the model. In our example, cut c10

corresponds to the class AtmID (see Fig. 2).
Structured Data. The cut c3 in Fig. 4 has two child cuts

c10 and c11, represented, respectively, by atomic classes At-
mID and OwnerID in Fig. 2. c3 represents structured data
consisting of the two parts c10 and c11 and is modeled natu-
rally as a class AtmDetails with two fields of types AtmID
and OwnerID. As this example illustrates, a cut, such as
c10, may generate, in general, both a class (representing its
type) as well as a field (in its parent cut’s class). We refer to
this strategy (of creating a class consisting of one field for
each child cut) as the concatenation model strategy.

Subtyping. Consider the example shown in Fig. 5. The
two leaf cuts e1 and e2, which have disjoint predicates, can
be modeled by two classes E1 and E2 respectively. How-
ever, because the two cuts are never alive simultaneously,
the parent cut e0 may contain either e1 or e2 at any time, but
never both. This example is best modeled by making E1 and
E2 derived classes of the class E0 used to model e0. We re-
fer to this strategy, which is applicable only on cuts whose
children all have disjoint predicates, as the disjoint-union
model strategy.

Factoring. Consider the cut c0 (the outermost box), and
its children c1, c2, . . . , c8, in Fig. 4. The child cuts don’t
all have the same predicate, nor are all their predicates dis-
joint. Informally, we could think of this tree as being incom-
plete: it does not reveal the complete structure/grouping of
the children of c0. In such situations our approach tries to
insert new cuts into the cut structure tree, such that, to the
extent possible, the children of each cut either all have the
same predicate as the parent (i.e., the parent can be modeled
using the concatenation strategy with no loss of precision),
or all have disjoint predicates (the parent can be modeled
using the disjoint-union strategy).

We call this step factoring; we present the details of this
in Section 6, but illustrate the results of factoring cut c0 in
Fig. 7. The top part of the figure shows c0 and its children as
they are originally, while the bottom part shows the factored
tree (ignore the middle part, for now). Note the newly intro-
duced nodes labeled “U”, “U”, and N3. The nodes labeled
“U” have children with disjoint predicates and are modeled
using the disjoint-union strategy; all remaining nodes are
modeled using the concatenation strategy. The resultant
model for our running example is shown in Fig. 2.

4 Guarded Dependence Analysis

In this section we introduce the concept of a guarded de-
monic dependence and present an analysis to compute these
dependences.

4.1 Guarded Demonic Dependences

Let sin and sout denote the program points just before
and after a statement s respectively. Let p1, p2 denote pro-
gram points, and let r1, r2 denote ranges, and let g denote a
predicate (over the program state). A guarded demonic de-
pendence is of the form g � r1@p1  r2@p2, and indicates
that the data residing in the range of locations r1 at p1 may
eventually (after being copied zero or more times) reside in
the range of locations r2 at p2 if g is true at p1.

The distinguishing characteristics of these dependences
are (a) they capture data dependences that are transitive over
MOVE statements (similar to the notion of value-point equiv-
alence [15]), (b) they capture only those transitive flows
where the byte sequence is copied in its entirety (not in por-
tions) by the intervening copy assignments, (c) they may in-
volve arbitrary (memory) ranges, not just variables, (d) they
have guards, indicating the conditions under which the de-
pendence may be manifested, and (e) the dependences are
“demonic”, as illustrated by the example below.

s : READ [1:5].
MOVE "AB" TO [1:2].
MOVE "CDE" TO [3:5].
t : WRITE [1:5].



The dependence true � [1 : 5]@sout  [1 : 5]@tin holds
for the above program. Specifically, in this dependence
computation, we treat an assignment statement as “killing”
the data under consideration only if it completely overwrites
the data. But a sequence of statements that each partially
overwrites the data is not considered to “kill” the data under
consideration even if they collectively overwrite the com-
plete data. Informally, the above dependence indicates that
in a non-standard semantics of the program that exploits
a strongly-typed object-oriented representation of data, the
object created at s may reach the use at t. The intervening
assignments merely update the values of fields of the object.

