

Patience is a Virtue: Revisiting Merge and Sort
on Modern Processors

Badrish Chandramouli and Jonathan Goldstein
Microsoft Research

{badrishc, jongold}@microsoft.com

ABSTRACT

The vast quantities of log-based data appearing in data centers has

generated an interest in sorting almost-sorted datasets. We revisit

the problem of sorting and merging data in main memory, and show

that a long-forgotten technique called Patience Sort can, with some

key modifications, be made competitive with today’s best

comparison-based sorting techniques for both random and almost

sorted data. Patience sort consists of two phases: the creation of

sorted runs, and the merging of these runs. Through a combination

of algorithmic and architectural innovations, we dramatically

improve Patience sort for both random and almost-ordered data. Of

particular interest is a new technique called ping-pong merge for

merging sorted runs in main memory. Together, these innovations

produce an extremely fast sorting technique that we call P3 Sort (for

Ping-Pong Patience+ Sort), which is competitive with or better

than the popular implementations of the fastest comparison-based

sort techniques of today. For example, our implementation of P3

sort is around 20% faster than GNU Quicksort on random data, and

20% to 4x faster than Timsort for almost sorted data. Finally, we

investigate replacement selection sort in the context of single-pass

sorting of logs with bounded disorder, and leverage P3 sort to

improve replacement selection. Experiments show that our

proposal, P3 replacement selection, significantly improves

performance, with speedups of 3x to 20x over classical replacement

selection.

Categories and Subject Descriptors

E.0 [Data]: General; E.5 [Data]: Files – Sorting/searching.

Keywords

Sorting; Patience; Merging; Replacement Selection; Performance.

1. INTRODUCTION
In this paper, we investigate new and forgotten comparison based

sorting techniques suitable for sorting both nearly sorted, and

random data. While sorting randomly ordered data is a well-studied

problem which has produced a plethora of useful results over the

last five decades such as Quicksort, Merge Sort, and Heap Sort (see

[9] for a summary), the importance of sorting almost sorted data

quickly has just emerged over the last decade.

In particular, the vast quantities of almost sorted log-based data

appearing in data centers has generated this interest. In these

scenarios, data is collected from many servers, and brought

together either immediately, or periodically (e.g. every minute),

and stored in a log. The log is then typically sorted, sometimes in

multiple ways, according to the types of questions being asked. If

those questions are temporal in nature [7][17][18], it is required that

the log be sorted on time. A widely-used technique for sorting

almost sorted data is Timsort [8], which works by finding

contiguous runs of increasing or decreasing value in the dataset.

Our investigation has resulted in some surprising discoveries about

a mostly-ignored 50-year-old sorting technique called Patience

Sort [3]. Patience sort has an interesting history that we cover in

Section 6. Briefly, Patience sort consists of two phases: the creation

of natural sorted runs, and the merging of these runs. Patience sort

can leverage the almost-sortedness of data, but the classical

algorithm is not competitive with either Quicksort or Timsort. In

this paper, through a combination of algorithmic innovations and

architecture-sensitive, but not architecture-specific,

implementation, we dramatically improve both phases of Patience

sort for both random and almost-ordered data. Of particular interest

is a novel technique for efficiently merging sorted runs in memory,

called Ping-Pong merge. Together, these innovations produce an

extremely fast sorting technique that we call P3 Sort (for Ping-Pong

Patience+ Sort), which is competitive with or better than the

popular implementations of the fastest comparison-based sort

techniques on modern CPUs and main memory. For instance, our

implementation of P3 sort is approximately 20% faster than GNU

Quicksort on random data, and 20% to 4x faster than the popular

Timsort implementation for almost-sorted data.

We then investigate methods for sorting almost-sorted datasets in a

single pass, when the datasets are stored in external memory, and

disorder is bounded by the amount of data which can fit in memory.

We show how P3 sort may be combined with replacement selection

sort to minimize the CPU cost associated with single pass sorting.

We propose flat replacement selection, where a periodically sorted

buffer is used instead of a heap, and P3 replacement selection, where

the P3 sorting algorithm is deeply integrated into replacement. P3

replacement selection, in particular, is a dramatic practical

improvement over classical replacement selection, achieving CPU

speedups of between 3x and 20x.

We believe that these techniques form a foundation for the kind of

tuning process that their brethren have already undergone, and

given their current level of competitiveness, could become

commonly used sorting techniques similar to Quicksort and

Timsort. For instance, we do not, in this paper, explore methods of

parallelizing or exploiting architecture-specific features (such as

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

SIGMOD/PODS'14, June 22 - 27 2014, Salt Lake City, UT, USA

Copyright 2014 ACM 978-1-4503-2376-5/14/06…$15.00.

http://dx.doi.org/10.1145/2588555.2593662

SIMD [20]) for further performance improvement. Rather, we
intend to establish a solid foundation for such future investigation.

We also expect this work to revive interest in replacement selection,

which was once used to bring the number of external memory

passes down to two, and which can now, for many logs, be used to
bring the number of external memory passes down to one.

The paper is organized as outlined in Table 1. Sections 6 and 7

cover related work and conclude with directions for future work.

Basic Sort and
Improvements

(Section 2)

Patience sort Sec. 2.1 Prior work

Patience+

sort

Sec. 2.2 Re-architecture to make

Patience sort competitive

Ping-Pong Merge
(Section 3)

Balanced Sec. 3.1 Basic merge approach

Unbalanced Sec. 3.2 Handles almost sorted data

P3 Sort

(Section 4)

Naïve P3 sort Sec. 4.1 First sorting version that

combines our prior ideas

CS P3 sort Sec. 4.2 Cache-sensitive version

P3 sort Sec. 4.3 Final sorting version with all

optimizations added

Replacement
Selection (RS)

(Section 5)

Flat RS Sec. 5.2 Replace heap with a sort

buffer in RS

P3 RS Sec. 5.3 Integrates P3 into the sort
buffer in RS

Table 1: Paper Outline and Contributions

2. PATIENCE AND PATIENCE+ SORT

2.1 Background on Patience Sort
Patience Sort [3] derives its name from the British card game of

Patience (called Solitaire in America), as a technique for sorting a

deck of cards. The patience game (slightly modified for clarity)

works as follows: Consider a shuffled deck of cards. We deal one

card at a time from the deck into a sequence of piles on a table,
according to the following rules:

1. We start with 0 piles. The first card forms a new pile by itself.

2. Each new card may be placed on either an existing pile whose

top card has a value no greater than the new card, or, if no such

pile exists, on a new pile below all existing piles.

The game ends when all cards have been dealt, and the goal of the
game is to finish with as few piles as possible.

Patience sort is a comparison-based sorting technique based on the

patience game, and sorts an array of elements as follows. Given an

n-element array, we simulate the patience game played with the

greedy strategy where we place each new card (or element) on the

oldest (by pile creation time) legally allowed pile (or sorted run).

This strategy guarantees that the top cards across all the piles are

always in increasing order from the newest to oldest pile, which

allows us to use binary search to quickly determine the sorted run

that the next element needs to be added to.

After the run generation phase is over, we have a set of sorted runs

that we merge into a single sorted array using an n-way merge
(usually with a priority queue), during the merge phase [1].

Example 1 (Patience sort) Figure 1 shows a 10-element array that

we use to create sorted runs.

