
Abstract Transformers

for Thread Correlation Analysis

M. Segalov1, T. Lev-Ami1, R. Manevich2, G. Ramalingam3, and M. Sagiv1

1 Tel Aviv University, {tla,segalovm,msagiv}@post.tau.ac.il
2 University of California Los Angeles, rumster@cs.ucla.edu

3 Microsoft Research India, grama@microsoft.com

Abstract. We present a new technique for speeding up static analysis
of (shared memory) concurrent programs. We focus on analyses that
compute thread correlations: such analyses infer invariants that capture
correlations between the local states of different threads (as well as the
global state). Such invariants are required for verifying many natural
properties of concurrent programs.

Tracking correlations between different thread states, however, is very
expensive. A significant factor that makes such analysis expensive is the
cost of applying abstract transformers. In this paper, we introduce a tech-
nique that exploits the notion of footprints and memoization to compute
individual abstract transformers more efficiently.

We have implemented this technique in our concurrent shape analysis
framework. We have used this implementation to prove properties of
fine-grained concurrent programs with a shared, mutable, heap in the
presence of an unbounded number of objects and threads. The proper-
ties we verified include memory safety, data structure invariants, partial
correctness, and linearizability. Our empirical evaluation shows that our
new technique reduces the analysis time significantly (e.g., by a factor of
35 in one case).

1 Introduction

This paper is concerned with analysis and verification of (shared memory) con-
current programs. We present a new technique that makes such analyses more
efficient. The technique presented in this paper speeds up the verification signifi-
cantly (e.g., reducing the verification time from 56, 347 seconds to 1, 596 seconds
— a 35 fold speed-up — for one program).

One key abstraction technique for dealing with the state space explosion
problem in analyzing concurrent programs is thread-modularity (see, e.g., [7]),
which works by abstracting away correlations between the local states of different
threads. Unfortunately, thread-modular analysis fails when the proof of a desired
property relies on invariants connecting the local states of different threads,
which is the case in several natural examples.

Thread-Correlation Analysis. Hence, we focus on analysis using abstractions that
track correlations between pairs of (abstract) thread states (e.g., see [2, 5, 11]).
The abstract domain elements, in our analysis, essentially represent invariants
of the form ∀t, e .

∨n

i=1 ϕi[t, e] where t and e are universally quantified thread
variables and ϕi[t, e] are formulas taken from a finite, but usually large, set of
candidates (describing some relation between the states of threads t and e). In
our experience, we found such abstractions to be sufficiently precise for verifying
the programs and properties of interest, but the corresponding analyses were
quite time-consuming.

Abstract Transformers. The idea of using abstractions that correlate states of
different threads is not new. In this paper we address the question of how to
define precise, yet efficient, transformers for such domains, a question that has
not been systematically studied before. This is, however, an important ques-
tion because, as we found, the cost of applying abstract transformers is one of
the main reasons why thread-correlation analyses are expensive. The abstract
transformer corrresponding to a statement must determine how the execution
of the statement by some thread affects the invariant computed by the analysis
so far. The transformer must consider all possible (abstract) states of the exe-
cuting thread, and identify the effect of the statement execution on all possible
(abstract) states of any pair of threads. This introduces a non-linear factor that
makes the transformer computation expensive. One of our key contributions is
a set of techniques for computing the abstract transformer more efficiently.

Implementation and Evaluation. We have implemented the techniques described
in this paper in our framework for concurrent shape analysis. We have used
this implementation to verify properties, such as memory safety, preservation of
data structure invariants, and linearizability [13], of fine-grained concurrent pro-
grams, especially those with dynamically-allocated concurrent data structures.
Such data-structures are important building blocks of concurrent systems and
are becoming part of standard libraries (e.g., JDK 1.6). Automatic verification
of these algorithms is challenging because they often contain fine-grained con-
currency with benign data races, low-level synchronization operations such as
CAS, and destructive pointer-updates which require accurate alias analysis. Fur-
thermore, the data-structure can grow in an unbounded fashion and the number
of threads concurrently updating it can also grow in an unbounded fashion.

Our empirical evaluation shows that our optimizations lead to significant
reduction in the analysis time.

Main Contributions. Our contribution is not specific to shape analysis and
can be used for other analyses of concurrent programs as well. For this reason,
we describe our techniques in a simple setting, independent of shape analysis.
Specifically, we present our ideas using a simple abstract domain for concurrent
programs. This domain formalizes our notion of thread correlation by abstracting
concrete states, which capture correlations between the states of all threads, into

abstract states that capture only correlations between the states of every pair of
threads. (Our implementation, however, realizes these ideas in a shape analysis
and our empirical results concern this concurrent shape analysis.)

The main contributions of this paper are:

Sound Transformer We define a sound abstract post operator (transformer)
for the new abstract domain from the concrete sequential semantics. The
transformer reasons rather precisely about interference between threads.

Transformer Optimizations We present two refinements to the computation
of the above transformers that lead to significant speedups.

Implementation We have implemented an analysis based on the above ideas
and used it to automatically verify properties of several concurrent data
structure implementations.