4.2 Backward Dependence Computation

In this section, we show how we can identify (a conser-
vative over-approximation of the) guarded demonic depen-
dences g � r1@p1  d that terminate at data-references
d occurring in the program, using a backward dataflow
analysis. We refer to the computed set of dependences as
Deps. We present a sequence of analyses, of increasing
sophistication, to compute these dependences. Each anal-
ysis is described by a semi-lattice (L,t) and a function
α[S] : L → L that maps every statement S to a func-
tion from L to L. This determines the following collection
of equations over all statements S in the program (where
succs(S) denotes the set of successors of S), whose least
fixed point is computed using standard techniques:

Sin = α[S](Sout)

Sout =
⊔

T∈succs(S)

Tin

A Path-Insensitive Dependence Computation We first
present a path-insensitive analysis for computing depen-
dences without guards (i.e., whose guards are true). We
abbreviate the dependence notation by dropping the guard
g in this setting. Let DataRef denote the set of all data-
references in the given program. Let M denote the num-
ber of locations used by the program. Let Ranges denote
the set { [i : j] | 1 ≤ i ≤ j ≤ M }. Let Dpi denote the set
Ranges×DataRef , which is the domain of demonic depen-
dences without guards. We will overload our notation and
depict an element (r, d) of Dpi as r  d.

The analysis computes for every statement s an over-
approximation of the set { r  d ∈ Dpi | r@sin  d }.
We utilize a backward analysis with the powerset lattice
2Dpi , with set-union as the join operation, for this purpose.
Table 1 shows the abstract state transformer semantics used
for the backward analysis. (Conditional branches are en-
coded using ASSUME pred statements attached to branches,
where pred describes the condition under which the branch

Statement S αpi[S] : 2Dpi → 2Dpi

WRITE Yd λOut. Out ∪ { Y  d }
READ Yd λOut. { Y  d }∪

{ r  t | r  t ∈ Out and r 6⊆ Y }
MOVE XdX TO YdY λOut. { X  dX, Y  dY } ∪
where Y = [y1 : y2] { r  t | r  t ∈ Out ∧ r 6⊆ Y } ∪
and X = [x1 : x2] { r′  t | r  t ∈ Out, r ⊂ Y ,

and r′ = r − y1 + x1 }
ASSUME pred λOut. Out ∪ {r  d | pred contains

a data-reference d to a range r }

Table 1. Path-insensitive statement abstrac-
tion. Superscripts on data-references are
used to identify them in the second column.

is executed. Other forms of Cobol statements can be re-
duced to primitives of the form shown here.)

This analysis can be implemented efficiently, in poly-
nomial time. Note that for a given target data-reference,
at most O(M) dependences can exist at a program point
(though, in practice, one would expect the number of such
dependences to be far smaller).

Making the Analysis Path-Sensitive We now extend the
above analysis to compute dependences with guards. Our
approach to path-sensitivity is similar to the one presented
in [5] and is parametric over the abstraction used for the
guards. Assume that we are given a lattice G of guards, and
a corresponding abstraction function αg[t] : G → G for ev-
ery program statement t that conservatively approximates
the weakest-precondition semantics of t: i.e., the state be-
fore execution of t must satisfy αg[t](g) if the state after
execution of t is to satisfy g. Let tG and uG be the join and
meet operations of the lattice. (Since elements of G repre-
sent predicates, these operations are conservative approxi-
mations of logical disjunction and logical conjunction.)

As an example, a lattice that is useful in practice al-
lows conjunctions of elementary guards of the form v = c1

and v 6∈ { c1, · · · , ck } where v is a variable and each
ci is a constant. It is sufficient, in practice, if we consider
only constants ci explicitly mentioned in the program. This
yields a useful guard lattice of polynomial height.