3 5 4 2 1 7 6 8 9 10

Figure 1: Patience Sort Input

Patience sort scans the data from left to right. At the beginning,

there are no sorted runs, so when the 3 is read, a new sorted run is

created and 3 inserted at the end. Since 5 comes after three, it is

added to the end of the first run. Since the 4 cannot be added to the

end of the first sorted run, a new run is created with 4 as the only

element. Since the 2 cannot be added to either the first or second

sorted run, a third sorted run is created and 2 added. Similarly, a

fourth sorted run is created with 1. At this point, we have the 4

sorted runs shown in Figure 2.

run 1 3 5

run 2 4

 run 3 2

run 4 1

Figure 2: Sorted Runs After 5 Inputs

Next, we read the 7. Since the first run is the run with the earliest

creation time which 7 can be added to, we add the 7 to the first run.

Next, we read the 6. In this case, the second run is the run with

earliest creation time which 6 can be added to, so we add 6 to the

second run. Similarly, we add the rest of the input to the first run,

resulting in the sorted runs after phase 1 shown in Figure 3.

3 5 7 8 9 10

4 6

2

1

Figure 3: Sorted Runs After Phase 1

The usual priority queue based remove and replace strategy is then

used on the 4 final runs, resulting in the final sorted list.

Runtime Complexity For uniform random data, on average, the

number of sorted runs created by the run generation phase of

Patience sort is 𝑂(√𝑛) [2]. Since each element needs to perform a

binary search across the runs, the expected runtime is 𝑂(𝑛 ⋅ log 𝑛).

The merge phase has to merge 𝑂(√𝑛) sorted runs using a priority

queue, which also takes 𝑂(𝑛 ⋅ log 𝑛) time, for a total expected

running time of 𝑂(𝑛 ⋅ log 𝑛). It is easy to see that if the data is

already sorted, only 1 run will be generated, and the algorithm time

is 𝑂(𝑛). As the data becomes more disordered, the number of runs

increases, and performance gracefully degrades into 𝑂(𝑛 ⋅ log 𝑛).
Observe that even if the number of lists is 𝑛, the execution time is

still 𝑂(𝑛 ⋅ log 𝑛), and the technique essentially becomes merge sort.

2.2 Patience+ Sort
To understand the historic lack of interest in Patience sort, we

measured the time it takes to sort an array of uniform random 8-

byte integers. We use Quicksort (GNU implementation [11]) and a

standard implementation of Patience sort (from [12]). The Patience

sort implementation is written using the C++ standard template

library, and uses their priority queue and vector data structures. The

GNU Quicksort implementation includes the well-known

Sedgewick optimizations for efficiency [10]: there is no recursion,

the split key is chosen from first, middle, and last, the smaller sub-

partition is always processed first, and insertion sort is used on

small lists. All versions of all sort techniques in this paper are

written in C++ and compiled in Visual Studio 2012 with maximum

time optimizations enabled. All the sorting techniques in this paper

use the same key comparison API as the system qsort. All

experiments in this paper were conducted on a Windows 2008 R2

64-bit machine with a 2.67GHz Intel Xeon W3520 CPU with 12GB

of RAM. The array size is varied from 100000(~ 1MB) to around

50 million (~ 400MB). All experiments were performed 3 times on

identical datasets, and the minimum of the times taken.

Figure 4 demonstrates the dismal performance of existing Patience

sort implementations, which are 10x to 20x slower than Quicksort.

To some degree, these dismal results are a reflection of the lack of

attention Patience sort has received. We first, therefore, re-

implemented Patience sort using a collection of optimizations

designed to eliminate most memory allocations, and mostly

sequentialize memory access patterns, making better use of

memory prefetching. We call our Patience sort implementation

with this collection of optimizations Patience+ Sort.

Figure 4: Patience Sort vs. Quicksort

More specifically, we pass in a pre-allocated buffer which is usually

sufficient for storing data from sorted runs. In the event that this

buffer is fully consumed, more large buffers are allocated and freed

as necessary. All memory used in the algorithm comes from these

large blocks, minimizing the number of memory allocations.

In order to best utilize memory bandwidth during the first phase,

each sorted run is represented using a linked list of fixed size

memory blocks. The final memory block of each linked list is

pointed to in an array of memory block pointers (one for each run)

to facilitate fast appends to the sorted runs. Copies of the individual

tail elements of the sorted runs are stored and maintained separately

in a dynamic array for fast binary searching.

The initial runs array and tails array sizes are set to the square root

of the input size, and double when the number of runs exceeds this

size. Since, for random data, the expected number of runs is the

square root of input size, and since the number of runs decreases as

the data becomes more sorted, array expansions are fairly rare.

While, for reverse ordered data, the number of runs is equal to the

number of elements, this can be significantly mitigated by adding

the capability of appending to either side of a sorted run. In this

case, we would maintain both an array of tail elements and an array

of head elements. After searching the tail elements, before adding

another run, we would first binary search the head elements, which

would naturally be in order, for a place to put the element. Sorting

reverse ordered lists would then take linear time. The case where

the number of runs is linear in the input is then quite obscure.

For the priority queue based merging in the second phase, we tried

two approaches. The first is the classic n-way merge of n sorted

runs using our own highly optimized heap implementation (e.g. no

recursion). Note that there are no memory allocations since the

result can be merged into the destination.

The second approach, which we call a tree-Q merge, is a less well

known, more performant approach [4], which performs a balanced

tree of k-way merges. Each k-way merge uses the same highly

performant priority queue implementation as the classical

approach. The idea of this approach is to choose k such that the

priority queue fits into the processor’s L2 cache. On our

experimental machine, we tuned k to its optimal value of 1000. This

approach is the best performing priority queue based merge

technique known today. Note that each tree level processes the

entire dataset exactly once. In order to improve performance, our

implementation carefully packs all the destination runs for a

particular level into a single array as large as the original dataset,

and reuses unneeded memory from lower levels of the merge tree.

As a result, there is no actual memory allocation during this phase.

Figure 5 shows how both versions of Patience+ sort fare against

Quicksort. Note that Patience+ sort is already a dramatic

improvement over Patience sort, bringing the execution time

difference w.r.t. Quicksort down from 10x-20x to 1.5x-2x.

Somewhat reassuring is that the tree-Q Patience+ sort seems to

mostly eliminate the deterioration compared to Quicksort as dataset

sizes increase. It is interesting to note, though, that re-designing

Patience sort and merging around memory subsystem performance

did significantly improve Patience sort.

Figure 5: Patience+ Sort vs.

Quicksort

Figure 6: Patience+ Sort

Merge Cost

The remaining bottleneck in Patience+ sort becomes clear from

Figure 6, which shows the fraction of time spent in the merge phase

of Patience+ sort. In both cases, the Patience+ sort cost is

dominated by merging, reaching almost 90% for the single queue

approach, and almost 75% for the tree-based merge. This led us to

search for a faster merge technique, which we cover next.

