
Path Disruption Games

Yoram Bachrach
Microsoft Research

Cambridge UK
yobach@microsoft.com

Ely Porat
Department of Computer Science

Bar-Ilan University, Ramat-Gan, Israel
porately@cs.biu.ac.il

ABSTRACT
We propose Path Disruption Games (PDGs), which consider
collaboration between agents attempting stop an adversary
from travelling from a source node to a target node in a
graph. PDGs can model physical or network security do-
mains. The coalition attempts to stop the adversary by
placing checkpoints in intermediate nodes in the graph, to
make sure the adversary cannot travel through them. Thus,
the coalition wins if it controls a node subset whose removal
from the graph disconnects the source and target. We ana-
lyze this domain from a cooperative game theoretic perspec-
tive, and consider how the gains can be distributed between
the agents controlling the vertices. We also consider power
indices, which express the influence of each checkpoint loca-
tion on the outcome of the game, and can be used to iden-
tify the most critical locations where checkpoints should be
placed. We consider both general graphs and the restricted
case of trees, and consider both a model with no cost for
placing a checkpoint and a model with where each vertex
has its own cost for placing a checkpoint.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Vertex Cut, Power indices, Co-
operative Game Theory

1. INTRODUCTION
One important facet of multi-agent systems that has been

well studied in the past is collaboration. Cooperative game
theory considers cooperation among self interested entities,

Cite as: Path Disruption Games, Yoram Bachrach, Ely Porat,Proc. of
9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and has been applied to analyze many such domains. Two
important application domains for multi-agent systems are
physical security and network security. Game theory has
already been used to analyze security issues in several do-
mains. One example is [1], which examines the optimal
robot patrolling policy. Another example is [19, 18], which
attempts improving security at major locations of economic
or political importance by selecting the optimal security pol-
icy against a sophisticated adversary.

Consider a transportation network and an adversary who
is based at a source vertex and wishes to travel to a target
vertex. Consider a set of agents, each controlling a certain
vertex. Each agent is capable of placing a checkpoint at her
controlled vertex, making sure the adversary cannot pass
there. Although a single checkpoint is unlikely to stop the
adversary from traveling to the target, the agents might be
able to place several checkpoints such that any path con-
necting the source to the target must pass through at least
one checkpoint. In some domains, an agent can place a
checkpoint on her vertex for free, while in other domains it
might be costly. A similar situation can occur in a com-
munication network, where agents attempt to prevent the
adversary from sending information from the source to the
target. We model this as Path Disruption Games (PDGs).

Given a PDG, several key questions arise. The coali-
tion obtains the reward as a whole. How should this re-
ward be distributed among the coalition members? What
is the optimal policy for a coalition of agents? Which of
the placed checkpoints is most critical to achieve the task,
and which has no influence on the outcome? We analyze
PDGs from a game theoretic perspective to answer these
questions. Specifically, we consider the core and least-core
and the Banzhaf power index. We consider both a model
where placing checkpoints is free and a model where there
may be a different price for placing different checkpoints. In
the no cost model we show computing power indices is gen-
erally hard, but tractable for trees. In the model with costs,
we show that even finding the optimal checkpoint configu-
ration is hard, but some problems are tractable for trees.

2. PRELIMINARIES
A coalitional game is composed of a set of n agents, I =

(1, . . . , n), and a function mapping any subset (coalition) of
the agents to a real value v : 2I → R. The function v is called
the characteristic function (or, in some works, coalitional
function) of the game. In simple coalitional games, v only
gets values of 0 or 1, so v : 2I → {0, 1}. We say a coalition
C ⊆ I wins if v(C) = 1, and loses if v(C) = 0. We say

an agent i is critical in a winning coalition C if the agent’s
removal from that coalition would makes it coalition lose:
v(C) = 1 but v(C \ {i}) = 0. We say agent i is a veto agent
if no coalition wins without her, so if v(C) = 1 then i ∈ C.

In non-simple general coalitional games, the characteristic
function may have any value in R+, which denotes the total
gains of a coalition. This function only defines the total util-
ity a coalition achieves, but does not define how these gains
should be distributed among the agents. An imputation
(p1, . . . , pn) is a division of the gains of the grand coalition
I among the agents, where pi ∈ R, and

Pn
i=1 pi = v(I).

We call pi the payoff of agent i, and denote the payoff of a
coalition C as p(C) =

P
i∈C pi. Obviously, rational agents

attempt to maximize their own share of the utility. Coop-
erative game theory offers several solution concepts, deter-
mining which imputations are likely to occur.

A basic requirement is individual-rationality : for all agents
i ∈ C, we have pi ≥ v({i}). If individual rationality does
not hold for an agent, she is better off on its own. Similarly,
we say a coalition B blocks the payoff vector (p1, . . . , pn) if
p(B) < v(B), as the members of B can drop off from the
main coalition and gain more utility without the rest of the
agents. Thus, if a blocked imputation is chosen, the coali-
tion is unstable. A solution concept that emphasizes such
stability is the core [12].

Definition 1. The core of a coalitional game is the set
of all imputations (p1, . . . , pn) that are not blocked by any
coalition, so that for any coalition C, the following holds:
p(C) ≥ v(C).

In some games the core is empty, so we must relax the
constrains, based on the assumption that a coalition would
only deviate if it gains significantly. The ε-core is a solution
concept based on relaxing the inequalities of Definition 1.

Definition 2. The ε-core is the set of all imputations
(p1, . . . , pn) where for any coalition C ⊆ I, p(C) ≥ v(C)− ε.

We call the difference v(C)−p(C) between a coalition C’s
value and the payoff the deficit of the coalition. Under an
imputation in the ε-core, the deficit of any coalition is at
most ε. If ε is large enough, the ε-core is guaranteed not
to be empty. Achieving more stability obviously requires
finding the smallest value of ε such that the ε-core is not
empty. This solution concept is called the least core. Given
a game G we consider {ε|The ε-core of G is not empty}. It
is easy to see that this set is compact, and thus has a minimal
element εmin.