Evaluation We present an empirical evaluation of our techniques and show
the advantages of the optimizations to the abstract transformer computa-
tion. For example, for a lock-free implementation of a concurrent set using
linked lists [18], our optimizations reduce the analysis time from 56, 347 CPU
seconds to 1, 596 — a 35 fold speed-up. We have also analyzed erroneous mu-
tations of concurrent algorithms and our tool quickly found errors in all of
the incorrect variations.

Outline of the rest of this paper. Sec. 2 presents an overview of our analysis in a
semi-formal way. Sec. 3 formalizes our analysis using the theory of abstract in-
terpretation [6]. Sec. 4 defines optimizations to the transformers. Sec. 5 evaluates
the effectiveness of our optimizations on realistic benchmarks. Sec. 6 concludes
with discussion of related works. Proofs and elaborations are found in [21].

2 Overview

In this section, we explain our approach informally, using an adaptation of a
very simple example originally constructed to show the limitations of concur-
rent separation logic [19]. We use this example to motivate the need for tracking
thread correlations and show the difficulties in computing postconditions effi-
ciently. Fig. 1 shows a concurrent program with producer threads and consumer
threads communicating via a single-object buffer, b, and a global flag empty. For
simplicity, instead of locks or semaphores, we use the await construct, which
atomically executes the then-clause when the await-condition holds.

2.1 The Need for Thread Correlations

In this example, the system consists of an unbounded number of producer and
consumer threads. Each producer allocates a new object, transfers it to a single
consumer via the buffer, and the consumer uses the object and then deallocates
the object. Our goal is to verify that use(c) and dispose(c) operate on ob-
jects that have not been deallocated. (This also verifies that an object is not
deallocated more than once.)

Boolean empty = true;

Object b = null;

produce() {
[1] Object p = new();

[2] await (empty) then {
b = p; empty = false;

}
[3] }

consume() {
Object c;

// Boolean x;

[4] await (!empty) then {
c = b; empty = true;

}
[5] use(c);

// x = f(c);

[6] dispose(c);

// use(x);

[7] }

Fig. 1. A concurrent program implementing a simple protocol between a producer
thread and a consumer thread transferring objects in a single-element buffer. The
commented out lines are only used and explained in Sec. 4

One way to verify properties of concurrent systems is by establishing a global
invariant on the reachable configurations and show that the invariant entails the
required properties (e.g., see [1]). In our program, we need to show that the
following property holds:

∀t . pc[t] ∈ {5, 6} ⇒ a(c[t]) , (1)

where t ranges over threads, pc[t] c[t] denote the program counter and value of
the variable c of thread t, and a(c[t]) is true iff c[t] points to an object that has
not yet been disposed. For simplicity, we assume that the set of local variables
is the same for all threads (and is the union of local variables of all threads).

This verification requires the computation of an inductive invariant that im-
plies (1). In particular, the invariant should guarantee that the dispose command
executed by one consumer thread does not dispose an object used by another
consumer thread and that an object that a producer places in the buffer is not
a disposed object. A natural inductive invariant that implies (1) is:

∀t, e .













pc[t] ∈ {5, 6} ⇒ a(c[t]) ∧ (i)
¬empty ⇒ a(b) ∧ (ii)
pc[t] = 2 ⇒ a(p[t]) ∧ (iii)
t 6= e ∧ pc[t] = 2 ⇒ p[t] 6= c[e] ∧ (iv)
t 6= e ∧ pc[t] ∈ {5, 6} ⇒ c[t] 6= c[e] (v)













(2)

This invariant ensures that dispose operations executed by threads cannot affect
locations pointed-to by producer threads that are waiting to transfer their value
to the buffer and also cannot affect the values of other consumer threads that
have not yet disposed their values. Here e is a thread that represents the envi-
ronment in which t is executed. Specifically: (i) describes the desired verification
property; (ii) is the buffer invariant, which is required in order to prove that (i)
holds when a consumer copies the value from the buffer into its local pointer
c; (iii) establishes the producer properties needed to establish the buffer invari-
ant. The most interesting parts of this invariant are the correlation invariants

(iv) and (v), describing the potential correlations between local states of two
arbitrary threads and the content of the (global) heap. These ensure that the in-
variant is inductive, e.g., (v) ensures that (i) is stable: deallocations by different
threads cannot affect it, if it already holds. Notice that the correlation invariants
cannot be inferred by pure thread-modular approaches. Our work goes beyond
pure thread-modular analysis [8] by explicitly tracking these correlations.

2.2 Automatically Inferring Correlation Invariants

In this paper, we define an abstract interpretation algorithm that automati-
cally infers inductive correlation invariants. The main idea is to infer normalized
invariants of the form:

∀t, e .
n
∨

i=1

ϕi[t, e] (3)

where t and e are universally quantified thread variables and ϕi[t, e] are for-
mulas taken from a finite, but usually large, set of candidates. We will refer to
each ϕi[t, e] as a ci-disjunct (Correlation-Invariant Disjunct). As in predicate ab-
straction and other powerset abstractions, the set of ci-disjuncts is computed by
successively adding more ci-disjuncts, starting from the singleton set containing
a ci-disjunct describing t and e in their initial states. For efficiency, ϕi[t, e] are
usually asymmetric in the sense that they record rather precise information on
the current thread t and a rather coarse view of other threads, represented by e.

For this program, we can use conjunctions of atomic formulas describing:
(i) that t and e are different, (ii) the program counter of t; (iii) (in)equalities
between local pointers of t and e, and between local pointers of t and global
pointers; (iv) allocations of local pointers of t and global pointers; and (v) the
value of the Boolean empty.