3. PING-PONG MERGE
The previous section showed some of the benefits of sorting in a

manner sensitive to memory subsystem performance, in particular

by eliminating fine grained memory allocations, sequentializing

memory access, and improving caching behavior. Recent work

[20][22][23][24] has shown that using binary merges instead of a

heap is effective when combined with architecture-specific features

(such as SIMD) and parallelism. This section describes an

algorithm for merging sorted runs, called ping-pong merge, which

leverages binary merging in a single-core architecture-agnostic

setting. Ping-pong merge is cache friendly, takes greater advantage

of modern compilers and CPU prefetching to maximize memory

bandwidth, and also significantly reduces the code path per merged

element. Ping-pong merge demonstrates the superiority of binary-

merge-based techniques over heap-based merging schemes, even in

architecture independent settings. In this section, we introduce two

variants, balanced and unbalanced. As we will see, the unbalanced

version is important for sorting nearly ordered input.

3.1 Balanced Ping-Pong Merge
Ping-pong merge assumes the existence of two arrays, each of

which is the size of the number of elements to be merged. Let r be

the number of sorted runs. We begin by packing the r sorted runs

into one of the arrays. For instance, Figure 7 shows a valid packing

of the runs from Figure 3 packed into an array of 10 elements.

3 5 7 8 9 10 4 6 2 1

Figure 7: Packed Runs

Note the need for ancillary information storing the locations of the

beginnings of each run, which are shown in bold. Adjacent runs are

then combined, pairwise, into the target array. For instance, we can

initially combine the first and second runs, and then combine the

third and fourth runs, into the target array, resulting in the array

with two runs shown in Figure 8.

3 4 5 6 7 8 9 10 1 2

Figure 8: Packed Runs After One Round of Merging

We now have just two runs. The first run begins at the first array

position, while the second run begins at the ninth array position.

We now merge these two runs back into the original array, resulting

in the final sorted list. In general, one can go back and forth (i.e.,

ping-pong) in this manner between the two arrays until all runs have

been merged. This style of merging has several benefits:

 The complexity of this algorithm is O(𝑛 ⋅ log 𝑟), the same as

the priority queue based approach, which is optimal.

 There are no memory allocations.

 The algorithm is cache friendly: we only need three cache

lines for the data, one for each input and one for the output.

These lines are fully read/written before they are invalidated.

 The number of instructions executed per merged element is

(potentially) very small, consisting of one if-then block, one

comparison, one index increment, and one element copy.

 Modern compilers and CPUs, due to the algorithm’s simple,

sequential nature, make excellent use of prefetching and

memory bandwidth.

At a high level, ping-pong merge, as described so far, is similar to

merging using a tree-Q with a tree fanout of 2. The main difference

is that instead of copying out the heads to a priority queue, and

performing high instruction count heap adjustments, we hardcode

the comparison between the two heads (without unnecessary

copying), before writing out the result to the destination. In

addition, we took care to minimize the codepath in the critical loop.

For instance, we repeatedly merge l total elements, where l is the

minimum of the unmerged number of elements from the two runs

being merged. This allows us to avoid checking if one run has been

fully merged in the inner loop. Finally, we manually unroll 4 loop

iterations in the innermost loop. This much more explicit code path

should be more easily understood by the compiler and CPU, and

result in improved prefetching and memory throughput.

We now compare the performance of the binary tree-Q merge

approach (we call it B-TreeQ), the k-way tree-Q approach (with k

set to 1000) used in Section 2.2, and ping-pong merge. The sorted

runs were generated by the first phase of Patience sort over uniform

random data (i.e., identical to the random workload used in Section

2.2). The runs were packed into the array in order of creation. The

results are shown in Figure 9. Note that ping-pong merge is

consistently 3-4 times faster than the k-way tree-Q merge.

Figure 9: Merge Comparison (Random Data)

3.2 Unbalanced Ping-Pong Merge
Of course, one of the prime motivations for using Patience sort is

its linear complexity on mostly sorted data. Perhaps the most

prevalent real source of such data is event logs, where some data

arrives late (for example, due to network delays), leading to a

tardiness distribution. Therefore, we built a synthetic data generator

to produce datasets that closely model such distributions. The

generator takes two parameters: percentage of disorder (𝑝) and

amount of disorder (𝑑). It starts with an in-order dataset with

increasing timestamps, and makes 𝑝% of elements tardy by moving

their timestamps backward, based on the absolute value of a sample

from a normal distribution with mean 0 and standard deviation 𝑑.

For such a disorder model, the first phase of Patience sort typically

produces a few very large runs. Figure 10 and Figure 11 illustrate

this effect. Figure 10 shows the distribution of run size after the first

phase of Patience sort on 100000 elements of random data. The

distribution is shown in order of creation. Note that the total number

of runs, and the maximum run size is roughly √𝑛, which is expected

given the theoretical properties of Patience sort over random data

[1]. Figure 11 shows the run size distribution for a 100000 element

disordered dataset with 𝑝 and 𝑑 set to 10. First, note that there are

only 5 runs. In addition, the run size distribution is highly skewed,

with the first run containing over 90% of the data.

Figure 10: Run Size –

Random Data

Figure 11: Run Size - Almost

Ordered Data

We know that when merging sorted runs two-at-a-time, it is more

efficient to merge small runs together before merging the results

with larger runs [13]. Put another way, rather than perform a

balanced tree of merges, it is more efficient to merge larger runs

higher in the tree. For instance, consider the packed sorted runs in

Figure 7. Using the balanced approach described so far, we merge

the first two runs, which involves copying 8 elements, and merge

the last two elements into the second sorted run. We then do the

final merge. Therefore, in total, we merge 8+2+10=20 elements.

Suppose, instead, we merge the last two runs into the second array,

producing the state shown in Figure 12.

3 5 7 8 9 10 4 6

 1 2

Figure 12: Unbalanced Merge (first merge)

We next merge the last run in the first array, and the last run in the

second array. This is an interesting choice, because we are merging

adjacent runs in different arrays. If we merge into the bottom array,

we can actually blindly merge without worrying about overrunning

the second run. The result is shown in Figure 13.

3 5 7 8 9 10

 1 2 4 6

Figure 13: Unbalanced Merge (second merge)

Since we are down to two sorted runs, we can now do another blind

merge into the bottom array. The result is shown in Figure 14.

1 2 3 4 5 6 7 8 9 10

Figure 14: Unbalanced Merge (third merge)

The total number of merges performed in the unbalanced merge is

2+4+10=16, compared to 20 for the balanced approach. As the

distribution of run lengths becomes more skewed, the difference

between the balanced and unbalanced approaches widens.

We now propose an improvement to ping-pong merge, which

differs from the previous ping-pong merge algorithm in two ways:

1. Runs are initially packed into the first array in run size order,

starting with the smallest run at the beginning.

2. Rather than merge all runs once before merging the result,

merge in pairs, from smallest to largest. Reset the merge

position back to the first two runs when either: we have

merged the last two runs, or the next merge result will be larger

than the result of merging the first two runs.

Together, the two changes above efficiently approximate always

merging the two smallest runs.

Algorithm A1 shows unbalanced ping-pong merge. Lines 8-13 sort

the runs and pack them in the array. Lines 14-25 perform the

unbalanced merge. We finally return the array of sorted elements.

3.3 Evaluating Unbalanced Ping-Pong Merge
In order to better understand the potential impact of this

optimization, we begin by examining the best and worst cases.

Clearly, the best case occurs when we have one very large run, and

many small runs. We therefore conducted an experiment where we

have a single large run of 60 million 8 byte integers (about 500

MB), and a variable number of single element runs. We measured

the time to merge using both the balanced and the optimized

unbalanced approach. Figure 15 shows the results. The cost of the

unoptimized approach increases exponentially with the number of

runs (the x-axis is log scale). This is expected since every time we

double the number of runs, the number of levels of the merge tree

increases by one. Since the large run gets merged once at each level,

the overall cost increases linearly.