Definition 3. The least-core of the game G is the εmin-
core of G.

Imputations in the least-core distribute the gains in a way
that minimizes the incentive of a coalition to break away
(minimizing the maximal deficit). Under such an imputa-
tion, no coalition can gain more than εmin by deviating,
while for any ε′ < εmin it is impossible to distribute the
gains so no coalition has a deficit higher than ε′.

The definitions of the core and least-core allow us to find
stable payoff distributions in PDGs. Another question we
address in this paper is measuring the influence of a given
checkpoint on the capability to prevent the adversary from
traveling between the source and target vertices. A common

interpretation for this is the probability that this checkpoint
would significantly affect the outcome of the game.

One method of measuring the influence of an agent in co-
operative settings is through power indices. One commonly
used power index is the Banzhaf power index [6]. It has
been widely used for measuring political power in weighted
voting systems, but it can be applied to any simple coop-
erative game. This power index depends on the number of
coalitions in which an agent is critical. The Banzhaf index
of agent i is the proportion of all winning coalitions where i
is critical, out of all coalitions that contain i.

Definition 4. The Banzhaf index is given by β(v) =
(β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

X

S⊆N|i∈S

[v(S)− v(S \ {i})].

Consider a situation where the agents are independent in
their choices, so every coalition has an equal probability of
occurring. Under this setting, the Banzhaf index measures
the probability that a certain agent is critical in the occur-
ring coalition. Other power indices reflect other assump-
tions. For example, the Shapley-Shubik index considers a
model where agents are added into a coalition in an order
chosen uniformly at random.1

Our hardness result for calculating the Banzhaf power in-
dex in PDG considers the class #P. The complexity classes
#P and #P-complete were introduced by Valiant [23], and
are used to examine problems where “counting the number
of solutions” is hard.2

3. PATH DISRUPTION GAMES
We analyze a domain where a coalition attempts to dis-

rupt connectivity between two vertices, by disallowing the
use of certain intermediary vertices. We consider an adver-
sary who attempts to travel between a source and a target in
a graph, and a coalition whose goal is to prevent the adver-
sary from doing so. The coalition may place checkpoints on
the intermediary vertices to make sure the adversary can-
not travel through them, thus eliminating them from the
graph. By eliminating vertices, the coalition can disconnect
the source and target. Obviously, there may be several pos-
sible paths from the source to the target, so the coalition
must disrupt all of them to achieve its goal.

Our question is, given our desire to stop the adversary,
where should the checkpoints be placed? Given limited secu-
rity resources, how should they be allocated? On which ver-
tices should we concentrate to make sure the adversary fails?
Also, given a certain reward for stooping the adversary, how
should this reward be distributed among the agents?

1Although the Banzhaf and Shapley-Shubik indices are sim-
ilar, the Banzhaf index considers all possible subsets of
agents, whereas the Shapley-Shubik index is defined over
all permutations of the agents
2Informally, NP-hardness describes problems where check-
ing for the existence of a solution to a combinatorial prob-
lem, whereas #P-hardness describes problems where calcu-
lating the number of solutions to a combinatorial problem
is hard. Obviously, it is harder to count the number of solu-
tions than to find out if at least one solution exists. Thus,
#P-complete problems are at least as hard (but possibly
harder) than NP-complete problems.

We model the above problem as a cooperative game, called
the Path Disruption Game. The game is constructed such
that the Banzhaf power index in it would provide a good
measure of the criticality of each possible vertex checkpoint.
We then extend the model to directly model different costs
for setting up checkpoints in various locations.

A Path Disruption Game is played over a graph G =
〈V, E〉 with a source s ∈ V and target t ∈ V vertices. In
PDGs, each agent controls one of the vertices. A coalition
wins if the removal of the vertices owned by its agents dis-
connects s from t. Consider a set of n agents I = (1, . . . , n),
so that agent i controls vertex vi ∈ V . Given a coalition
C ⊆ I we denote the vertices that C controls as V (C) =
∪i∈Cvi ⊆ V . We say V (C) is a vertex s− t cut in G if every
path from s to t passes through some v ∈ V (C).

Definition 5. A Path Disruption Game (PDG) is a sim-
ple coalitional game, where the value of a coalition C ⊆ I is
defined as follows:

v(C) =

(
1 if V (C) is a vertex s− t cut in G

0 otherwise

Definition 5 has no costs associated with placing a check-
point. An alternative definition directly takes these costs
into account. We associate with each vertex in vi ∈ V a
cost ci for placing a checkpoint at that vertex. A coali-
tion C can place a checkpoint at any vertex controlled by
a coalition member. Our model assumes there is a reward
r ∈ R associated for disconnecting s and t. Suppose the
coalition decides to place checkpoints at vertices B ⊆ V (C).
The cost of this is

P
i|vi∈B ci. For any B ⊂ I we denote

w(B) = 1 if B disconnects s and t, and w(B) = 0 otherwise.
The optimal checkpoint placement for coalition C has cost
m(C) = min{c(B)|w(B) = 1} if w(C) = 1 (i.e. if C can
disconnect s and t), and otherwise we define m(C) = ∞.

Definition 6. A Path Disruption Game with Costs (PDGC)
is the game where the value of a coalition C ⊆ I is:

v(C) =

(
r - m(C) If m(C) < ∞
0 otherwise

4. THE NO COSTS MODEL
We first consider the model where a checkpoint may be

placed at any vertex controlled by the coalition at no cost.
We first consider computing the core in PDGs.