Exponential Path-Sensitivity We first sketch a straight-
forward way to augment the dependences propagated by the
path-insensitive algorithm with a guard. Let Deps denote
the set G × Ranges × DataRef . The goal of the analysis
is to compute for every statement s an over-approximation
of the set { g � r  d ∈ Deps | g � r@sin  d }. We
will utilize the powerset lattice 2Deps , with set-union as the
join operation, as the abstraction lattice. The abstract trans-
former αeps[t] : 2Deps → 2Deps for a statement t can be



defined in terms of the path-insensitive abstraction and the
guard abstraction as follows:

αeps[t](Out) = {true � r′  d′ | r′  d′ ∈ αpi[t]{}}
⋃

{αg[t](g) � r′  d′ | g � r  d ∈ Out,
r′  d′ ∈ αpi[t]{r  d}}

The first term says that any dependence “generated” by the
statement has an associated guard “true”. The second term
considers any dependence g � r  d known to exist after
the statement. If the backward propagation of the depen-
dence r  d by the path-insensitive algorithm produces the
dependence r′  d′ before the statement, then we will gen-
erate the guarded dependence αg[t](g) � r′  d′ (where
the guard αg[t](g) is obtained by transforming the guard g
using the guard abstraction).

Note that the guard lattice described earlier has a poly-
nomial height but an exponential number of elements. As a
result, the powerset lattice 2Deps has an exponential height,
and the above analysis can take exponential time.

Polynomial Path-Sensitivity Note that for a given range
r and data-reference d, the above analysis may generate
(possibly exponentially) many dependences g � r  d at a
given program point. These different dependences capture
different paths along which the dependence r  d may be
manifested. We avoid this exponential blow-up by allowing
only one guard per dependence at a program point: i.e., if
two guarded dependences g1 � r  d and g2 � r  d arise
at a program point, the two are approximated by the single
guarded dependence (g1 tG g2) � r  d.

Formally, we use the latticeDpps = Dpi → G: the lattice
elements are maps from Dpi to G, and the join m1 tm2 is
defined to be λx.m1(x) tG m2(x). A map m represents
the fact that the dependence r  d holds at a point only
when m(r  d) holds true at that point. The abstract state
transformer used for statements is automatically induced by
this abstraction, as outlined below.

We define the function set-to-map : 2Deps → Dpps that
merges a set of guarded dependences into a map as follows:
set-to-map(S) = λ(r  d). tG {g | g � r  d ∈ S}. We
define the function map-to-set : Dpps → 2Deps as follows:
map-to-set(m) = {m(r  d) � r  d | r ∈ Ranges, d ∈
DataRef }. We now define the abstract state transformer
αpps[t] : Dpps → Dpps as follows:

αpps[t](Out) = set-to-map(αeps[t](map-to-set(Out)))

5 Generating cuts and the cut-structure tree

As mentioned in Section 3.2, guarded dependences orig-
inating at the program point following a data-source and
terminating at a data reference are used to identify cuts at

that data source. Let s be a data-source and r the range that
is assigned a value at s. The set of cuts Cuts(s) is defined to
be {true�r}∪ {g�r′ | r′ ⊂ r, g�r′@sout  d ∈ Deps},
where Deps is the set of guarded dependences computed by
the algorithm presented in Section 4.

We then attempt to organize the cuts in Cuts(s) as a tree.
A cut p1 � r1 is defined to be an ancestor of a cut p2 � r2

iff p2 implies p1 and r2 is equal to r1 or a subrange of r1.
Our algorithm requires this relation to induce a tree (rather
than DAG) structure on the cuts and requires the tree to be
well-structured (see the definition of this in Section 3.3). If
it does not, we repeatedly apply the following two transfor-
mations until either the cuts become a well-structured tree
or no more transformations apply:

Cut Merging: Replace any two cuts p1 � r and p2 � r in
Cuts(s) such that p1 and p2 overlap but neither one implies
the other by the single cut p1 tG p2 � r.