Figure 15: Unbalanced Merge - Best Case

On the other hand, the optimized approach is pretty insensitive to

the number of runs, since the cost is dominated by the single merge

that the large run participates in. These results generally hold in the

situation where there are a few runs that contain almost all the data.

In contrast, we now consider the worst case for unbalanced

merging. This occurs when there is little to no benefit of merging

the small runs early, but where the cost of sorting the run sizes is

significant compared to merging. Initially, we tried a large number

of single element lists. The sorting overhead turned out to be

negligible since sorting already sorted data is quite fast. We then

tried, with more success, a run size pattern of 1-2-1-2-1-2… This

run pattern ensured that the sort had to push half the ones into the

first half, and half the twos into the second half. The sorting

overhead in this case was significant enough to be noticeable. We

then tried 1-2-3-1-2-3…, which was even worse. We continued to

increase the maximum run size up to 40, and varied the total

number of runs between 800k and 3.2M. Figure 16 shows the

results.

Figure 16: Unbalanced Merge - Worst Case

The worst case peaks at ~30% overall penalty, with a maximum run

size of about 9. As the maximum run size increases, so does the

average run size. As a result, more time is spent merging instead of

sorting run sizes, and the overhead of sorting eventually decreases.

Algorithm A1: Unbalanced Ping-Pong Merge
1 UPingPongMerge(Runs: Array of sorted runs,

 Sizes: Array of sorted run sizes)

2 RunSizeRefs : Array of (RunIndex, RunSize) pairs

3 Elems1 : Array of sort elements

4 Elems2 : Array of sort elements

5 ElemsRuns : List of (ElemArr, ElemIndex, RunSize)

 Triples

6 For each element i of Runs

7 RunSizeRefs[i] = (i, Sizes[i])

8 Sort RunSizeRefs by RunSize ascending

9 NextEmptyArrayLoc = 0;

10 for each element i of RunSizeRefs

11 copy Runs[i.RunIndex] into Elems1 starting at

 position NextEmptyArrayLoc

12 ElemsRuns.Insert (1, NextEmptyArrayLoc, i.RunSize)

13 NextEmpotyArrayLoc += i.RunSize

14 curRun = ElemsRuns.IterateFromFirst

15 while ElemsRuns has at least two runs

16 if (curRun has no next) or

 (size of merging curRun and its next >

 size of merging the first and second runs)

 CurRun = ElemsRuns.IterateFromFirst

17 if (curRun.ElemsArr == 1)

18 Blindly merge curRun and curRun’s next into Elems2

 starting at element position curRun.ElemIndex

19 curRun.ElemArr = 2

20 else

21 Blindly merge curRun and curRun’s next into Elems1

 starting at element position curRun.ElemIndex

22 curRun.ElemArr = 1

23 curRun.RunSize += curRun.Next.RunSize

24 remove curRun’s next

25 curRun.MoveForward

26 if (ElemsRuns.First.RunIndex == 1) return Elems1

27 else return Elems2

Given the data dependent effect of unbalanced merging, we now

investigate the effect of unbalanced merging on sorted runs

generated by the first phase of Patience sort. In particular, consider

our disordered data generator from Section 3.2. In Figure 11, we

fixed both the percentage and the standard deviation of disorder.

Figure 17 shows the results of an experiment where we varied both

the disorder percentage, and the amount of disorder, and measured

the effect of the unbalanced merge improvement on merge time.

Figure 17: Effect of Unbalanced Merging on Ping-Pong Merge

First, notice that when there is no disorder (0%) unbalanced

merging has no effect. This makes sense when one considers that

there is only one sorted run. Looking at the other extreme, where

100% of the data is disordered, as the disorder amount grows, the

optimization becomes less effective. This makes sense when one

considers that for purely disordered data, the run sizes are more

uniform than for disordered data, as is illustrated in Figure 10 and

Figure 11. When disorder is rare, increasing the amount of disorder

actually causes the optimization to become more effective, because

the likelihood that each disordered element causes a new run to

form is much higher, than if there is a small amount of disorder.

There are two important takeaways from this experiment: First,

unbalanced tree merging is never detrimental to performance for

the types of Patience sort workloads we are targeting. Second, we

saw improvements by as much as a factor of 5, with possibly even

higher levels of improvement for other Patience sort cases. For the

best case measured here, unbalanced ping-pong merge was more

than a factor of 10 faster than state-of-the-art heap based merge

techniques such as cache-aware k-way tree-Q merge.

4. PING-PONG PATIENCE SORT

4.1 Naïve P3 Sort
We now combine our efficient implementation of the first phase of

Patience+ Sort, with our optimized ping-pong merge. We call the

result naïve Ping-Pong Patience+ Sort (i.e., naïve P3 Sort). We call

this version “naïve” because we introduce further important

optimizations later in this section. In particular, we introduce a

cache-sensitive version, called Cache Sensitive Ping-Pong Patience

Sort, which includes optimizations in the first phase to improve

cache related performance. In the final variant, simply called Ping-

Pong Patience Sort, additional optimizations are made in the first

phase to improve performance for almost ordered input.

To begin, we re-run our experiment comparing Quicksort with

Patience sort, but this time use naïve P3 sort. The result is shown in

Figure 18. First, note that naïve P3 sort is faster than Quicksort in

all measured cases, ranging between 73% and 83% of the time

taken by Quicksort.

Figure 18: Quicksort vs Naïve P3 Sort

4.2 Cache-Sensitive P3 Sort
Note that naïve P3 sort’s improvement over Quicksort diminishes

as the dataset size increases. To understand this phenomenon more

clearly, we first examine the percentage of time spent in the first

phase of naïve P3 sort as dataset size increases. The results are

shown in Figure 19.

Figure 19: Phase 1 Time for Naïve P3 Sort

Note that as dataset size increases, so does the percentage of time

spent in the first phase. Suspecting this might be a caching effect,

we decided to limit the binary search of tail values in phase 1 to a

fixed number of the most recently created runs. This idea is to fit

all the searched tail values in the cache. We tried a size of 1000,

which is the optimal size for the array in tree-Q merge (see Section

2.2). The results are shown in Figure 20. Limiting the number of

runs which can be actively appended to, achieves the intended

effect. Cache-Sensitive (CS) P3 sort on random data takes 73% to

75% of the time it takes Quicksort to sort the same data, with no

observable change in relative performance as dataset size increases.

Figure 20: Effect of Cache Sensitivity

So far, our focus for P3 sort has been on random data, where

Quicksort excels, and P3 sort is unable to leverage order. We now

examine the performance of cache sensitive P3 sort for the synthetic

workloads described in Section 3.2. In these workloads we

effectively “push forward” a fixed percentage of in-order data by a

number of positions which follows the absolute value of a normal

distribution with mean 0. We vary the percentage of data which is

pushed, and also vary the standard deviation of amount of push. We

compare, for these workloads, the time taken to sort using cache

sensitive P3 sort and Quicksort. The results are shown in Figure 21.