Thus, the invariant (2) can be written as:

∀t, e .













t 6= e∧
pc[t] = 5∧
c[t] 6= c[e] ∧ c[t] 6= b ∧ c[e] 6= b∧
a(c[t]) ∧ a(c[e]) ∧ a(b)∧
¬empty













∨













t 6= e∧
pc[t] = 6∧
c[t] 6= c[e] ∧ c[t] 6= b ∧ c[e] 6= b∧
a(c[t]) ∧ a(c[e]) ∧ a(b)∧
¬empty













∨

· · ·

(4)

where the ci-disjuncts describe cases of a consumer thread t that copied the
value from the buffer, (which has since been refilled), and has either used the
value locally or not. The other disjuncts are not shown.

2.3 Computing Postconditions Efficiently

The iterative procedure successively adds ci-disjuncts describing the reachable
states after applying an atomic action to the formula representing the current
set of reachable states, until a fixed point is reached. We compute the abstract
transformer for an atomic action by identifying its effect on every ci-disjunct
ϕi[t, e]. This is non-trivial since a transition by one thread can affect the global

state (and the view of the environment of another thread) and, hence, a ci-
disjunct involving other threads.

To compute the effect of a transition on a ci-disjunct ϕi[t, e], we need to
account for the following three possibilities: (i) The executing thread is t; (ii)
The executing thread is e; or (iii) The executing thread is some other thread
ex. The most challenging case is (iii). In this case, the ci-disjunct does not con-
tain information about the local state of the executing thread ex. Applying an
abstract transformer without any information about ex’s local state can lead to
imprecise results. Instead, we exploit the information available in the current
set of ci-disjuncts. Specifically, the executing thread ex must itself satisfy some
ci-disjunct ϕj [ex, t

′]. The situation with case (ii) is similar since only limited
information is available about the environment thread in the ci-disjunct and it
is handled similarly.

Thus, our transformer works as follows: we consider every pair of ci-disjuncts
ϕi and ϕj and apply a “mini-transformer” to this pair. The mini-transformer first
checks to see if the two ci-disjuncts are consistent with each other. (E.g., if they
imply conflicting values for the global variable empty, they cannot correspond to
ci-disjuncts from the same concrete state.) If so, it uses the information available
about the executing thread from ϕi to determine how the global state will change
as a result of the transition, and identifies how that alters ci-disjunct ϕj .

In our experiments, the above abstraction was precise enough to verify the
programs analyzed, yet quite slow. One of the key factors for the inefficiency is
the quadratic explosion in the transformer, as the transformer has to consider
all pairs of ci-disjuncts and the number of ci-disjuncts can become very large.

Our key contributions include effective techniques for making the transformer
more efficient by reducing this quadratic factor in common cases, usually with-
out affecting precision. These techniques are analogous to techniques used in
interprocedural analysis.

In the rest of this section, let us consider the application of the mini-transformer
described above to ci-disjuncts ϕj (corresponding to an executing thread ex) and
ϕi (corresponding to two other threads t and e).

The first optimization technique, called summarizing effects, is based on the
following observation. Typically, ϕi can be expressed in the form ϕ

p
i ∧ϕr

i , where
ϕr

i (the frame) cannot be affected by the execution of ex. We refer to ϕ
p
i as the

footprint of ϕi. E.g., purely local properties of t or e will usually be in the frame.

If the transition by ex transforms ϕ
p
i into ϕ

p′

i , then the transformation of the

complete ci-disjunct is given by ϕ
p′

i ∧ ϕr
i . Next, we note that distinct disjuncts

ϕi and ϕk may have the same footprint. In this case, it suffices to compute the
transformation of the footprint only once.

E.g., consider the first two ci-disjuncts of (4). These ci-disjuncts have the
same footprint since they differ only in the program counter value of t which can-
not be altered by the execution of ex. Typically, the number of distinct footprints
created by a set of ci-disjuncts is much smaller than the number of ci-disjuncts,
which leads to significant efficiency gains. This optimization is similar to the
interprocedural analysis technique where information at the calling context not

modified by the call can be transmitted across the procedure call. In section 4,
we show the conditions under which this technique can be used to make the
transformer more efficient without affecting precision.

The summary abstraction optimization applies to ci-disjunct ϕj and exploits
the locality of the transformer. We abstract away information not used by the
transition from ϕj (corresponding to the executing thread), constructing its foot-

print ϕ
f
j and use it for the mini-transformer. As distinct ci-disjuncts can have

the same footprint, this decreases the number of ci-disjuncts passed to the mini-
transformer.

One point to note here is that information not used or modified by an atomic
action may still be used by the mini-transformer to check for consistency between
the two ci-disjuncts. If such information is omitted from the footprint, we still
get a sound transformer, though there may be a loss in precision. However, we
found that this heuristic can be used to significantly reduce the computation time
while maintaining a precise-enough abstraction. In general, an analysis designer
can choose the information to be omitted from the footprint appropriately to
achieve the desired tradeoff.

3 An Abstract Interpretation for Correlation Invariants

In this section, we formalize our analysis, which tracks correlations between pairs
of threads, in the framework of abstract interpretation [6].