Cut Widening: Consider any pair of cuts ca = pa � ra

and cd = pd � rd in Cuts(s) such that ra is a super-range of
rb and pd overlaps but does not imply pa. We then replace
ca by pa tG pd � ra.

We consider all cuts in increasing order of their range
size and apply the above transformations if applicable. If
the resulting cuts do not form a well-structured tree our al-
gorithm halts with failure (does not produce a model).

6 Factoring the cut-structure tree and pro-
ducing the class hierarchy

We now present an algorithm for factoring a given cut-
structure tree, which may add new nodes to the tree while
preserving the ancestor-descendant relationship on the orig-
inal nodes. In addition, it labels all non-leaf nodes in the re-
sulting tree as disjoint-union nodes or concatenation nodes,
where distinct children of a disjoint-union node are guaran-
teed to have disjoint predicates. The goal of the transforma-
tion is to capture as much disjointness information as possi-
ble (in the form of disjoint-union nodes) to enable the gen-
eration of a better data model, as explained in Section 3.4.
Note that the newly inserted nodes will have no predicates
(though it is possible to compute predicates for them).

The algorithm is a top-down traversal of the tree. (See
Fig. 6 for a pseudo-code description of the algorithm.)
When we visit a node p, we attempt two different trans-
formations of p and it’s children as follows.

Disjoint Union Identification: In this transformation, we
create a graph consisting of the children of p as vertices. We
add edges between any two children that have an overlap-
ping predicate. (We will refer to this graph as the overlap-
edge graph.) If the resulting graph has two or more con-
nected components, then p is transformed into a disjoint-
union node by replacing all its children by a set of new



process (p : node) {
if (! disjointUnion(p)) then horizontalPartition(p) endif
for every child c of p do process (c) endfor

}
boolean disjointUnion(p : node) {

C = children(p)
E = { (u, v) ∈ C × C | pred(u) and pred(v) overlap }
CC = connected components of graph <C, E>
if |CC| > 1 then

for every cc in CC do makeSubGroup(p, cc) endfor
mark p a disjoint union node; return true

else
mark p a concatenation node; return false

endif
}
makeSubGroup (p: node; group: subset of p’s children) {

if (|group| > 1) and (group 6= children(p)) then
create a new node g; add g to children(p)
for each c in group do

remove c from children(p); add c to children(g)
endfor

endif
}
horizontalPartition (p: node) {

C = children(p)
E = { (u, v) ∈ C × C | pred(u) and pred(v) are disjoint }
CC = connected components of graph <C, E>
for each cc in CC do makeSubGroup (p, cc) endfor

}

Figure 6. The factoring algorithm.

nodes, one for each connected component. All original chil-
dren of p are made children of the corresponding connected
component node. (Note that this creation of extra nodes is
avoided for connected components with a single node, as
detailed in Fig. 6.) If the graph has only one connected
component, then the transformation fails, and we attempt
the next transformation on p.

This transformation captures the disjoint-union model
strategy presented in Section 3.4: distinct connected com-
ponents of the overlap-edge graph represent cuts (or data)
that do not exist simultaneously, which are naturally mod-
eled as distinct derived classes of a common base class.

Horizontal Partitioning: This is almost the dual of the
previous step. We construct a graph consisting of the chil-
dren of p as the vertices, with an edge between any two
nodes that have disjoint predicates. (We will refer to this
graph as the disjoint-edge graph.) We identify the con-
nected components of this graph. We replace the children of
p with new nodes, one for each connected component. As
before, we avoid the creation of unnecessary nodes (either
if there is only one connected component, or the connected
component contains only one vertex).

The horizontal partitioning essentially implements the
concatenation model strategy described in Section 3.4.