Figure 21: CS P3 Sort vs. Quicksort (partially ordered)

First, note that when the data is already sorted, CS P3 sort is

approximately 3x faster than Quicksort. It is worth noting that while

Quicksort benefits significantly from the data being sorted,

performance falls off faster for Quicksort than CS P3 sort as the data

becomes mildly disordered. This explains the up to 5x

improvement of CS P3 sort over Quicksort with mild disorder.

4.3 Final P3 Sort
While this is an excellent showing for CS P3 sort, it is worth noting

that the total cost of CS P3 sort is still significantly higher (about 7

times) than performing two memory copies of the dataset for

perfectly ordered data. In fact, when considering the cost this way,

the overall costs of mildly disordered data seems too high. To better

understand this, we measured the ratio of time spent in phase 1 for

the above experiment. The results are shown in Figure 22.

Figure 22: Phase 1 Time for CS P3 Sort (Partially Ordered)

Note that while the time is about evenly split between phase 1 and

phase 2 for mostly random data, as the data becomes more ordered,

more of the time is spent in the first phase. At the most extreme,

more than 80% of the time is spent in the first phase. Looking to

the literature on sorting almost-sorted data, the best-known current

technique is Timsort, which is the system sort in Python, and is used

to sort arrays of non-primitive type in Java SE 7, on the Android

platform, and in GNU Octave [8]. Timsort has a heavily optimized

Java implementation (which we translated to C++). While we defer

a comparison until Section 4.4, we note that this implementation

has many optimizations around trying to, as quickly as possible,

copy consecutive sorted elements in the input into sorted runs.

Learning from this approach, we optimize our CS P3 sort

implementation to handle this case as follows. After we add a new

element to the tail of a sorted run during phase 1, we introduce a

small loop where we try to insert as many subsequent elements

from the input as possible to the same sorted run. This is achieved

by comparing each new element in the input with the current tail as

well as the tail of the previous sorted run (if one exists, i.e., this is

not the first sorted run). If the new element lies between the current

tail and previous tail, we can add it to the current sorted run and

resume the loop. This allows us to quickly process a sequence of

increasing elements in the input, which lie between the current and

previous tail. This loop is terminated when we encounter an

element that does not belong to the current sorted run. In our current

implementation, we apply this optimization only to the first sorted

run – this is usually the largest run for data such as logs, where

elements are tardy. This allows us to avoid the second comparison

with the tail of the previous run. Incorporating these optimizations

produces our final P3 sort variant, which we simply call P3 sort.

Algorithm A2 shows P3 sort. Line 8 shows the optimization that

makes the algorithm cache-sensitive. Lines 14-17 depict (at a high

level) the optimization to continue adding elements to the chosen

tail. Finally, Line 18 invokes unbalanced ping-pong merge to

complete the second phase of the algorithm. For clarity, we have

excluded from this algorithm the optimization described in Section

2.2 for efficiently handling reverse sorted lists.

4.4 Evaluating P3 Sort
Figure 23 shows the results of re-running our comparison with

Quicksort, using P3 sort instead of the cache-sensitive CS P3 sort.

First, note the dramatic overall improvement. P3 sort is

approximately 10 times faster than Quicksort when 5% or less of

the data is disordered, regardless of the degree of disorder. As the

dataset size increases, P3 sort improves further against Quicksort

due to its linear complexity for ordered data. In addition, observe

that the random case has not degraded as a result of these in-order

data optimizations. Finally, the total time taken to sort sorted data

is now approximately the cost of 2 memory copies of the entire

dataset. This indicates that there are no further opportunities to

improve this case.

Algorithm A2: P3 Sort
1 P3Sort(ElemsToSort: Array of comparable elements)

2 Runs: Array of sorted runs

3 Tails: Array of sorted run tails

4 Sizes: Array of sorted run sizes

5 CurElemIndex: Index of the element being processed

6 CurElemIndex = 0

7 while CurElemIndex < ElemsToSort.Size

8 Binary search the k highest indexed tails for the

 earliest which is <= ElemsToSort[CurElemIndex]

9 If there isn’t such a tail

10 Add a new sorted run, with highest index,

 containing just ElemsToSort[CurElemIndex]

11 Update Tails and Sizes

12 Increment CurElemIndex

13 else

14 do

15 Add ElemsToSort[CurElemIndex] to found run

16 Increment CurElemIndex

17 while ElemsToSort[CurElemIndex] should be added to

 the chosen tail

18 UPingPongMerge(Runs, Sizes)

Figure 23: P3 Sort vs. Quicksort (partially ordered)

As mentioned earlier, Timsort [8] becomes linear as the data

becomes ordered. It is currently recognized as the best in-memory

technique for sorting almost sorted data. Timsort is conceptually

related to Patience sort, with a run generation phase and a run merge

phase. The run generation phase, however, only recognizes runs

that are already contiguous in the input data. As it scans the data,

there is only one active run which can be appended to, and there is,

therefore, no binary search or tails array. In the popular

implementation, run generation and run merging are commingled

to create an approximately in place algorithm.

We therefore ported the Java implementation of Timsort to C++ in

the most careful and straightforward possible way, preserving the

optimizations in the existing implementation. There is no dynamic

memory allocation, and the implementation is entirely array based,

producing excellent sequential memory access patterns. The results

of comparing Timsort to P3 sort are shown in Figure 24.

Figure 24: P3 Sort vs. Timsort (partially ordered)

First, note that in all cases except sorted data, P3 sort is faster than

Timsort. For the case where 5% of the data is disordered by a large

amount, P3 sort is between 3 and 4 times faster than Timsort. For

in-order data, Timsort is approximately 10% faster than P3 sort, due

to the fact that the Timsort implementation we used is in-place, and

does substantially less memory copying, although it performs the

same number of comparisons.

5. Improving Replacement Selection Sort
In this section, we combine replacement selection sort and P3 sort

to efficiently sort almost-sorted datasets too large to fit in main

memory. Such datasets have become commonplace in cloud

applications, where timestamped application, user, and system

telemetry data are usually dumped into large logs for subsequent

processing. Since these logs combine information from distributed

sources, network delays, intermittent machine failures, and race

conditions introduce delays and jitter, which ultimately create time

disorder in the stored log.

Temporal analytics are then typically performed over these logs.

For instance, one may want to roll up historical behavior over time,

or correlate events across time [7][17][18]. Such query processing

typically requires that the log first be sorted on time.

In the past, replacement selection was used to reduce the number of

external memory passes when more than two passes were required,

with the hope of reducing the number of passes to a minimum of

two. Here, we discuss and introduce methods for sorting almost

sorted datasets in a single external memory pass. We show how P3

sort may be combined with replacement selection sort to minimize
the CPU cost associated with single pass external sorting.

5.1 Replacement Selection Sort
Replacement selection [13] is the most well-known method of

reducing the number of runs in an external sort by exploiting

bounded disorder in the input data. This strategy scans the data

from beginning to end, and stores the scanned data in a heap. When

reading the next element from the input will overrun memory, the

smallest element in the heap is removed and written to external

memory, making space for the new element. If the disorder is

bounded by the size of the heap, only a single run is written to disk,
and no further passes over the data are needed.

We first evaluate the CPU cost of sorting in this manner, as

compared to the cost of sorting the entire dataset with P3 sort. In

this experiment, we sort 50 million 8 byte integers (400MB), all of

which are pushed forward. The standard deviation of the number of

positions pushed was varied from 1 to 1 million. For replacement

selection, we also varied the size of the heap from 1MB to 256MB.