4.1 The Core of PDGs
Consider a PDG where a coalition who succeeds in pre-

venting the adversary from arriving at the destination ob-
tains a certain reward for doing so. This reward is given
to the coalition members as a group, and the agents who
formed the coalition must then decide how it should be di-
vided among the coalition members. Even if a successful
coalition is formed, it may not be stable, as agents who only
obtain a small fraction of the reward may try to form a differ-
ent coalition, in order to increase their share of the reward.
The most prominent game theoretic solution concept that
focuses on such stability is the core, which can be used to
allocate the gains. We now consider the problem of comput-
ing the core of PDGs. If the core is non-empty, it contains
stable payoff distributions (stable imputations). When the

core is empty, any distribution would be somewhat unsta-
ble, and the least-core must be used to maximize stability.
The core may contain an infinite number of imputations,
and there does not always exists a concise representation of
the core, but one does exist for PDGs.

We first note that PDGs are simple coalitional games. The
core is very restrictive in simple coalitional games. It is well
known that in simple monotone games, the core is closely
related to veto agents. The following is a known folklore
lemma, proven in [17].

Lemma 1. The core is non-empty if and only if there is
at least one veto player in the game, and if there are veto
agents, any imputation that distributes all the gains only to
the veto agents (in any way) is in the core

We now consider computing the core in PDGs. We first
show PDGs are monotone.

Lemma 2 (PDGs are monotone). For all coalitions
A, B ⊆ I in a CG we have v(A ∪B) ≥ v(A). Alternatively,
this can be stated in the following way. Let W ⊆ I be a
winning coalition in a PDG, so v(W) = 1, and let C ⊆ I be
any coalition in that game. Then W ∪ C is also a winning
coalition, so v(W ∪ C) = 1.

Proof. If W is a s− t vertex cut, so the removal of the
vertices in W disconnects the s from the t, than removing
more vetrices also results in having no path from s to t, so
for any C, W∪C is also an s−t vertex cut. Thus if v(W) = 1
than for any C we have v(C ∪W) = 1

We denote the set of all the agents except i as I−i = I\{i}.
Let G be the PDG graph, and denote by G−i the induced
graph when vertex vi (owned by agent i) is dropped. The
graph G−i = 〈V−i, E−i〉 where V−i = V \ {vi} and E−i =
{(u, v) ∈ E|u 6= vi ∧ v 6= vi}. We provide a polynomial
algorithm for testing if a player is a veto agent in a PDG.

Lemma 3. Testing for veto agents in PDGs is in P.

Proof. First note that I−i is a losing coalition if and
only if i is a veto agent. If I−i loses then from monotonicity
(Lemma 2) any subset C ⊆ I−i, also loses, so any coalition
without agent i is losing, and i is a veto player. On the
other hand, suppose I−i wins. In this case, I−i is a winning
coalition where agent i is not present, so by definition i is not
a veto player. Therefore, testing whether i is a veto agent
simply requires testing if I−i loses. By Definition 5 of PDGs,
checking if I−i wins requires checking if I−i does not contains
a path from s to t, which can be performed in polynomial
time using a depth first search (DFS), so checking if an agent
is a veto agent in a PDG can be done in polynomial time.
We also note that I−i induces a graph where all the edges
are removed except edges which connect vertices in the set
{s, t, i}. Thus, i is a veto agent if s is directly connected to
it, and it is directly connected to t.

Computing the core in simple monotone games simply re-
quires returning a list of all the veto agents, so we obtain
the following corollary.

Corollary 1. It is possible to compute the core of a
PDG in polynomial time.

Proof. Due to Lemma 3, we can find out who the veto
agents are in polynomial time. Due to Lemma 1, if no veto
agents exists, the core is empty, and if there is at least one
veto agent, any imputation where all the non-veto agents
are allocated zero is in the core, since the veto agents share
all the gains.

Although the core of PDGs can be computed in polyno-
mial time, due to the observation in Lemma 3, the cases
where there exist veto agents so the core is non-empty are
rare degenerate cases. When the core is empty, we must use
the more relaxed notion of the least-core. Unfortunately,
we show that for general PDGs, computing the least-core is
NP-Hard, through the MAX-DEFICIT problem.

Definition 7. PDG-MAX-DEFICIT Given a PDG and
an imputation p = (p1, . . . , pn) and a bound d, decide whether
maxC⊆I(v(C)− p(C)) ≤ d. In other words, decide whether
the maximal deficit of any coalitions is d or less.

Lemma 4. PDG-MAX-DEFICIT is NP-Complete.

Proof. PDG-MAX-DEFICIT assigns each vertex vi a
value pi. Any losing coalition C has value v(C) = 0, and
so has a negative deficit v(C) − p(C). Winning coalitions
have non-negative deficit, as v(C) = 1 and p(C) ≤ 1, so the
maximal deficit coalition is a winning one. Thus, finding the
maximal deficit coalition requires finding an s− t vertex cut
C, that has minimal p(C). If we consider pi to be the “cost”
of vertex vi, this could be restated as finding the minimal
cost vertex s−t cut, a known NP-complete problem [11].

Theorem 1. Testing whether an imputation p = (p1, . . . , pn)
is in the least-core in PDGs is NP-Hard.

Proof. We use a Turing reduction from PDG-MAX-DEFICIT
to testing whether an imputation is in the least-core. We
note that PDGs are simple games, so for ε = 1 the ε-core
is not empty, and for ε = −1 the ε-core is always empty.
Given an input p = (p1, . . . , pn) to PDG-MAX-DEFICIT,
we can use an oracle for testing whether an imputation is
in the least-core, and perform a binary search to find the
minimal ε for which p is in the ε-core. This is, by definition,
the maximal deficit of any coalition, and is the answer to
PDG-MAX-DEFICIT.