C0: T

C1: T C4: T C8: TC2: p1 C3: !p1 C5: p2 C6: !p2 C7: p2

C0: T

C1: T C4: T C8: T

C2: p1 C3: !p1 C5: p2 C6: !p2 C7: p2

N1 N2  

H

V V

C0: T

C1: T C4: T C8: T

C2: p1 C3: !p1

C5: p2

C6: !p2

C7: p2

U U

N3

Figure 7. Illustration of the factoring algo-
rithm. true has been abbreviated to T.

However, it first identifies sub-groups of children to which
the disjoint-union model strategy may (subsequently) ap-
ply. These are essentially the connected components of the
disjoint-edge graph. (The iterative traversal of the tree will
later process these sub-groups appropriately and produce
disjoint-union nodes if possible.)

Algorithm Illustration. Fig. 7 illustrates how factoring
works for part of our example. The figure shows the root
node and its children of the cut-structure tree (see Fig.4).
The disjoint-union transformation is not applicable at the
root node C0 since its children form a single connected
component in the overlap-edge graph. We apply horizon-
tal partitioning to C0: The disjoint-edge graph produces
two non-trivial connected components, { C2, C3 } and
{ C5, C6, C7 }. Creating new nodes N1 and N2 for these
components produces the tree shown next. (Each of the re-
maining children C1, C4, and C8 forms its own connected
component and is not affected by the transformation.)

We recursively visit the children of C0 (in the trans-
formed tree). Consider how N2 is processed. The disjoint-
union transformation identifies two connected components
{ C5, C7 } and { C6 } in the corresponding overlap-edge
graph. Creating a new node for the component { C5, C7 }
produces the tree shown next. Node N2 is also marked as a
disjoint-union node (shown in the figure by simply labeling
it “U”). Node N1 is also similarly marked as a disjoint-union
node. All other remaining nodes are marked as concatena-
tion nodes (which is not shown in the figure).

Generating the class hierarchy. Generating a class hi-



Prog. LOC # # # data data time
stmts vars refs size (sec)

A 968 210 391 225 8728 20
B 2448 211 882 213 9846 29
C 2780 555 1275 746 27136 190

Figure 8. Summary of real programs

erarchy from a factored cut-structure tree is straightforward.
Create a class Cn for each node n in the tree. Let c1, · · · , ck

be the children of n. If n is labeled as a disjoint-union node,
then make each Cci

a derived class of Cn, otherwise, create
a field fci of type Cci in Cn for 1 ≤ i ≤ k.

Finally, we repeatedly apply a few rules that simplify the
class diagram: (a) if all subtypes of a base type have leaf
fields that all pertain to the same memory range, move up
these fields to a unified field in the base type, (b) eliminate
subtypes all of whose fields get moved up, and (c) merge a
base type that has only one subtype with its sub type.

7 Implementation

We have implemented a prototype of our algorithm. The
output of the prototype tool is a class hierarchy (model) of
the data read at each data-source in the given program. The
implementation addresses the (full) Cobol language. The
initial step (guarded dependence analysis) is implemented
in Java. We used the constant propagation lattice (including
predicates of the form v 6∈ { c1, · · · , ck }) as the guard lat-
tice, as described in Section 4.2; we address procedure calls
context sensitively in this analysis by annotating dataflow
facts with call strings [20]. This is feasible because Cobol
does not allow recursion. (We believe that the IFDS ap-
proach of [19] can be used to handle procedures more ef-
ficiently, but this is future work.) The subsequent steps of
the algorithm, namely generating the cut-structure tree, and
cut-structure tree factoring, are implemented in OCaml.

We ran the tool on several test-cases we wrote as well on
a few real programs (from two separate applications from
the financial industry). We verified the algorithm output on
our test-cases; e.g., for the program in Fig. 1, the tool pro-
duced the class diagram shown in Fig. 2. Fig. 8 provides
statistics relating to input size and analysis time for the three
real programs that we analyzed. The columns in this figure,
from left to right, are the number of lines of code (LOC),
number of Cobol statements, number of declared variables,
number of data references in statements, and total data size
of the program (sum of sizes of all declared variables). The
last column gives the analysis time on a laptop with Intel
Centrino 1.8 GHz processor and 1.5 Gig of RAM.