3.1 The Concrete Semantics (C, TR)

A concurrent program is a parallel composition of concurrently executing threads,
where each thread is associated with an identifier from an unbounded set Tid .
The threads communicate through a global store Glob, which is shared by all
threads. In addition, each thread has its own local store, Loc, which includes the
thread’s program counter. A concrete state of the program consists of a global
store and an assignment of a local store to each thread identifier. We denote the
set of all concrete states by Σ = (Tid → Loc) × Glob and the concrete domain
by C = 2Σ. Given a state σ, let σG represent the global store of σ and let σL[t]
represent the local store of thread t in σ.

The relation tr ⊆ (Loc ×Glob)× (Loc ×Glob) describes a step that a thread
can take, given its local store and a global store. We write x y as shorthand
for (x, y) ∈ tr . Let σL[t 7→ l] denote a state that is identical to σL, except that
the local store of thread t is l. The concrete transition relation is defined as

TR = {((ρ, g), (ρ[t 7→ l′], g′) | t ∈ T id . (ρ[t], g) (l′, g′), } . (5)

3.2 The Abstract Semantics (CI , TRCI)

We now present an abstraction to deal with an unbounded number of threads. As
we saw in Sec. 2, tracking information about a single thread in the style of thread-
modular analysis [7] can be imprecise. This motivates the following abstract

domain. We define an abstraction that records correlations between the local
stores of two different threads and a global store. Let CID ≡ Loc × Glob × Loc
denote the set of such correlations. We will refer to an element of CID as a
ci-disjunct. We define the abstract domain CI to be the powerset 2CID .

The abstraction of a single concrete state is given by

βCI (σ) = {(σL[t], σG, σL[e]) | t, e ∈ Tid , t 6= e} . (6)

Note that a ci-disjunct (σL[t], σG, σL[e]) represents the state from the perspective
of two threads: t, which we call the primary thread, and e, which we call the
secondary thread. We say that (σL[t], σG, σL[e]) is a ci-disjunct generated by
threads t and e.

The abstraction of a set of states αCI : C → CI and the concretization
γCI :CI → C are:

αCI (X) ≡
⋃

σ∈X

βCI (σ) , γCI (R) ≡ {σ | βCI (σ) ⊆ R} .

Composing With Other Abstractions. Note that when Loc and Glob are finite
sets, CI gives us a finite abstraction. In Section 3.3, we show how to compose the
above abstraction with a subsequent abstraction to create other finite, tractable,
abstract domains. For the sake of exposition, we first show how to define a sound
transformer for the simple domain CI before we consider such an extension.

An Abstract Transformer. We define the abstract transformer TRCI : CI →
CI as follows:

TRCI (R) ≡
⋃

d∈R

trdirect
CI (d) ∪TRind

CI (R) . (7)

The function trdirect
CI : CID → 2CID captures the effect of a transition by

a thread t on a ci-disjunct whose primary thread is t. Abusing terminology, if
threads tp and ts satisfy φ(tp, ts), where φ ∈ CID , then after a transition by
thread tp, the threads will satisfy trdirect

CI (φ)(tp, ts).

trdirect
CI (ℓp, g, ℓs) ≡ {(ℓ′p, g

′, ℓs) | (ℓp, g) (ℓ′p, g
′)}. (8)

The function TRind
CI captures what we call the indirect effects : i.e., the effect

of a transition by some thread t on ci-disjuncts whose primary thread is not t.
As a first attempt, let us consider the following candidate definition for TRind

CI :

TRind
CI (R) =

⋃

(ℓ1,g,)∈R,(ℓ2,g,ℓ3)∈R

{(ℓ2, g
′, ℓ3) | (ℓ1, g) (ℓ′1, g

′)} .

Here, the transition (ℓ1, g) (ℓ′1, g
′) by one thread changes the global state to

g′. As a result, a ci-disjunct (ℓ2, g, ℓ3) may be transformed to (ℓ2, g
′, ℓ3). While

the above definition is a sound definition, it is not very precise. In fact, this
definition defeats the purpose of tracking thread correlations because it does
not check to see if the ci-disjunct (ℓ2, g, ℓ3) is “consistent” with the executing

ci-disjunct. We say that two ci-disjuncts x and y are consistent if there exists
σ ∈ Σ such that {x, y} ⊆ βCI (σ).

We first define some notation. Let CIMap denote Loc ×Glob → 2Loc. Define
function map : CI → CIMap by map(R) ≡ λ(ℓ, g).{ℓe | (ℓ, g, ℓe) ∈ R}. Function
map is bijective and CI and CIMap are isomorphic domains. Given R ∈ CI ,
let R(ℓ, g) ≡ map(R)(ℓ, g) and par (R) ≡ {(ℓ, g, R(ℓ, g)) | ∃ℓe.(ℓ, g, ℓe) ∈ R}.
We refer to an element of par(R) as a cluster. A cluster (e.g., (ℓ1, g, {ℓ2, ℓ3}))
represents a set of ci-disjuncts with the same first and second component (e.g.,
{(ℓ1, g, ℓ2), (ℓ1, g, ℓ3)}). par (R) partitions a set of ci-disjuncts R into clusters.