4.2 Computing the Banzhaf Power Index in
PDGs

In the no-cost game we do not directly model costs of
placing checkpoints, but rather attempt to identify critical
checkpoint locations. We first discuss power indices and
their relation to locating the most critical checkpoints to
place. Our goal is to identify important locations to secure,
and we use the Banzhaf power index in PDGs to do so.

We are interested in preventing the adversary from travel-
ing from the source to the target. Suppose we randomly flip
a coin for each vertex to decide whether to place a check-
point there, giving equal probability to placing a checkpoint
or not. This results in a certain probability of preventing
the adversary from traveling from the source to the target.
Now suppose we can guarantee having a checkpoint at ex-
actly one location, vi, rather than flipping a coin for that
location. The Banzhaf index of vi measures the probability
of the generated checkpoint formation achieving the goal of
preventing the adversary from arriving at the destination.

Thus, the higher the Banzhaf index of a vertex is, the more
important it is to place checkpoint there. Therefore, in or-
der to find important security locations, we can compute
the Banzhaf power index, and focus on the vertices with the
highest indices. We now consider the complexity of comput-
ing the Banzhaf power index in no-cost PDGs.

Definition 8. PDG-BANZHAF: We are given a PDG
over the graph G = 〈V, E〉, with agents I = (1, . . . , n), where
agent i controls vertex vi ∈ V . The game’s characteristic
function v : 2I → {0, 1} is defined as in Definition 5. We are
given a target agent i, and are asked to compute its Banzhaf
power index, βi(v).

We now show that in general PDGs, PDG-BANZHAF is
#P-complete. We first consider a related problem of testing
whether an agent is a dummy agent in a PDG, and show it
is NP-Complete. We use #NAE-SAT (Not All Equal SAT),
a variant of the famous satisfiability problem.

Definition 9. #SAT: We are given a propositional for-
mula in CNF (conjunctive normal form), φ = c1∧c2 . . .∧cn

(a conjunction of clauses) where ci = li1∨ li2∨ . . .∨ lin, and lij
is a propositional variable or its negation. We are asked to
return the number of different truth assignments satisfying
φ.

Definition 10. Not All Equal SAT (NAE-SAT): We are
given a propositional formula in CNF, φ, and are asked
whether there is a NAE-truth assignment for φ. An NAE-
assignment for φ is a truth assignment satisfying φ such that
for each clause at least one literal is falsified by the assign-
ment.

Definition 11. #NAE-SAT: We are given a propositional
formula in CNF (conjunctive normal form), φ, and are asked
to return the number of different NAE-assignments for φ.

We consider the problem of testing whether an agent is a
dummy agent in a PDG.

Definition 12. PDG-DUMMY: We are given a PDG over
the graph G = 〈V, E〉, with agents I = (1, . . . , n), where
agent i controls vertex vi ∈ V . We are asked whether agent
i is a dummy, so for any coalition C ⊂ I we have v(C) =
v(C ∪ {i}).

Theorem 2. PDG-DUMMY is coNP-Complete.

Proof. We reduce a NAE-SAT instance to a PDG-DUMMY
instance. Let the NAE-SAT instance be of the formula
φ = c1 ∧ . . .∧ cm over the propositional variables x1, . . . , xn,
so each literal is either xi or ¬xi. The reduction is as fol-
lows. First, we create vertices vxi ,v¬xi ,wxi ,w¬xi for any
i ∈ {1, . . . , n}. For each clause cj of qj literals, where

cj = lj1 ∨ lj2 ∨ . . . ∨ ljqj
, we create a vertices vcj

1 , . . . , vcj

qj
and

vertices wcj

1 , . . . , wcj

qj
so we have a v vertex and a w vertex

for every literal in the clause. We call the v vertices the left
vertices, and the w vertices the right vertices. The vxi and
wxi are called the positive vertices, and the v¬xi and w¬xi

are called the negative vertices. If ljk = xp (a positive literal)

then vcj

k , w
cj

k are called positive vertices, and if ljk = ¬xp (a

negative literal) then vcj

k , w
cj

k are called negative vertices.

For all i, vxi is connected to wxi , and v¬xi is connected

to w¬xi . If ljk = xp (a positive literal), we connect vxi to

w
cj

k , i.e. connect the left positive vertex and right positive

vertex for that proposition. If ljk = ¬xp (a negative literal),

we connect v¬xi to w
cj

k , i.e. connect the left negative vertex
and right negative vertex for that proposition The edges
connecting left and right vertices are called shortcut edges.
We also create a vertex v∗, separating the left and right
vertices. We create a source vertex s and a target vertex t.
We connect s to vx1 and to v¬x1 . We do the following for any
i ∈ {1, . . . , n− 1}: we connect vxi to both vxi+1 and v¬xi+1 ,
and connect v¬xi to both vxi+1 and v¬xi+1 ; Similarly, we
connect wxi to both wxi+1 and w¬xi+1 , and connect w¬xi to
both wxi+1 and w¬xi+1 . We also connect all the vertices of a

clause to all the vertices of the next clause, i.e. for any x, vcj

x

is connected to all vcj+1

y and wcj

x is connected to all wcj+1

y ,
for any y. We connect the vertices of the last left clause
to v∗, i.e. for any x, vcm

x is connected to v∗. We connect
v∗ to wx1 and to w¬x1 . Finally, all the vertices of the last

clause are connected to t, so for any x, wcm

x is connected to
t. Due to this construction, any path from s to t must either
pass through v∗ or contain a shortcut edge. An example of
a construction for the formula φ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x1)
is given in Figure 1.

Figure 1: Reduction from NAE-SAT to PDG-
DUMMY example.