Figure 25: Replacement Selection vs. P3 Sort

The results are shown in Figure 25. The performance of

replacement selection is pretty dismal, taking anywhere from 2x to

28x longer than P3 sort. This is due to a combination of two factors:

1) To the left, when disorder is small, P3 sort approaches linear

complexity, while heaps are O(𝑛 ⋅ log 𝑛) in all cases.

2) As observed earlier in the paper, heaps are expensive to

maintain. Even for the most disordered case (stddev = 100k),

when using a 256MB sized heap, replacement selection takes
more than 3 times as long as P3 sort.

Unlike P3 sort, in replacement sort, the time taken is sensitive to the

size of the heap, which determines the disorder tolerance. Higher

tolerance when using replacement selection has higher CPU cost,

even if the disorder level of the data is the same.

While this experiment doesn’t involve reading and writing from

disk, it provides a comparative upper bound on sorting throughput.

All further experiments with replacement selection will be similarly

focused on CPU costs.

5.2 Flat Replacement Selection (FRS) Sort
When replacement selection is used for run formation in external

memory sorting, data is typically flushed, read, and enqueued in

batches. This is done to optimize the bandwidth of external

memory, which is generally block oriented. The resulting tolerance

to disorder is the memory footprint minus the batch size. For

instance, if the batch size is one quarter the memory footprint, the
disorder tolerance is three quarters of the memory footprint.

We now introduce a variant of batched replacement selection,

called flat replacement selection, which overcomes the two

replacement selection deficiencies identified in the previous

section. In particular, instead of maintaining a heap, we maintain a

sorted list in a buffer. Initially, we fill the buffer with the first

portion of the dataset, and sort it. We then flush the initial portion

(determined by the batch size) of the sorted list, fill the empty

portion of the list with the next portion of the input data, re-sort,

and repeat until the entire dataset is processed. Algorithm A3

depicts this technique. Line 7 sorts the elements in the buffer, while

Lines 8-12 write out BatchSize elements to the output. Lines 13-14
read more data in, and the process is repeated until the end of input.

This seems like a very straightforward idea, and we were surprised

we didn’t find any reference to something like it in the literature. In

order to better understand this gap, we first tried this technique

using Quicksort when we re-sort. We then reran the previous

experiment, using replacement selection as the baseline, with a

batch size of half the buffer. The results are shown in Figure 26.

Figure 26: Flat (QS) vs. Standard Replacement Selection Sort

This is a significant improvement over classical replacement

selection, particularly on modern hardware. Modern caches and

memory hierarchies have been far kinder to Quicksort than

replacement selection, which is based on heaps. Two decades ago,

when there was far more interest in replacement selection, flat

replacement selection was probably not an improvement over

standard replacement selection. The fact that the two techniques are

quite close for small buffer sizes is evidence of this.

If, on the other hand, we use a sorting technique which is linear on

sorted data, like P3 sort, when we re-sort, the already sorted portion

of the data is simply copied into the correct final location. This

should significantly improve upon standard replacement selection.

Note that both replacement selection deficiencies identified in the

previous section are addressed: Because we are using P3 sort, the

cost of sorting is now nearly linear for nearly sorted data. Also,

since there is no heap, the constant time inefficiencies associated

with maintaining heaps are no longer relevant. We reran the

previous experiment, using replacement selection as the baseline,

with a batch size of half the buffer. The results are in Figure 27.

Figure 27: Flat (P3) vs. Standard Replacement Selection Sort

The improvement in performance is now far more dramatic,

ranging between a 3x and 10x speedup. Additionally, the

performance gap narrows as disorder increased, and widens as

disorder tolerance (buffer size) increases. As disorder increases, flat

selection sort, which ultimately relies on P3 sort, loses its linear

advantage over heap sort on mostly sorted data.

On the other hand, as the buffer size increases, the extra memory

copying associated with moving data around in the buffer for

piecewise sorting decreases.

5.3 P3 Replacement Selection Sort
We now introduce the final variant of replacement selection, which

we call P3 replacement selection. This sorting variant deeply

integrates the batch replacement strategy into the P3 sorting

algorithm itself. Algorithm A4 shows P3 replacement selection.

In particular, we begin by performing phase 1 of P3 sort, until our

memory budget is half used. By building a histogram over a sample

of the data as we process it in phase 1, we determine the

approximate median of all the data stored in the sorted runs (Lines

11-14). We then perform phase 2 of the P3 sort on the smallest half

of the data, as determined by the median, and output the result

(Lines 15-19). Furthermore, we remove the outputted data from the

sorted runs held in memory. Note that this might result in the

removal of some runs.

We then continue phase 1, processing new input until the memory

taken by the sorted runs is once again half the memory footprint.

We then repeat merging and flushing the smallest half of the data.

Algorithm A3: Flat Replacement Selection Sort
1 FlatRSSort(InputElems: Input sequence,

2 OutputElems: Sorted output sequence,

 BatchSize: The # of elems in a batch)

3 Buffer: Array of k elements

4 ElemsToRead = min(InputElems.#Unread, k)

5 Read the first ElemsToRead elements of InputElems

 into Buffer

6 do

7 sort the elements in Buffer

8 if there are no more input elements

9 write the elements in Buffer to OutputElems

10 else

11 write the first Batchsize elements in Buffer to

 OutputElems

12 delete the first Batchsize elements in Buffer

13 ElemsToRead = min(InputElems.#Unread, k-Batchsize)

14 append the next ElemsToRead elements of InputElems

 into Buffer

15 while OutputElems hasn’t had all elements written

We continue alternating between phases 1 and 2 in this manner until

all the data is processed.

P3 replacement selection sort introduces the following additional

work over P3 sort:

 Maintains a sample of the input which resides in a sorted run

 Must sort the sample once per batch

 After phase 1, before we ping-pong merge, we don’t know

how much of each run is smaller than the median across the

sample, we must therefore make an extra pass over the blocks

of memory which hold the run, so that we can pack the partial

runs into the merge buffer by size before ping-pong merge.

 Because some runs may become empty, we must compact the

run pointer arrays after phase 2.

Observe, however, that compared to flat selection sort, we are

significantly reducing sorted data movement (i.e. re-sorting sorted

data). Also, we eliminate the overhead of repeatedly initializing and

cleaning up the resources associated with calls to P3 sort. We reran

the previous experiment, using flat replacement selection sort as a

baseline. The results are shown in Figure 28.

Figure 28: P3 vs. Flat Replacement Selection Sort

Note that while not as dramatic as the introduction of flat

replacement sort, there are, nevertheless, significant gains,

especially when the level of disorder is low.

There are two trends worth discussing. The first trend is the closing

of the performance gap as the memory footprint increases. As the

memory footprint approaches the size of the dataset, the two

algorithms behave very similarly, although there is some extra

overhead in the P3 replacement selection version. The second trend

is that as disorder increases, the gap again closes. As disorder

increases, both algorithms become O(𝑛 ⋅ log 𝑛), and the linear time

extra work associated with both techniques becomes irrelevant.

In our final comparison over synthetic data, we compare P3

selection sort with P3 sort over the entire dataset. The results are

shown in Figure 29.