We define TRind
CI as follows:

TRind
CI (R) =

⋃

ce,ct∈par(R)

tr indirect
CI (ce, ct) . (9)

tr indirect
CI ((ℓ1, g1, e1), (ℓ2, g2, e2)) ≡

if (g1 = g2 ∧ ℓ1 ∈ e2 ∧ ℓ2 ∈ e1)
then {(ℓ2, g

′

1, ℓ3) | (ℓ1, g1) (ℓ′1, g
′

1), ℓ3 ∈ (e1 ∩ e2) ∪ {ℓ′1}}
else {} .

(10)

The first parameter of tr indirect
CI is a cluster representing the executing thread,

and the second is a cluster representing thread(s) on which we compute the in-
terference. We call this the tracked thread. The if-condition is a consistency check
between two clusters. If the condition is false, then the clusters are inconsistent:
i.e., a ci-disjunct from the first cluster and a ci-disjunct from the second cluster
can not arise from the same concrete state. Hence, the transformer produces no
new ci-disjunct.

Theorem 1 (Soundness). The abstract transformer TRCI is sound, i.e., for
all R ∈ CI , TR(γCI (R)) ⊆ γCI (TRCI (R)) .

Note that the transformer is not guaranteed to be the most-precise trans-
former [6]. In terms of efficiency, we can see that the expensive part of the
transformer is the application of tr indirect

CI , which operates over pairs of elements
in par(R), requiring a quadratic number of queries to tr .

3.3 Composing With Other Abstractions

In this section, we show how we can compose the abstraction CI defined in the
previous section with other abstractions of Loc and/or Glob to create other, more
tractable, abstract domains. This can be used to create finite state abstractions
even if Loc and/or Glob are infinite-state.

Abstract Domain Let (2Loc, αP , γP ,LocP) be a Galois Connection we want to use
to abstract the primary thread’s local state. Let (2Glob , αG, γG,GlobG) be a Ga-
lois Connection we want to use to abstract the global state. Let (2Loc, αS , γS ,LocS)
be a Galois Connection for abstracting the secondary thread’s local state.

Let ACID = LocP × GlobG × LocS . Let ACI = 2ACID, with the Hoare
powerdomain ordering. (Since ACID is already ordered, it is possible for several

elements of ACI to represent the same concrete set of states, which we allow
as a convenience.) We use ACI as an abstraction of CI , with the abstraction
function αACI : CI → ACI defined by:

αACI (S) = {(αP ({ℓe}), αG({g}), αS ({ℓt})) | (ℓe, g, ℓt) ∈ S}.

We use the first local store (LocP) as the primary source of information about
locals.The second local store (LocS) is used primarily to express correlation
invariants (and to check for consistency between different ci-disjuncts). (This
can be seen in the definition of the abstract transformers presented earlier.)
Thus, in practice, the domain LocP is richer and captures more information
than the domain LocS .

Abstracting basic transitions Recall that ⊆ (Loc × Glob) × (Loc × Glob)
represents a single step transition by a thread. Let a ⊆ (LocP × GlobG) ×
(LocP × GlobG) be a sound abstraction of this relation: i.e., abusing notation,
 a should satisfy γ◦ a ⊇ ◦γ. More precisely, we want

{(x, y) | (ℓe, ga) a (ℓ′e, g
′

a), x ∈ γP (ℓ′e), y ∈ γG(g′a)} ⊇

{(ℓ′, g′) | ℓ ∈ γP (ℓe), g ∈ γG(ga), (ℓ, g) (ℓ′, g′)} .

Abstract Transformer We now present a sound abstract transformer TRACI for
the domain ACI , which is very similar to the transformer for domain CI defined
in the previous section. In particular, equations 7 and 9 defining the transformer
remain the same as before. The function trdirect is the same as before, except
that is replaced by a as follows:

trdirect
ACI (ℓp, g, ℓs) ≡ {(ℓ′p, g

′, ℓs) | (ℓp, g) a (ℓ′p, g
′)}. (11)

The definition of function tr indirect , however, is a bit more complex.
We define the abstract transformer in terms of a sound consistency-check

operation for comparing elements across different abstract domains as follows,
where the indices i and j are either P or S. Let ≈i,j ⊆ Loci ×Locj be such that

γi(x) ∩ γj(y) 6= {} ⇒ x ≈i,j y.

We define a corresponding relation ∈i,j ⊆ Loci × 2Locj by

x ∈i,j S iff ∃y ∈ S.x ≈i,j y.

We will omit the indices i, j if no confusion is likely. Informally, x ≈ y indicate
that x and y may represent the same concrete (local) state.

tr indirect
ACI ((ℓ1, g1, e1), (ℓ2, g2, e2)) ≡
let g = g1 ⊓ g2 in
{(ℓ2, g

′, ℓs) | ℓ1 ∈ e2, ℓ2 ∈ e1, (ℓ1, g) a (ℓ′1, g
′), (ℓs ∈ e2 ∧ ℓs ∈ e1) ∨ (ℓs = ℓ′1)}

(12)
Note that the above definition closely corresponds to equation 10, except that
∈ is replaced by a corresponding sound approximation ∈.

Theorem 2. The abstract transformer TRACI is sound.

4 Efficiently Computing Indirect Effects

As mentioned earlier, the expensive part of computing transformers is the com-
putation of indirect effects. We now present a couple of techniques for making
this computation more efficient. (The techniques we present are inspired by well-
known optimization techniques used in inter-procedural analysis.)