We show v∗ is non-dummy if and only if the NAE-SAT
is a positive instance. If the NAE-SAT is a positive in-
stance, consider an NAE truth assignment a for φ. De-
note by Ta the propositions which are assigned True in a,
so Ta = {xi|a(xi) = True}, and by Fa the propositions
assigned False, so Fa = {xi|a(xi) = False}. Denote the
left vertices of literals that are true under the assignment as

La = {vxi |xi ∈ Ta} ∪ {v¬xi |xi ∈ Fa} ∪ {vcj

i |lji = xk ∧ xk ∈
Ta} ∪ {vcj

i |lji = ¬xk ∧ xk ∈ Fa}. Denote the right vertices
that are false under the assignment as R¬a = {wxi |xi ∈
Fa}∪{w¬xi |xi ∈ Ta}∪{wcj

i |lji = ¬xk∧xk ∈ Ta}∪{wcj

i |lji =
¬xk ∧ xk ∈ Ta}. We identify the NAE assignment with the

coalition Ca = La ∪R¬a.
We now note by removing the vertices of Ca from the

graph, we eliminate all the shortcut edges: if the left posi-
tive vertex of a proposition is not in Ca then right positive
vertex of the same proposition is in Ca and vice versa, so
Ca eliminates an vertex in one side of each shortcut edge.
We now show that even after eliminating Ca, the graph still
contains a s − t path. Eliminate Ca from the graph. For
any xi either vxi or v¬xi remains, which allows a path from

s to vc1i (for any i). Also, for any xi either wxi or w¬xi

remains (wxi remains iff v¬xi remains and w¬xi remains iff

vxi remains), which allows a path from v∗ to wc1i (for any
i). Since a is a NAE assignment, each clause c has a literal
lcx that a satisfied, and a literal lcy that a does not satisfy, so
vc

y is not eliminated and wc
x is not eliminated, so there is a

path from either vxn or v¬xn to v∗, and a path from either
wxn or w¬xn to t. This means that Ca is a losing coali-
tion, as it does not eliminate all paths from s to t. However,
eliminating both Ca and v∗ disconnect all s− t paths in the
graph, as all such paths must either go through v∗ or use
a shortcut edge, and eliminating Ca eliminates all shortcut
edges. Thus, Ca is losing but Ca ∪ {v∗} is winning, so v∗ is
critical in Ca ∪ {v∗} and is a non-dummy agent.

On the other hand, suppose v∗ is a non-dummy agent, so
it is critical for a coalition C. We show C encodes an NAE
truth assignment for φ. Since v∗ is critical in C, we know
that removing the vertices in C is not enough to disconnect
s from t, but that eliminating C ∪ {v∗} does disconnect s
and t. We note that the graph’s vertices can be partitioned
into layers, where the non-shortcut edges only go between
consecutive layers. The layers are a layer including vxi , v¬xi ,

a layer for the v vertices for clause i, including vci
j for all j, a

layer for v∗, and the equivalent layers for the w vertices. Un-
der these definitions of layers, the only edges that go between
non consecutive layers are the shortcut edges. We also note
that for any two consecutive layers, all the possible edges
between the two layers are in the graph. We now show that
eliminating C must eliminate all shortcut edges. Suppose by
contradiction that eliminating C results in a certain short-
cut edge remaining. Consider the s − t path that remains
after C is eliminated. Either this path does not go through
v∗ or we can construct a path that does not go through v∗

by taking this path up to the layer from which the shortcut
edge originates, continue through the shortcut edge bypass-
ing v∗, and connect the target edge of the shortcut edge to
the rest of the original s − t path. The last connection is
possible as the original graph contains all edges between any
two consecutive layers. Thus, after eliminating C there re-
mains an s − t path not going through v∗. However, this
means that after eliminating {v∗} ∪ C, there still remains
an s− t path in contradiction to coalition C ∪{v∗} winning.
Thus, eliminating C eliminates all shortcut edges.

Since eliminating C eliminates all the shortcut edges and
since all the left positive and right positive literals of the
same proposition are connected, C must contain one of them
to eliminate the shortcut edge connecting them. C cannot
contain both vxi and v¬xi , as eliminating both of them elim-
inates all s − t paths. Using C we can thus construct an
assignment a: if C contains vxi then a(xi) = False and if
C contains v¬xi then a(xi) = True. We show a is an NAE
truth assignment for φ. For any clause cj , C cannot con-

tain vcj

i for all i, as this means eliminating C disconnects s

and t. Thus there must exist some vcj

i /∈ C. If this lji is a

positive literal, so lji = xi, C does not contain vxi , and thus
must contain v¬xi , so a(xi) = True, so cj is satisfied. If

this lji is a negative literal, so lji = ¬xi, C does not contain
v¬xi , and thus must contain vxi , so a(xi) = False, so cj

is satisfied. Thus a satisfies every clause, and so it satisfies
φ. One the other hand we can consider the reverse assign-
ment a′ where if C contains vxi then a′(xi) = True and if C
contains v¬xi then a(xi) = False. Applying the same argu-
ments regarding the right vertices (the w vertices), a′ is also
a satisfying assignment. Thus a and its reverse assignment
a′ both satisfy φ, so a is an NAE truth assignment for φ.

We note that the Banzhaf power index of a dummy agent
in any game is 0, since Definition 4 simply is a sum of zeros
for dummy agents. Thus even testing whether an agent’s
Banzhaf index is zero or more in a PDG is NP-hard. We
now show a stronger result of #P-Completeness.

Theorem 3. PDG-BANZHAF is #P-Complete.

Proof. PDG-BANZHAF is in #P since is is possible to
test whether a coalition is winning or losing in polynomial
time, so it is possible to construct a Turing machine which
non-deterministically chooses a coalition that contains i and
accepts if the i is critical in that coalition. The number of
accepting paths for that machine would be the number of
coalitions where i is critical, ci. The Banzhaf index of i,
βi, is simply ci times a constant, as βi = 1

2n−1 · ci, PDG-
BANZHAF is in #P.