Figure 29: P3 Replacement Sort vs. P3 Sort

First, note that smaller memory footprints improve the performance

of P3 replacement sort. This is due to improved caching behavior.

In addition, as disorder increases, the two techniques converge to

identical performance for the same reason as in the previous

experiment: The two algorithms become identically dominated by

their O(𝑛 ⋅ log 𝑛) components. The additional constant time work

performed by P3 replacement sort therefore becomes insignificant.

It is interesting to note that these two effects combine, in some

cases, making P3 replacement sort faster than P3 sort, despite the

extra work. Even though both algorithms, in these cases, produce

the same output, P3 replacement sort is fundamentally not able to

sort random datasets using a buffer smaller than the dataset size.

5.4 Replacement Selection, Batch Size,

Memory, and Disorder Tolerance
For classical replacement selection, the disorder tolerance is the

size of memory, the maximum of any technique presented here. On

the other hand, there is an extreme sacrifice in efficiency which is

made to achieve this robustness to disorder.

On the other hand, our flat replacement selection and P3

replacement selection experiments chose a batch size of one half

the buffer size. For flat replacement selection, this resulted in a

disorder tolerance of half the buffer size, or half of available

memory. By choosing a smaller batch size, for instance ¼ the buffer

size, we could have increased the disorder tolerance to ¾ of main

memory, but we would also have doubled the number of re-sorts,

where each re-sort would move ¾ the buffer size of already sorted

data instead of ½. This is clearly an unfortunate situation for flat

replacement selection, where the cost of improving the disorder

tolerance is very high.

Algorithm A4: P3 Replacement Selection Sort
1 P3RSSort(InputElems: Input sequence,

2 OutputElems: Sorted output sequence,

 BatchSize: The # of elems in a batch)

3 RunSizeRefs : Array of (RunIndex, MergeSize) pairs

4 Runs: Array of sorted runs

5 Tails: Array of sorted run tails

6 Sizes: Array of sorted run sizes

7 k: The target maximum memory footprint in elements

8 SampleFreq: The number of elements between samples

9 Samples: Array of k/SampleFreq elements

10 While not all output has been written

11 perform phase 1 of P3 sort, correctly sampling,

 and stopping when either all input is consumed,

 or Samples is full

12 Sort Samples using P3 Sort

13 MergeVal = Samples[BatchSize/SampleFreq]

14 delete the first BatchSize/SampleFreq

 values from Samples

15 For each sorted run index i

 RunSizeRefs[i] = (i, # of elements <= MergeVal)

16 Sort ElemsToMerge by MergeSize

17 Pack the first ElemsToMerge.MergeSize elements of

 each run, in ElemsToMerge order, into the

 first ping pong array

18 Delete the first ElemsToMerge.MergeSize elements of

 each run, maintaining Tails, and Sizes

19 Use unbalanced ping pong merge to merge, writing the

 result to OutputElems

P3 replacement selection, in contrast, needs twice the batch size

extra memory in order to perform ping-pong merge, and also needs

to sort the sample every batch. If the memory buffer is large, say 1

GB, and 50 MB batches are merged at a time, the total memory

needed is only 1.1 GB, and the disorder tolerance is ~95% of the

buffer size. Note that the number of samples needed is dependent

on the batch size as a percentage of the buffer size.

In order to better understand the effect of smaller batch sizes on P3

replacement selection, we re-ran the previous experiment with a

buffer size of 128MB, and varied the batch size. We used a

sampling frequency of 1024. This resulted in 16K samples, which

is more than enough for our smallest batch size of 1%. The results

are shown in Figure 30.

Figure 30: Decreasing Batch Size for P3 Replacement

Selection

For batch sizes of 12MB and 6MB, there is no measureable impact

of using a smaller batch size (compared to 50MB). At a batch size

of 1.2 MB, we are just beginning to see the effect of reducing batch

size. As a result, one can use P3 replacement selection as a much

more performant alternative to classical replacement selection,

without significant adverse effects on either memory footprint or

disorder tolerance.

6. RELATED WORK
Sorting has a long history, even predating computer science

[9][13]. Over the years, there have been many algorithms, each with

their own unique requirements and characteristics. In this paper, we

focus on two cases of high practical value: (1) In-memory, single

node comparison based sorting of randomly ordered data; and (2)

Single node comparison based sorting of almost ordered data (in-

memory and external).

For in-memory single node comparison based sorting of randomly

ordered data, Quicksort [14] remains the most commonly

implemented technique, due to both its high efficiency and ease of

implementation. Quicksort also has excellent cache performance,

focusing for long periods of time on small subsets of the data.

Where appropriate, we compare our proposed sorting techniques to

the GNU C++ implementation of Quicksort [11], which includes

the four popular Sedgewick optimizations [10] described earlier.

For in-memory single-node comparison-based sorting of almost

ordered data, Timsort [8] has emerged as the clear winner in prior

work. Like Patience sort, Timsort is O(𝑛 ⋅ log 𝑛) in the worst case,

and is linear on sorted data. Timsort is the system sort in Python

and is used to sort arrays of non-primitive type in Java SE 7, on the

Android platform, and in GNU Octave [8]. Timsort has a very

popular and heavily optimized implementation in Java.

The basic idea of Timsort is to recognize and merge existing sorted

runs in the input. Unlike Patience sort, only one run can be added

to at any point in the algorithm. When a data element is processed,

it either extends the current run, or starts a new one. The run

recognition and merge phases are commingled cleverly in order to

sort the data efficiently, and approximately in-place. Where

appropriate, we compare our proposed sorting techniques in this

paper to our careful port of Timsort’s Java implementation to C++.

Bitonic sorting [19] has emerged as a popular sorting technique, but

its benefits are mostly limited to massively parallel GPU

architectures. Chhugani et al. [20] show how to exploit SIMD and

modern processor architectures to speed up merge in the context of

merge sort and bitonic sorting. Efficient merging techniques have

also been investigated in the context of merge joins with modern

hardware [24][23][22]. For instance, Balkesen et al. [22] argue that

merging more than two runs at once is beneficial, while using a tree

of binary merges to perform the merge. Like ping-pong merge, all

these techniques use binary merges instead of heaps, but focus on

taking advantage of multiple cores and processor-specific features

such as SIMD. Further, they do not target or optimize for almost-

sorted datasets. We focus on general single-core processor-agnostic

techniques in this paper, and believe that multiple cores and

processor-specific techniques can be adapted to make P3 sort even

faster; this is a rich area for future work (see Section 7).

The most related previous work is Patience sort itself [3]. The name

Patience sorting (Patience is the British name for solitaire) comes

from Mallows [15], who in [3] credits A.S.C. Ross for its discovery.

Mallows' analysis was done in 1960, but was not published until

much later. Aldous et al. also point out in [1] that Patience sorting

was discovered independently by Bob Floyd in 1964 and developed

briefly in letters between Floyd and Knuth, but their work has

apparently not been published. Hammersley [16] independently

recognized its use as an algorithm for computing the length of the

longest increasing subsequence. More recently, Gopalan et al. [5]

showed how Patience sort can be used to estimate the sortedness of

a sequence of elements.

P3 sort uses ping-pong merge for merging sorted runs in memory.