4.1 Abstracting The Executing Cluster

The computation of indirect effects, tr indirect(ce, ct), determines how a single
transition by a thread e (described by a cluster ce) transforms another cluster
ct (describing the state of another thread t). However, not all of the information
in the clusters ce and ct is directly used in the computation of indirect effects.
This lets us abstract away some of the information, say, from ce to construct
c′e and compute tr indirect (c′e, ct) to determine the indirect effects. We refer to c′e
as the footprint of ce. This helps speed up the computation because different
clusters c1, · · · , ck can have the same footprint cf : in such a case, it is sufficient
to compute the indirect effect due to the single footprint cf , instead of the k

different clusters. We call this technique summary abstraction. The notion of a
footprint can be applied to ci-disjuncts (as in the example below) or, equivalently,
to clusters (as in our formalism).

C1,C2

empty5:

c1 c2

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

empty4:

c2 c3

empty6:

c1 c2x1

empty6:

c1 c3

empty6:

c1 c3

x1

x1

empty6:

c1 c2!x1

C1,C3

C1,C2

empty5:

c1 c2

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

empty4:

c2 c3

empty6:

c1 c2x1

empty6:

c1 c3

empty6:

c1 c3

x1

x1

empty6:

c1 c2!x1

C1,C3 C1,C2

empty5:

c1 c2

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

4:

c2 c3

empty6:

c1 c2

empty6:

c1 c3

empty6:

c1 c3

C1,C3C1,C2

empty5:

c1 c2

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

4:

c2 c3

empty6:

c1 c2

empty6:

c1 c3

empty6:

c1 c3

C1,C3
c1 c2 c3

empty6: 5:

c1 c2 c3

empty7: 5:

TR

c1 c2 c3

empty6: 5: empty6: 5:

c1 c2 c3

empty7: 5: empty7: 5:

TR

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

C2,C1

empty5:

c1 c2

empty5:

c2 c3

C2,C3

(a) (b) (c) (d)

Fig. 2. Abstract states for summary abstraction

Example 1. We first illustrate the value of this technique using an example from
the single buffer algorithm in Fig. 1 with the commented lines added. In Fig. 2
every box represents a ci-disjunct. We consider states with 3 threads C1, C2
and C3. The boxes under the column labelled Ci, Cj represents ci-disjuncts
with primary thread Ci and secondary thread Cj. However, not all ci-disjuncts
are shown. The abstraction includes the program counter of the primary thread
(shown in the lower left corner) but not of the secondary thread. ci represents
the value of c in thread Ci: it points to nothing if it is null (the initial value),
and a hollow circle if it points to an allocated object, and a filled circle if it
points to an object that has been deallocated. ci and cj point to different circles

to indicate that they are not aliased. The value of x of thread C1 is shown as
x1 (true) or !x1 (false).

We now consider the transition due to the execution of the statement dispose(c)
by C1. The tracked thread is C2. Fig. 2(a) depicts some of the input ci-disjuncts.
The ci-disjuncts in the leftmost column differ only in the value of x1. Fig. 2(b)
represents the ci-disjuncts from Fig. 2(a) after the application of summary ab-
straction, which abstracts away x1 (since the executed statement does not use
x). As a result, the two ci-disjuncts of the first column are now represented by
a single footprint. Fig. 2(c) depicts the application of the transformer to the
state obtained by combining two ci-disjuncts (the executing ci-disjunct C1, C2
and the tracked ci-disjunct C2, C3). Note that the left program counter is that
of C1, and the right one is that of C2. Finally, Fig. 2(d) depicts the resulting
ci-disjuncts where C2 is the primary thread. ⊓⊔

We now present a modified version of the transformer TRind
CI that incorpo-

rates this optimization. Let Cluster denote the set of all clusters. Our modified
definition is parameterized by a function fpE : Cluster → Cluster that abstracts
away some information from the executing cluster ce to construct its “footprint”
c′e. However, the only property required of fpE for soundness is that fpE (x) ⊒ x

(for all x), where the ordering ⊒ is the ordering on the domain ACI (treating
a cluster as a set of ci-disjuncts). Given a set S of clusters, let fpE (S) denote
{fpE (c) | c ∈ S}. Given such a function, we define:

TRind
E (R) = ∪e∈fpE (par(R)) ∪t∈par(R) tr indirect

ACI (e, t).

Theorem 3. If for all x, fpE (x) ⊒ x, then TRind
E is a sound approximation of

TRind
CI : TRind

E (R) ⊒ TRind
CI (R).

Note that analysis designers can define fpE so that the above technique is
an optimization (with no loss in precision, i.e., tr indirect

E (e, t) = tr indirect(e, t)),
or they can define a more aggressive absraction function that leads to greater
speedups with a potential loss in precision. Thus, the parameter fpE acts as a
precision-efficiency tradeoff switch.

In our implementation, we used a definition of fpE such that fpE (ce) is the
part of ce that is read or written by the executed statement (transition).