We now note that #NAE-SAT is #P-complete, as there
exists a parsimonious reduction from SAT to NAE-SAT [11].
Consider a #NAE-SAT instance and the PDG constructed
from it using the construction of Theorem 2. We note any
coalition C where v is critical encodes a distinct NAE truth
assignment. Denote by q the total number of NAE truth
assignments. Thus, βi = 1

2n−1 · q, so q = βi · 2n−1, so
computing the Banzhaf power index in PDG allows us to
solve #NAE-SAT.

4.3 PDGs on Trees
The above discussion shows that certain problems are

hard for general graphs in the no costs model. Specifi-
cally, although the core is computable in polynomial time,
checking ε-core membership and computing the least-core
are hard, testing for dummy agents is coNP-complete, and
computing the Banzhaf index is #P-complete. We show
these problems become tractable for the restricted class of
PDGs where the underlying graph is a tree.

We first consider testing membership in the ε-core and
computing the least core.

Theorem 4. Testing whether an imputation p = (p1, . . . , pn)
is in the ε-core in tree PDGs is in P.

Proof. We first note that in tree PDGs, there is only
one path between s and t. Denote the vertices on this path
by V r. Any coalition containing any vertex in V r wins, and
any coalition containing none of the vertices in V r loses.
In order for p to be in the ε-core, the following constraint
must hold for any coalition C: p(C) ≥ v(C) − ε. For any
coalition C, p(C) ≥ 0. Thus, the constraint holds for any
losing coalition. Let i be a vertex on the s − t path, so
i ∈ V r. In order for p to be in the ε-core, the following must
hold: pi ≥ 1− ε. Also note that if the constraint pi ≥ 1− ε

holds, the constraint p(C) ≥ v(C)− ε holds for any C such
that i ∈ C, since all the pj ’s are positive. However, any
winning coalition must contain some vertex i ∈ V r, so if
the condition pi ≥ 1 − ε holds for all i ∈ V r, the condition
p(C) ≥ v(C)− ε holds for any coalition C. Thus, p is in the
ε-core if and only if pi ≥ 1− ε for all i ∈ V r.

We can easily compute V r in polynomial time, by running
a DFS from s to t, and check if pi ≥ 1− ε for all i ∈ V r, so
we can test ε-core membership in polynomial time.

Theorem 5. Finding the least-core in tree PDGs is in P.

Proof. Due to Theorem 4, an imputation (p1, . . . , pn) is
in the ε-core iff for all i ∈ V r we have pi ≥ 1 − ε. Denote
p(V r) =

P
i∈V r pi, and k = |V r|. Summing the constraint

across all i ∈ V r we get the following constraint: p(V r) ≥
k(1 − ε). Equivalently ε ≥ 1 − p(V r)

k
. The minimal bound

for ε is obtained when p(V r) = 1 (as p(V r) ≤ v(I) = 1), so
we denote εm = 1− 1

k
. Thus, the least-core value must be at

least εm = 1− 1
k
. We show that this value is indeed enough.

Suppose we split the payoff equally between the vertices in
V r, and give nothing to other vertices, so for any i ∈ V r we
have pi = 1− 1

k
. We note that all the constrains pi ≥ 1− ε

hold for ε = εm = 1− 1
k
. We also note that setting any pi to

a value greater than 1− 1
k

means that for at least one vertex

vj we would have pj < 1− 1
k

(as
P

i∈I pi = 1, so we have a
total of a single unit to distribute), so one of the constraints
would not hold.

Thus, the least core is the single imputation p = (1
k
, . . . , 1

k
)

and εmin = 1− 1
k

for tree PDGs 3.

We now consider the Banzhaf index in tree PDGs.

Theorem 6. Testing for dummy agents and computing
the Banzhaf power index in tree PDGs are in P.

Proof. We note any vertex i ∈ V r (i.e. a vertex on the
s − t path) is critical for the coalition {i}, since {i} wins
and the empty coalition loses, so i is not a dummy agent.
On the other hand, any vertex j /∈ V r is a dummy, as a
coalition wins iff it contains some vertex i ∈ V r, and this
characteristic of a coalition does not change when removing
some j /∈ V r from the coalition. Thus, a vertex i is a dummy
if and only if i /∈ V r, which can be tested in polynomial time,
since V r can be computed in polynomial time.

We now note that by definition the Banzhaf index of i is
βi = Ci

2n−1 where Ci is the number of coalitions where i is
critical in. As noted above, if i /∈ V r, she is a dummy agent
and has a Banzhaf index of 0. We now consider a vertex
i ∈ V r, on the s− t path. Consider a tree with k vertices on
the s − t path so |V r| = k, and with m vertices not on the
s−t path, so n = k+m. We note i is critical in any coalition
C that contains i and no other vertex j ∈ V r on the s − t
path. There are 2m such coalitions, so βi = 2m

2m+k−1 = 1
2k−1 ,

so we have a closed form formula for βi, as k = |V r| can be
computed in polynomial time.

5. THE VARIOUS COSTS MODEL
We now consider the model where placing a checkpoint is

a costly action, and consider the PDGC (Path Disruption

3Note that the same argument holds for any monotone sim-
ple game where there is a set S of agents where any winning
coalition contains at least one member of S and where any
member of S wins.

Game with Costs) of Definition 6. This model associates
a cost ci for placing a checkpoint in vertex vi, and assumes
that a coalition which disrupts the s−t path obtains a reward
r for doing so. A coalition C can place checkpoints only
in its vertices, but there may be different configurations of
checkpoints that disrupt all s− t paths in the graph. Given
a subset of coalition vertices S ⊆ C, we denote the cost of
S as

P
i|vi∈S ci. As in Section 3, for any S ⊂ I we denote

w(S) = 1 if S disconnects s and t, and w(S) = 0 otherwise.
In Definition 6, given a coalition C, we have used the lowest
cost placements of checkpoints for C that disrupts all s− t
paths in the graph, i.e. a configuration with cost m(C) =
min{c(B)|B ⊆ C, w(B) = 1} . The PDGC is well defined
mathematically, and has a very simple representation, which
includes a representation of the graph, the reward r and the
costs ci. We show that in PDGCs even computing the value
of a coalition is NP-Hard.