Programs A, B, and C had three, four, and four data
sources, respectively. The implementation successfully pro-
duced a class diagram for 10 of the 11 data sources. Fig. 9
presents statistics for 5 of the 10 class diagrams produced,

Class diagrams
1 2 3 4 5

#bytes in data source 1500 1075 200 4000 80
# classes 72 27 12 9 5

# leaf classes 71 18 7 5 3
# classes w/ fields 1 5 4 3 2
# base classes 0 4 1 1 0
# derived classes 0 9 3 2 0

# fields 71 17 8 6 4

Figure 9. Summary of five class diagrams

with one class diagram per column. (We omit the 5 smallest
class diagrams due to space limitations – in total these 5 di-
agrams contained only 11 classes). The first row shows the
size of the variable initialized at the data source. The second
row is the total number of classes in the class diagram; every
class is either a leaf class, or a class with fields, or a base
class. (Our algorithm produces single-inheritance models
where base classes do not have fields and derived classes
are themselves not base classes.) The last row shows the
total number of fields in the structured classes.

We manually inspected the class diagram summarized in
Column 2 of Fig. 9 (from Program B), to validate it. The
inferred model consisted of a “root” class. The type of one
field of the root class was a base class with three derived
classes; the types of all other fields in the entire class dia-
gram were leaf classes. We then inspected program B and
observed that the inferred class diagram modeled an input
parameter v of the program, and that it was a good model of
v. The leaf fields in the “root” class corresponded to fields
of v that the program unconditionally defined (v was a refer-
ence parameter). The three subtypes corresponded to three
distinct groups of fields within v. Depending on the value
of another “flag” parameter, the program assigned values to
fields of exactly one of these three groups.

The model concisely shows what fields in v are referred
to in the code, and which ones are accessed under the same
condition. This information is not obvious from the code
because (a) only a small percentage of v’s fields are referred
to in the program, and these are not declared contiguously,
and (b) only a small percentage of the program’s statements
refer to v, and these statements are not contiguous.

We also inspected Program C, which had the (sole) data
source for which the algorithm failed. The failure was be-
cause of two cuts at this data source with overlapping predi-
cates and improperly overlapping ranges (see the discussion
in Section 3.3). A powerful guard lattice (e.g., one that can
represent disjunctions such as v = c ∨ w = d) would
avoid this problem. Such a powerful guard lattice may be
required only in a small number of cases (as evidenced by
our study). Thus, it may be useful in practice to try model
inference with a simpler guard lattice first, and resort to a
more sophisticated lattice if the simpler lattice fails.



8 Semantics and Extensions

We have presented an algorithm for inferring an OO data
model for the input data of programs. There is a seman-
tic basis for our approach, and a corresponding notion of
correctness of the model inferred. Specifically, every part
(subsequence) of the input data at a source statement that
is referred to in the program (potentially after copying and
moving the data around) is guaranteed to yield a field (po-
tentially nested) in the data model inferred for that source.
(As a special case, this implies that any part of the data that
is described by a leaf class in the model is guaranteed to
be treated atomically by the program: i.e., the program al-
ways treats such datum as a unit, and never references a
part of the datum.) Furthermore, every derived class in the
model is associated with a predicate; these predicates can
be conjoined (in the presence of nested fields) to describe
the condition under which (the data corresponding to) any
field in the model may be referenced in the program. We
omit a more detailed discussion due to space limitations.

A natural extension of this algorithm would be to inte-
grate the data models inferred for different data-sources, as
well as to infer types of variables at every point in the pro-
gram. We believe this can be done, e.g., using some of the
ideas that appear in [18].
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