4.2 Exploiting Frames for The Tracked Cluster

The technique described above for the executing cluster can be used for the
tracked cluster as well, but with some extensions. The modified technique in-
volves decomposing the tracked cluster ct into two parts: the part c

fp
t that is

directly used to determine the indirect effect, and the part c
fr
t that is neither

used nor modifed by the indirect effect. We refer to c
fp
t as the footprint and to

c
fr
t as the frame. Unlike in the earlier case, we require the frame now because

the goal of the indirect effect is to determine the updated value of the tracked
cluster. We call this technique summarizing effects.

empty6:

c1 c2

empty6:

c1 c3

C1,C2 C1,C3 C2,C1 C2,C3

empty6:

c2 c1

empty5:

c2 c1

empty6:

c2 c3

empty5:

c2 c3

empty6:

c1 c2

empty6:

c1 c3

C1,C2 C1,C3 C2,C1 C2,C3

empty6:

c2 c1

empty5:

c2 c1

empty6:

c2 c3

empty5:

c2 c3

empty6:

c1 c2

empty6:

c1 c3

C1,C2 C1,C3 C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

empty6:

c1 c2

empty6:

c1 c3

C1,C2 C1,C3 C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

(a) (b)

empty6:

c1 c2 c3 c1 c2

empty7:

c3
TR

empty6:

c1 c2 c3

empty6:

c1 c2 c3 c1 c2

empty7:

c3c1 c2

empty7: empty7:

c3
TR

C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

empty

c2 c1

empty

c2 c3

6: 6:

5:5:

C2,C1 C2,C3

empty

c2 c1

empty

c2 c3

empty

c2 c1

empty

c2 c3

empty

c2 c1

empty

c2 c3

6: 6:

5:5:

(c) (d) (e)

Fig. 3. Abstract states for summarizing effects

Example 2. We demonstrate the summarizing effects technique on the algorithm
in Fig. 1. A set of ci-disjuncts are depicted in Fig. 3(a). The notation used is the
same as that in Fig. 2. Consider the execution of dispose(c) by C1. C2 is the
tracked thread. Note that the ci-disjuncts in the third column of Fig. 3(a) differ
only by C2’s program counter. This is also true for the ci-disjuncts in the fourth
column.We define the frame of a ci-disjunct to consist of its program counter
and the footprint to consist of everything else. Fig. 3(b) shows ci-disjuncts after
we replaced the tracked ci-disjunctsby their footprints. Fig. 3(c) shows the appli-
cation of the transformer on the information gathered from all the ci-disjuncts
considered. Fig. 3(d) depicts the states after they are projected back to the CID
domain and before the frame is restored. Finally, we use the frame from Fig. 3(a)
on Fig. 3(d) and get the abstract state in Fig. 3(e). ⊓⊔

We now present a modified form of our earlier transformer, parameterized
by a couple of functions. Given functions frameT : Cluster → Cluster and
fpT : Cluster → Cluster we define:

TRind
T (R) = let C = par (R) in

let TC = {(fpT (c), frameT (c)) | c ∈ C} in
⋃

e∈C

⋃

(p,r)∈TC(r ⊓ tr indirect
ACI (e, p)).

Note that the above technique is similar in spirit to the inter-procedural analysis
technique of abstracting away information about the caller that is not visible to
the callee when the callee is analyzed and restoring this information at the return
site (see e.g., [14]). Furthermore, to achieve an efficiency gain with this definition,
we need to save and reuse the value of tr indirect

ACI (e, p) when different clusters
have the same footprint p. This is analogous to the technique of memoization
in interprocedural analysis. In our context, we can capture this by rewriting the

last line of the above definition as follows:

⋃

p∈dom(TC)

(∪e∈C tr indirect
ACI (e, p)) ⊗ {r | (p, r) ∈ TC}

where dom(TC) = {p | (p, r) ∈ TC} and S1 ⊗ S2 = {x ⊓ y | x ∈ S1, y ∈ S2}..

Theorem 4. Let frameT and fpT satisfy (for all x, y) (a) fpT (x) ⊒ x, (b)
frameT (x) ⊒ x, and (c) frameT (x) ⊒ tr indirect(y, x). Then, TRind

T is a sound
approximation of TRind

CI : TRind
T (R) ⊒ TRind

CI (R).

In our implementation, the local store of the tracked thread is abstracted into
the frame and omitted from the footprint. (For heap-manipulating programs,
any regions of the heap that are private to the tracked thread can be handled
similarly.)

5 Evaluation

We have implemented our ideas in a framework for concurrent shape analysis.
Our implementation may be seen as an instantiation of the framework in Sec. 3.3,
obtained by composing the thread correlation abstraction (in Sec. 3.2) with
TVLA [16], an abstraction for shape analysis, and its extension HeDec [17]. We
use a flow-sensitive and context-sensitive shape analysis. Context sensitivity is
maintained by using call-strings.

We have used our implementation to verify properties such as memory safety,
data structure invariants, and linearizability for several highly concurrent state-
of-the-art practical algorithms.

Our evaluation indeed confirms the need for extra precision in tracking thread
correlations, without which the analysis fails to verify the specified properties.
Our evaluation also confirms the value of the optimizations described in this
paper. Tab. 1 summarizes the verified data structures and the speedups gained
from the use of summarizing effects and summarizing abstraction techniques.
Our benchmarks are all concurrent sets implemented by sorted linked lists. More
details can be found in an accompanying technical report [21].

We analyzed variants of these programs with intentionally added bugs (e.g.,
missing synchronization, changing the synchronization order). Our analysis found
all these bugs and reported a problem (as expected, since our analysis is sound).