Lemma 5. Computing the value of a coalition, v(C), in
PDGCs is NP-Hard.

Proof. We reduce an Min Cost Vertex s−t Cut (MCVC)
instance (see Lemma 4) to computing v(C) in PDGCs. We
copy the MCVC graph, source s and target t. An MCVC
instance has a vertex cost pi for each vertex, which are the
vertex costs ci in the reduced PDGCs instance. We set
the reward r =

P
vi∈V ci. Consider the grand coalition

I. The value of I in the reduced PDGC instance is de-
fined as v(I) = r − m(C), so given v(I) we can compute
m(C) = r− v(I). However, m(C) is the cost of the optimal
checkpoint placement which eliminates all s− t paths, or in
other words, the cost of the minimal cost s − t vertex cut.
This is exactly the solution to the MCVC instance.

Due to Lemma 5, the above PDGC representation is con-
cise, but hard to handle computationally. It is unlikely that
significant game theoretic concepts could be computed in
polynomial time when even computing the value of a coali-
tion is computationally hard. In order to use such a rep-
resentation, we must thus restrict the represented domain.
Section 4.3 discusses some problems that are computation-
ally hard in the no-costs model that become tractable when
considering trees. We show that some problems also become
tractable for the model with costs when the graphs are re-
stricted to be trees.

Theorem 7. For tree PDGCs, computing a coalition’s
value, v(C), and testing for dummy agents are in P.

Proof. Similarly to the results in Section 4.3, we use the
fact that in trees there is a single s− t path, and denote the
vertices along this path as V r ⊆ V . We assume that the
reward r is greater than the cost of any vertex ci, since if for
some i we have r < ci then i is a useless agent - placing a
checkpoint at that location means the coalition would have
a negative value. Thus, we can eliminate from the game any
agent with a cost ci > r.

In tree PDGCs, a coalition C can only win if it contains
some vertex in V r so C ∩ V r 6= ∅. If C ∩ V R = ∅ then
v(C) = 0. If C ∩ V R 6= ∅, placing a checkpoint at any
location i ∈ V r results in winning. We denote Cr = C∩V R.
The optimal checkpoint location for C is in the minimal
cost vertex in Cr, vi = argmini∈Cr ci. Thus, the value of
a coalition C, r −mini∈Cr ci, is computable in polynomial

time. Similarly to Theorem 6, any vertex in i ∈ V r is non-
dummy (unless ci > r, in which case it is a dummy vertex),
and any vertex i /∈ V r is a dummy agent.

Theorem 8. For PDGCs over trees, computing the least-
core is in P.

Proof. We first show that testing whether an imputation
p = (p1, . . . , pn) is in the ε-core is in P. In order for p to be
in the ε-core, the following must hold for every i ∈ V r:
pi ≥ r − ci − ε, since for any i ∈ V r, v({i}) = r − ci. For
any coalition C, if C ∩ V r = ∅ then v(C) = 0, and the
constraint p(C) ≥ v(C)− ε holds. For any coalition C such
that C ∩ V r 6= ∅, the ε-core constraint is p(C) ≥ v(C)− ε =
r−mini∈Cr − ε. Thus, if the constraint pi ≥ r− ci− ε holds
for all i ∈ V r, the constraint p(C) ≥ r −mini∈Cr − ε holds
for any C such that C ∩ V r 6= ∅. Thus, an imputation p =
(p1, . . . , pn) is in the ε-core iff for all i ∈ V r the constraint
p(C) ≥ r−mini∈Cr−ε holds, which is testable in polynomial
time.

We apply a process similar to Theorem 5. Denote ti =
r − ci, |V r| = k, c(V r) =

P
i∈V r ci and cmin = mini∈V r ci.

The total value to distribute is v(I) = r − cmin. The con-
straint pi ≥ ti − ε must hold for every i ∈ V r. Thus, the
minimal ε must be one such that

P
i∈V r ti − kε = r − cmin

or equivalently ε = 1
k
(
P

i∈V r ti − r + cmin). For such ε,
we can distribute v(I) by having pj = 0 for any j /∈ V r

and setting pi ≥ ti − ε for any i ∈ V r, so the constraint
p(C) ≥ r−mini∈Cr−ε holds for any C such that C∩V r 6= ∅.
Thus, εmin = 1

k
(
P

i∈V r ti − r + cmin) is the value of the
least-core. These payments are the only imputation in the
least-core, as increasing any pi forces decreasing some other
pj ’s below the threshold for the constraint pj ≥ tj − ε.

6. RELATED WORK
We analyzed physical and network security through a co-

operative game theoretic prism. We considered the core, the
ε-core and least-core, and the Banzhaf index. The core was
introduced in [12]. The Banzhaf index we have considered
is a power index. Power indices were introduced as a mea-
sure of the influence players in a game have on determining
its outcome. The two most popular indices are the Banzhaf
index [6] and the Shapley-Shubik index [22]. Several solu-
tion concepts have been suggested as an alternative to the
core, when the core is empty. Such relaxed concepts include
the nucleolus [21], and the ε-core and least-core, discussed
in [14]. Power indices were first applied in political science
to measure influence in Weighted Voting Games (WVGs).

The Banzhaf index can be computed in any simple game,
with the complexity depending on the game’s representa-
tion. If the game is only defined through an oracle for
computing coalition values, calculating the Banzhaf index
is costly. A naive implementation must enumerate over all
coalitions, which is exponential in the number of agents.
Matsui [15] showed that computing the Banzhaf or Shapley
index is NP-complete in WVGs [16], and [7] shows that com-
puting the Shapley index in WVGs is #P-complete. Otherr
works [3, 8] show computing such indices in cooperative skill
based and contribution based games is also hard.