Ping-pong merge and its run ordering for the unbalanced case draw

motivation from the early tape-based merging techniques described

by Knuth [13]. A key difference is that main memory buffers allow

simultaneous reads and writes, which allows us to perform the

merge with just two ping-pong buffers and execute “blind merges”

when merging runs. Moreover, our run-ordering targets a different

need – that of making merge extremely lightweight for highly

skewed runs generated from almost sorted data by phase 1 of

Patience sort. Other merging approaches proposed in the past

include the classic heap-based approach such as the selection tree

algorithms from Knuth [13]. Wickremesinghe et al. [4] introduced

a variant of these algorithms, which uses a tree of priority-queue

based merges, limiting the size of the heap in order to improve

cache behavior. An extensive comparison to this technique is

presented in Section 3.

Further contributions of this paper include two new variants of

replacement selection [13][21], a technique for reducing the

number of sorted runs when performing external-memory-based

sort-merge. The potential importance of replacement selection and

its variants has become especially acute due to the plethora of

almost sorted telemetry logs generated by Big Data and Cloud

applications, where network delivery of data introduces jitter and

delay [7][17][18]. In many of these cases, the number of runs can

be reduced to 1, eliminating the second pass of sort-merge entirely.

Unfortunately, the CPU costs associated with such techniques,

which are heap, or tree based [13][4], are an order of magnitude

higher than conventional high performance sorting techniques,

significantly limiting the achievable throughput.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have reexamined and significantly improved upon

Patience sort, a 50+ year old sorting technique mostly overlooked

by the sorting literature. In particular, we have introduced both

algorithmic, and architecture-sensitive, but not architecture-

specific, improvements to both the run generation phase and the run

merging phase. For the run merging phase, we have introduced a

new technique for merging sorted runs called Ping-Pong merge.

The result is a new sorting technique, called Ping-Pong Patience

Sort (P3 Sort), which is ~20% faster than GNU Quicksort on

random data, and 20%-4x faster than our careful C++ port of the

popular Java implementation of Timsort on almost ordered data.

This paper also investigates new opportunities for replacement

selection sort, which can be used to sort many external memory

resident datasets in a single pass. In particular, we introduce two

new variants of replacement selection sort, which integrate P3 sort

into replacement selection sort in two different ways. The faster

approach, which more deeply integrates P3 sort into selection sort,

improves CPU performance/throughput by 3x-20x over classical

replacement selection sort, with little effect on either memory

footprint or disorder tolerance.

This work is the beginning of several research threads. The

observation that Patience sort, a mostly overlooked sorting

technique, can be the basis of a highly competitive sort algorithm

(P3 sort) is new. Undoubtedly there will be other interesting

innovations to come, further improving on the bar for Patience sort

variants established in this paper. For instance, a related sort

technique, Timsort, was able to be algorithmically restructured in a

way which made it almost in place. A similar optimization may be

possible with P3 sort, improving P3 sort’s utility when main

memory is limited.

Inside a DBMS, P3 sort is also applicable as a sorting technique that

can automatically exploit the potential of efficiently sorting a

dataset by a new sort order that is closely related to an existing sort

order (for example, when a dataset sorted on columns {A, B} needs

to be sorted on column {B}, and A has low cardinality).

Also, Patience sort’s explicit decomposition of sorting into run

generation and run merging forms an intriguing basis for an

investigation into multicore, SIMD, and distributed parallel

execution with Patience sort. In fact, it is immediately clear that

some of the architecture specific innovations, like the use of SSE

instructions, described in [20] could be applied to ping-pong merge.

Finally, there has been very little interest in replacement selection

sort and its variants over the last 15 years. This is easy to understand

when one considers that the previous goal of replacement selection

sort was to reduce the number of external memory passes to 2.

Since, the size of 2 pass sortable (without replacement selection

sort) datasets increases quadratically with the size of main memory,

as main memories have grown, the value of replacement selection

sort has drastically diminished.

Replacement selection sort, however, now has the opportunity, for

many logs, which typically have bounded disorder, to reduce the

number of passes from 2 to 1. This paper represents the first work

in that direction, which again, is likely to be improved upon.

ACKNOWLEDGEMENTS
We would like to thank Isaac Kunen, Paul Larson, Yinan Li, Burton

Smith, and the anonymous reviewers for their comments, advice,

and support.

8. REFERENCES
[1] David Aldous and Persi Diaconis. Longest increasing

subsequences: from Patience sorting to the Baik-Deift-

Johansson theorem. Bull. of the Amer. Math. Society, Vol. 36,
No. 4, pages 413–432.

[2] Sergei Bespamyatnikh and Michael Segal. Enumerating

Longest Increasing Subsequences and Patience Sorting.
Pacific Inst. for the Math. Sci. Preprints, PIMS-99-3., pp.7–8.

[3] C. L. Mallows. “Problem 62-2, Patience Sorting”. SIAM

Review 4 (1962), 148–149.

[4] Rajiv Wickremesinghe, Lars Arge, Jeffrey S. Chase, Jeffrey

Scott Vitter: Efficient Sorting Using Registers and Caches.
ACM Journal of Experimental Algorithmics 7: 9 (2002).

[5] P. Gopalan et al. Estimating the Sortedness of a Data Stream.
In SODA 2007.

[6] A. LaMarca and R.E. Ladner. The influence of caches on the
performance of sorting. Volume 7 (1997), pp. 370-379.

[7] B. Chandramouli, J. Goldstein, and S. Duan. Temporal

Analytics on Big Data for Web Advertising. In ICDE 2012.

[8] TimSort. http://en.wikipedia.org/wiki/Timsort.

[9] Sorting Algorithms. http://en.wikipedia.org/wiki/

Sort_algorithms.

[10] R. Sedgewick. Implementing Quicksort programs. Comm.
ACM 21 (10): 847–857.

[11] GNU Quicksort Implementation. http://aka.ms/X5ho47.

[12] Patience Sorting. http://en.wikipedia.org/wiki/

Patience_sorting.

[13] Donald Knuth. The Art of Computer Programming, Sorting

and Searching, Volume 3, 1998.

[14] C.A.R. Hoare. Quicksort. Computer J. 5, 4, April 1962.

[15] C.L. Mallows. Patience sorting. Bull. Inst. Math. Appl., 9:216-
224, 1973.

[16] J.M. Hammersley. A few seedlings of research. In Proc. Sixth

Berkeley Symp. Math. Statist. and Probability, Volume 1,
pages 345-394. University of California Press, 1972.

[17] M. Kaufmann et al. Timeline Index: A Unified Data Structure

for Processing Queries on Temporal Data in SAP HANA. In

SIGMOD, 2013.

[18] Splunk. http://www.splunk.com/.

[19] K. E. Batcher. Sorting networks and their applications. In

Spring Joint Computer Conference, pages 307–314, 1968.

[20] J. Chhugani et al. Efficient Implementation of Sorting on

MultiCore SIMD CPU Architecture. In VLDB, 2008.

[21] P. Larson. External Sorting: Run Formation Revisited. IEEE

Trans. Knowl. Data Eng. 15(4): 961-972 (2003).

[22] C. Balkesen et al. Multi-Core, Main-Memory Joins: Sort vs.
Hash Revisited. In VLDB, 2014.

[23] M.-C. Albutiu et al. Massively parallel sort-merge joins in
main memory multi-core database systems. In VLDB, 2012.

[24] C. Kim et al. Sort vs. hash revisited: Fast join implementation
on modern multi-core CPUs. In VLDB, 2009.