Note that the speedup is particularly high for the first two programs (namely
[18] and its optimized variant). These are also the examples where the analysis
took most time. We believe this confirms the non-linear speedups achieved by
the techniques: we optimize a quadratic algorithm, thus we expect to gain more
as the examples become bigger. These algorithms were expensive to analyze
since they were interprocedural, and used a large number of pointer variables
and Boolean fields. Summarizing effects significantly reduced the blow-up due
to context sensitivity and summarizing abstraction was able to reduce blow-ups
due to local Boolean fields.

Table 1. Experiments performed on a machine with a 2.4Ghz Intel Q6600 32 bit
processor and 4Gb memory running Linux with JDK 1.6

Time (seconds) Speedup
Algorithm Standard Summar. Abs. Both Summar. Abs. Both

Concurrent Set [18] 56,347 19,233 2,402 1,596 2.93 23.46 35.30

Optimized Concurrent Set 46,499 18,981 2,061 1,478 2.45 22.57 31.45

Lazy List Set [10] 963 679 460 390 1.42 2.09 2.47

CAS-based set [23] 13,182 8,710 4,223 2,975 1.51 3.12 4.43

DCAS-based set [23] 861 477 446 287 1.80 1.93 3.00

Hand over Hand Set [12] 686 577 444 398 1.19 1.54 1.73

6 Related Work

In this paper we have presented techniques for speeding up analysis (abstract in-
terpretation) of concurrent programs. One of the recent works in this area is [7],
which presents the idea of thread-modular verification for model checking sys-
tems with finitely-many threads. However, in many natural examples tracking
correlations between different thread states is necessary, and our work focuses
on abstractions that track such correlations. The work on Environment Abstrac-
tion [5] presents a process-centric abstraction framework that permits capturing
thread-correlations. Our abstract domain is similar in spirit. The novelty of our
work, however, is in the definition of the transformers and its optimizations, and
its application to concurrent shape analysis.

Resource invariants [19] enable the use of thread-modular analysis to verify
concurrent programs without tracking thread correlations. One of the challenges
in automating such verification is inferring resource invariants. [8] and [3]
present techniques for inferring resource invariants. These techniques apply to
programs with coarse-grained concurrency. Our implementation, however, han-
dles fine-grained concurrency, including non-blocking or lock-free algorithms. [4],
and more recently [22], present semi-automated algorithms for verifying pro-
grams with fine-grained concurrency, using a combination of separation-logic,
shape abstractions, and rely-guarantee reasoning. While powerful, this approach
requires programmers to provide annotations describing the abstract effects of
the atomic statements of a thread.

The abstract states in our analysis represent quantified invariants. Quantified
invariants have been previously used in Indexed Predicate Abstraction [15] and
in Environment Abstraction [5]. A similar quantified invariants approach has also
been used in the analysis of heap properties [20] and properties of collections [9]
in sequential programs.

The work described in this paper is a continuation of [2]. The new con-
tributions of this paper are: we introduce a new, simple, abstract domain for
capturing correlations between pairs of threads and systematically study the
question of defining a precise, yet efficient, transformer for this domain, and
present new techniques for computing transformers efficiently for this domain;
we also present an empirical evaluation of our approach that shows that our

techniques lead to a dramatic reduction in verification time (compared to our
earlier work) while still being able to prove the same properties.

References

1. E. Ashcroft. Proving assertions about parallel programs. J. Comput. Syst. Sci,
10(1):110–135, 1975.

2. J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Thread
quantification for concurrent shape analysis. In CAV, pages 399–413, 2008.

3. C. Calcagno, D. Distefano, and V. V. Vafeiadis. Bi-abductive resource invariant
synthesis. In APLAS, 2009.

4. C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Modular safety checking for fine-
grained concurrency. In SAS, pages 233–248, 2007.

5. E. M. Clarke, M. Talupur, and H. Veith. Proving Ptolemy right: The environment
abstraction framework for model checking concurrent systems. In TACAS, pages
33–47, 2008.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282, New York, NY, 1979. ACM Press.

7. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, pages
213–224, 2003.

8. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
In PLDI, pages 266–277, 2007.

9. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL, pages 235–246, 2008.

10. S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and N. Shavit. A lazy
concurrent list-based set algorithm. In OPODIS, pages 3–16, 2005.

11. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In PLDI, pages 1–13, 2004.

12. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. M. Kaufmann,
2008.

13. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. TOPLAS, 12(3), 1990.

14. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, pages
125–140, 1992.

15. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
TOCL, 9(1):1–29, 2007.

16. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
SAS, pages 280–301, 2000.

17. R. Manevich, T. Lev-Ami, M. Sagiv, G. Ramalingam, and J. Berdine. Heap de-
composition for concurrent shape analysis. In SAS, pages 363–377, 2008.

18. M. M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In SPAA, pages 73–82, 2002.

19. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

20. A. Podelski and T. Wies. Boolean heaps. In SAS, pages 268–283, 2005.
21. M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Efficiently

inferring thread correlations, Jan. 2009. TR-09-59203.
22. V. Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI,

pages 335–348. Springer-Verlag, 2009.
23. M. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent objects. In

PLDI, pages 125–135, 2008.