Using power indices for voting domains is well studied, but
applying them in non-voting domains is much less frequent.
Few examples of this are [10, 8, 4, 5]. The models in [4,
5] consider network reliability domains where agents control

parts of the network, and use game theory to improve the
reliability of the network. Another work [20] considers ex-
ternal subsidies guaranteeing a stable distribution of gains in
cooperative network flow games. We deal with a very differ-
ent problem, of improving physical or network security, and
our agents cooperate in an attempt to prevent the adversary
from reaching a target in the network. In this, our models
are much more similar to [1, 18, 19] which use game theory
in order to improve physical security, by choosing a proper
physical security policy. Our work is also very different from
those papers, as our model is cooperative in nature — we
use coalitional game theory, rather than the non-cooperative
game theoretic concepts used in those papers.

Using the Banzhaf index to identify critical security lo-
cations requires computing it in large domains. One way
of circumventing this problem is by considering restricted
domains, so we have considered tree PDGs. A different ap-
proach is using approximation algorithms. Several approx-
imation algorithms for computing power indices exist [13,
15]. Two newer methods are [9] which approximates the
Shapley value in weighted voting games, and [2], which ap-
proximates both the Banzhaf index and Shapley value in
general cooperative games. Such methods allow using the
models of this work despite the computational obstacles.

7. CONCLUSIONS
We considered a game theoretic approach to physical and

network security, based on coalitional game theory. We
modeled cooperation between agents wishing to stop an ad-
versary from traveling or communicating between two points,
as the Path Disruption Game. We discussed both stable
payment schemes and power indices reflecting the relative
importance of different locations.

Several directions remain open for future research. First,
our security model was simple, of a single adversary wishing
to travel between two specific points. It would be interesting
to generalize this and model uncertainty about the adver-
sary’s origin or target, and about the costs of the agents.
Second, it would be interesting to see whether similar ap-
proaches work for domains other than physical security. Fi-
nally, it would be interesting to see if other game theoretic
notions can be computed in this or similar domains.

8. REFERENCES
[1] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus.

The impact of adversarial knowledge on adversarial
planning in perimeter patrol. In AAMAS (1), pages
55–62, 2008.

[2] Y. Bachrach, E. Markakis, A. D. Procaccia, J. S.
Rosenschein, and A. Saberi. Approximating power
indices. In AAMAS (2), pages 943–950, 2008.

[3] Y. Bachrach and J. S. Rosenschein. Coalitional skill
games. In AAMAS 2008, pages 1023–1030, Estoril,
Portugal, May 2008.

[4] Y. Bachrach and J. S. Rosenschein. Power in threshold
network flow games. Autonomous Agents and
Multi-Agent Systems, 18(1):106–132, 2009.

[5] Y. Bachrach, J. S. Rosenschein, and E. Porat. Power
and stability in connectivity games. In The Seventh
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), pages
999–1006, Estoril, Portugal, May 2008.

[6] J. F. Banzhaf. Weighted voting doesn’t work: a
mathematical analysis. Rutgers Law Review,
19:317–343, 1965.

[7] X. Deng and C. H. Papadimitriou. On the complexity
of cooperative solution concepts. Math. Oper. Res.,
19(2):257–266, 1994.

[8] E. Elkind, L. A. Goldberg, P. W. Goldberg, and
M. Wooldridge. A tractable and expressive class of
marginal contribution nets and its applications. In
AAMAS 2008. IFAAMAS, 2008.

[9] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A
linear approximation method for the shapley value.
Artif. Intell., 172(14):1673–1699, 2008.

[10] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker.
Sharing the cost of multicast transmissions. Journal of
Computer and System Sciences, 63(1):21–41, 2001.

[11] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., 1979.

[12] D. B. Gillies. Some theorems on n-person games. PhD
thesis, Princeton University, 1953.

[13] I. Mann and L. S. Shapley. Values of large games, IV:
Evaluating the electoral college by Monte-Carlo
techniques. Technical report, The Rand Corporation,
Santa Monica, CA, 1960.

[14] M. Maschler, B. Peleg, and L. S. Shapley. Geometric
properties of the kernel, nucleolus, and related
solution concepts. Mathematics of Operations
Research, 4(4):303–338, 1979.

[15] Y. Matsui and T. Matsui. A survey of algorithms for
calculating power indices of weighted majority games.
J. Operations Research Society of Japan, 43, 2000.

[16] Y. Matsui and T. Matsui. NP-completeness for
calculating power indices of weighted majority games.
Theoretical Computer Science, 263(1–2), 2001.

[17] M. Osborne and A. Rubinstein. A course in game
theory. MIT press, 1999.

[18] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus.
Deployed armor protection: the application of a game
theoretic model for security at the los angeles
international airport. In AAMAS (Industry Track),
pages 125–132, 2008.

[19] J. Pita, M. Jain, F. Ordóñez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus. Armor
security for los angeles international airport. In AAAI,
pages 1884–1885, 2008.

[20] E. Resnick, Y. Bachrach, R. Meir, and J. Rosenschein.
The cost of stability in network flow games. In
Proceedings of the 34th International Symposium on
Mathematical Foundations of Computer Science 2009,
page 650. Springer, 2009.

[21] D. Schmeidler. The nucleolus of a characteristic
function game. SIAM Journal on Applied
Mathematics, pages 1163–1170, 1969.

[22] L. S. Shapley and M. Shubik. A method for evaluating
the distribution of power in a committee system.
American Political Science Review, 48:787–792, 1954.

[23] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing,
8:410–421, 1979.

